PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Evolution of Software Architecture over Decades

R. Rashmi, Dr. G N Srinivasan
Research Scholar, Research Guide, VTU,
RV College of Engineering,
Bengaluru, Karnataka, India
{rashmir, srinivasangn} @rvce.edu.in

Abstract — Through this paper, an attempt is made to portray
the evolution of Software Architecture over a significant period of
time with a perception of how it revamped itself to meet the
changing trends in IT Industry. The current generation software
systems are getting rich in features and exhibit complex behavior.
Representing these scenarios poses several challenges at the
architectural level. To address these challenges, dynamic design
decisions are recommended in creating the Software Architecture.
In the present work, vital research activities are highlighted along
with examples and streamlined addressing the architectural
capabilities relevant to the Industry 4.0 generation systems.

I. INTRODUCTION

Software is the term used to refer to an application, data and
program or script constituting set of instructions written within
computers to solve specific tasks. Whereas, a software system
is typically a combination of hardware devices and
intercommunicating software components constituting of
programs, configuration files, user manuals and so on.

A relatively new term is coined called as ‘Software
Intensive System’ to identify the system in which software
interacts with other software components, computer systems,
hardware devices, [oT sensors, data source and with people[1].
This clearly indicates that software has become crucial part of
all the applications, products and services contributing to the
industrial growth. Therefore, comprehension of how such
software behaves is important for a Software Engineer to
appreciate/realize the purpose of the software intensive system
being built. The software needs an architectural design to
represent the behaviour of the software system. This
architectural design, termed as Software Architecture (SA) [2],
depicts the behaviour and servers as a blueprint of the entire
system. It is referred by all the stakeholders involved in
development and usage of the software intensive system to
know how the project team is developing the software, what is
the work assigned to the design and development teams, the
key quality attributes the system has to possess, and so on. In
total, SA acts as a communication medium among all the
stakeholders [2],[7] and enables them to analyse and evaluate
the correctness of the system during the early stages of
Software Development Life Cycle (SDLC). This helps in
identifying and mitigating design errors and risks even before
the system is built thus leading to reusable, cost-effective, and
time-to-market system development.

It is observed that, the term software design and software
architecture are interchangeably used sometimes and the
software design is depicted as ‘inclusive of software
architecture’. Though related to each other, these terms have to

K. B. Shubha Raj
Research Scholar, VTU, PES University,
Bengaluru, Karnataka, India
shubharaj.kb@gmail.com

be distinctly used. Software design represents the design of
individual modules/components. Whereas, the highest level of
abstraction of the system is represented as software
architecture.

Software design focuses on implementation details of
specific module/basic part of the system being built. They are
represented as UML diagrams, charts, flowcharts, algorithms
and data structures of specific module/component. Whereas,
Software Architecture focusing on the purpose of the system
and structured as a ‘skeleton’ of the system. The Software
Architecture involves abstract representation of the software
system with specific properties (also called as quality
attributes). Examples include Dataflow Systems, Call-and-
Return Systems, Independent Components, Virtual Machines,
Data-Centred Systems and Layered Architectures.

A. Design Levels in SDLC

In SDLC, Software Design follows the Software
Architecture. Finalization of software architecture goes
through several reviews and iterations as shown in Fig. 1.
Once the requirement specification, architecture and design are
approved, implementation phase begins followed by other
phases of SDLC.

—51 Requirement Specification |
¥

| Software Architecture l

l

\ High Level Design
¥

[Low Level Design
')

‘ Implementation |

¥
‘ Testing
[]

| Maintenance

Fig. 1. SDLC depicting Three Levels of Design

As evident in Fig. 1, Software Architecture representing
the abstract design of the system must be built first based on its
requirement specification during the software development
process. The Software Architecture must then be levelled
down to High Level Design and Detailed Design (Low Level
Design) to characterize their structural and behavioural aspects.
The transition between these design levels determine the

ISSN 2305-7254

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

success of a software system development. It also enables the
system to meet its gross requirements including functional and
non-functional attributes.

The features of three design levels are detailed below with
illustrations.

Abstract Design Level: Software Architecture represented
at this level enables realization of quality attributes in the
software system. It is a generic and vendor neutral design
abstraction.

The design issues at this level involves composition of
overall system elements into components and connectors.
Rules of governance, business policies, technological
limitations, and changing requirements decide how these
elements interact with each other. These constraints are
addressed by the Software Architect instantiating an
architectural style/pattern. The architectural patterns/styles are
discovered from practical implementation and based on his
expertise.

High Level Design: It consists of recurring design
elements which are reusable across the system called as high
level design patterns. These patterns are well proven and tested
solutions that provide clarity to Software Architecture. They
are represented using UML diagrams.

High level Design patterns deal with issues like object
creation, organization of objects into larger and flexible
modules, and provide interface through communication
patterns.

There are patterns that are both static and dynamic [2].
Design patterns are also Platform / Framework Specific (based
on the developing and operating environment) and independent
of them. J2EE Design Patterns - Front Controller, Composite
View, Service Locator Pattern, etc. used in enterprise
application development are examples of platform specific high
level design patterns. Whereas, Loosely Coupled Control
Patterns used in designing dynamic system structures like smart
parking system may be platform independent. The pattern may
be used in a scenario where intelligent parking spots are to be
located and monitored based on occupancy of each location
corresponding to region [3].

There is an extensive scope for cross platform design
patterns in present situation. These patterns separate and
encapsulate the implementation of platform specific
functionalities using platform neutral interfaces [4], [32].

Low Level Design: The modules within a system are
represented using UML diagrams that form basis of work
assignment for developers. The design concerns here are
choice of algorithm, data structures. They are directly
implemented using specific programming languages to realize
quantitative, functional requirements of the system.

Table 1 summarizes the artefacts used to represent a
software system at all these design levels with examples. It
must be observed that, each level focuses on specific system
concerns to address the issues at respective levels. Through
this, it is obvious that software architecture is rendered after
requirement specification and before high level and low level
design in SDLC.

379

In summary, it must be comprehended that, any software
built for computer-based systems will exhibit one/ two or more
combinations of the many software architectures/architectural
styles (discussed in the following sections) and each
architectural style will consist of:

Components: The components are the core
computational parts of the system and can be
heterogeneous; developed on different platforms,
using different programming languages. Examples of
components are clients, servers, databases, filters,
layers of hierarchical system and sensors in [oT.

Connectors: The connectors correspond to an
interaction mechanism among the heterogeneous
components. Connectors will help to establish
communication and coordination between
components. They include procedure call, shared
variable access, client-server and database accessing
protocols, asynchronous event multicast and piped
streams, communications protocols including Near
Field Communication, Wi-Fi, Bluetooth, and so on.

Constraints: The elements of Software Architecture
are constrained on how these elements interact with
each other based on the context. These constraints
reflect the design decisions made within the
technological, business and environmental limitations
under which the system is intended to work. One of
the constraints could be deciding how components
should be integrated to form a system in distributed
environment. Trade-off between overall system
properties (e.g., security vs performance) while
developing semantic models.

Subsequent sections of the paper emphasis on the aspects
leading to systematic evolution of Software Architecture. The
concepts are narrated with an intent of enabling Professional
software developers and research scholars to assent with the
idea of architecting system models and appreciate the need

for Software Architecture in SDLC to achieve high
quality.
The review 1is supported with examples to help

academicians and students gain accumulated knowledge of
Software Architecture taxonomy and its accomplishments.

The paper is organized as follows: Section 2 puts forth
various definitions of Software Architecture in order to
comprehend the technology from different perspectives.
Section 3 narrates representation of Software Architecture.
Section 4 details the Impact of Software Architecture on the
business, technology and operational environment; the
influence of these on SA is also appraised. The 6™ section
elaborates the literature review on evolution of SA
with business and technological advancements in IT
industry.

In remaining sections, i.e., section 7, current architectural
challenges are identified and future directions are traced based
on the research gaps observed; section 8 recommends software
architectural solutions for current industry generation software
systems. The paper concludes along with an insight to future
work in section 9.

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

TABLE 1. DESIGN LEVELS OF SOFTWARE SYSTEM

System Design

Representation Structure level Artefacts Focus on Example
Software Architecture / Dynamic Abstract Components Realising — Pipes & Filters,
Architectural Style / Connectors Quality Attributes / Layergd Systems,
Architectural Pattern System concerns / gfgli);torles,
Non-Functional Requirements Model—,View—Controller
Design Patterns Static High Recurring design | Providing reusable solution — to | Master-Slave,
and / or elements commonly occurring problems within Loosely coupled control pattern,
Dynamic given design context J2EE design patterns
UML diagrams Static Low Modules Implementing — System functionality Interaction diagrams like
(Functional Requirements) using Sequence Diagram
algorithms and data structures

II. SOFTWARE ARCHITECTURE TERMINOLOGIES

Though Software Architecture has high substantive value
for software engineers, they have been endeavouring to
optimize Software Architecture in terms of taxonomy and
development process [4].

Several stakeholders at different levels in Information
Technology Industry have been defining the term ‘Software
Architecture’ from different perspectives. More details get
added as and when they experience new technological
challenges and innovations. A collection of such definitions is
put together in a bibliography by SEI. As mentioned from SEI,
these definitions are taken from various books, papers and
articles published since 1990s and are available in its website
http://www.sei.cmu.edu [5]. Our comprehensive definition for
the term ‘Software Architecture’ is likely to be in compliance
with the terminologies forming ‘Basic Repertoire’ of Software
Architectures [1], [6].

There are several terminologies often linked with the term
Software Architecture. A brief comprehension of some of the
related terminologies is tabulated in Table II to give more
clarity about the concept.

All of these technologies address the problem of structuring
a system at a very high, abstract level. The difference exists in
the scope and its representation. The scope of architectures
includes System-wide, Processor-wide, Collaboration-wise or
Intra-object representation and other target environment in
which the system is operational.

Throughout our work, we consider Architectural Patterns
and Architectural Styles as similar since both terms convey
same intent though representational autonomy exists. We must
agree that both pictorial representation and descriptive
documentation is necessary to understand Software
Architecture and communicate the idea effectively among
stakeholders. Hence, we use the terms interchangeably.

III. REPRESENTATION OF SOFTWARE ARCHITECTURE

A typical Software Architecture can be represented as
boxes and lines depicting the system elements. Here, the
boxes represent components and the lines are connectors. This

380

representation may include idioms and phrases to convey
meaning behind the symbols and provide some rationale for the
specific choice of components and interactions. These idioms
and symbols form common vocabulary across the organization
and forms basis for understanding broader system level
concerns such as patterns of communication, execution control
structure, and quality attributes such as scalability and security

[1].

Consider an example of a traditional compiler. Fig. 2
depicts its Software Architecture. The design diagram
embodies abstract representation of subsystems of the

traditional compiler as components. The lines represent the
connectors indicating sequential order of execution during
generation of machine code from source code.

Symbol
Table

/'— canmector

Lexical Syntax
analyser Analyzer

E— COMPORENT

Machine code
|»

Semantic
Analyzer

Code
Optimizer

Code
Generator

Snurceﬂd;

Fig. 2. Software Architecture of Traditional Compiler

In essence, a well-designed macro level software system is
a collection of well-formed modules at the micro level that are
integrated to form overall software structure. Software
architecture diagrammatically represents both levels of such
software systems.

At the at macro level, software architecture structures the
system as a sub-total of the components/subsystems and the
addresses issues at system-level structural composition in an
enterprise. Though, at the micro level, the subsystems are
levelled down to modules to be implemented in later stages.
Software architecture, at the macro level of a system, deals
with finely grained design issues like functionality performance
optimization and security and so on. The goal of the software
architecture is to develop reusable and cost-effective software
systems.

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

TABLE II. SOFTWARE ARCHITECTURE TERMINOLOGY

Terminology

Description / Representation

Examples

Architectural Style/
Software Architecture

The structural organization of Software System is represented using
vocabulary of components. Interaction among components are represented
using connectors and constraints on how they can be combined [1].

Dataflow systems,
Call-and-Return systems,
Independent components,
Virtual Machines,
Data-Centred Systems [1].

Architectural ~ Patterns /
Pattern Oriented Software
Architecture

“Results of previous experiences learnt through different case studies are
presented as well-proven generic solution scheme. They are structurally
documented and reused on commonly occurring problems in specific
design context. Also defines the implementation strategies of the
components, their responsibilities and relationships, and the ways in which
they collaborate” [7].

Layers,

Pipes and Filters,

Blackboard,

Broker,

Model-View-Controller,
Presentation-Abstraction-Control,
Microkernel Architecture,
Reflection Architecture [7].

Reference Architecture

Reference Architecture is a “reference model mapped onto software
elements and the data flows between them” [8].

It facilitates a shared understanding across multiple products,
organizations, and disciplines about the current architecture and the vision
on the future direction.

Diagrammatic representation includes integration of various Architectures
in context of Business, Technical and Customer aspects [8], [9].

OASIS Reference -Architecture
Oriented Architecture [10],

for Service

The Open Group SOA Reference Architecture
(11,

Global Justice Reference Architecture (JRA).

System Architecture

A collection of components that are connected to accomplish a specific

Integrated AUTODIN System Architecture [12],

Architectural Views.

purpose described as one or more models possibly with different

DARPA funded project known
ARPANET[13],

Engineered systems like Airline system, Energy
distribution system.

as

Enterprise Architecture Aligned with goals of the Enterprise.
workflows. Encompasses various

architectures.

the organization.

systems,

Captures business processes and
software and technical
Addresses Enterprise-wide issues such as security, inter-
operability, integrity, consistency and reuse across multiple systems within

Federal Enterprise Architecture [14].

IV. TAXONOMY OF ARCHITECTURAL PATTERNS

Architectural Patterns can be broadly categorized into
Routine and Innovative patterns based on their novelty.

Routine design solves repeatedly occurring problems while
architecting a system. Architects create a repository of design
artefacts by capturing their problem-solving skills and
experiences in the form of design documents and code libraries
(APIs). Software Engineers pickup relevant, reusable parts of
these solutions from the repository and use them to solve
similar recurring problem. This helps them realize specific
system property with accuracy.

Table III lists a few of such architectural styles and typical
forms of applications implemented from them.

TABLE III. ARCHITECTURAL STYLES AND CORRESPONDING FORMS OF
APPLICATIONS

Innovative patterns find novel solution to unfamiliar
problems. These patterns are essential for building original
software systems operating in uncertain situations. Such
systems require frequent reconfiguration to adapt themselves to
frequently changing requirements. Such applications are
domain specific; with deliberative and reactive behaviour.

Innovative patterns find novel solution to unfamiliar
problems. These patterns are essential for building original
software systems operating in uncertain situations. Such
systems require frequent reconfiguration to adapt themselves to
frequently changing requirements. Such applications are
domain specific; with deliberative and reactive behaviour.

Table IV lists innovative architectural styles and typical
forms of applications implemented from them.

TABLE IV. INNOVATIVE ARCHITECTURAL STYLES AND CORRESPONDING
FORMS OF APPLICATIONS

Architectural Style Forms of Application

Pipes and Filters Compilers — where sequential processing is

involved

Main Program and Subroutine Stand-Alone Applications — simple and

medium level software

Hierarchical Layers Operating Systems and Network Layers

Model View Controller Web Applications — provides interactive

user interface

Architectural Style Forms of Application

Reference Architecture | Robotics — with highly flexible and adaptive

features,

Automatic Vehicle Management — driverless cars.

Reflection Architecture | IoT — with self-healing capability
Microkernel Portable Operating Systems,
Architecture

Plug-and-Play extensions.

381

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

It may be observed that, an architectural pattern can be used
to develop different forms of applications of similar kind;
provided, suitable changes are allowed to be made to that
software architecture according to the requirements. Similarly,
several architectural patterns may be combined together to
develop such applications. In such scenarios, software
engineers must remember that each pattern enables specific
property in a system being built. Hence, it is necessary for
them to explore and compare alternative styles/patterns which
yield different consequences.

As said, it is obvious that, most software systems support
several quality attributes and must be addressed by a set of
combined architectural patterns. These patterns used within a
software intensive system must be compatible with each other.

For example, both microkernel and MVC architectural
styles may be combined to develop adaptable web applications
with highly interactive User Interface [7].

Another example is, while building enterprise applications,
the complex domain logic may be implemented using a rich
Domain Model pattern. The patterns most suitable for data
source layer in this case is combination of Query Object and
Repository patterns. This is more relevant in situations where
developers cannot tell whether the objects were retrieved from
in-memory or from the database (high abstraction between
database and view is needed). MVC is the best choice for
building the presentation layer here too [33].

In total, the selection of architectural pattern should be
based on above knowledge and driven by prioritised non-
functional requirements of the system being built.

Combining aspects of both routine and innovative design
mechanism improves productivity in an organization by
leverage existing system capabilities.

Architects need to identify system elements that could be
routine, and innovatively develop supporting artefacts
appropriately. This approach enables software architecture to
adapt to evolving technologies and changing system
requirements.

Following sections provide detailed description of impact
of software architecture on the system and its evolution based
on several aspects.

IMPACT OF SOFTWARE ARCHITECTURE

The significant aspect of Software Architecture is that, it
identifies the properties of individual components and its
interfaces that form the basis for the design of a good Software
System [6], [9]. A Good Software Architecture, when included
in the SDLC, ensures realization of System Quality Attributes
(non-functional requirements) like Reliability, Security,
Performance, Modifiability, etc., [6]. These quality attributes
are evaluated earlier at the architecture level to reduce
development effort and time-to-market. Hence, Software
Architecture predicts the efficiency of the software product and
also helps Architects to understand the complexity of the
system. In contrast, a bad architecture leads to system disasters.

From previous sections, it is comprehended that structural
compositions of software architecture are guided by its
constraints. These constraints are influenced by technical and

382

business aspects. Local and international governance and
policies, social concerns also will influence the business and
technical decisions of an organization.

Business strategies affect project development process, time
and its cost. Development process also depends on the
technical skills of the employees. Changing customer
requirements determine the features of the system. Other
stakeholder’s concerns contradict with each other leading to
trade-off of quantitative and qualitative attributes of the system.
For example, performance of an embedded system with
minimal resources will be affected dynamically with selection
of cryptographic algorithms to secure the system. Such issues
should be addressed at architectural level, early in stages of
SDLC.

Hence, software architecture of a system is influenced by
the organization’s business strategies, product requirements
and system’s operational environment. It is the responsibility
of the software architect to solicit the needs of the stakeholders
through trade-off, understand the technical and business goals
and prioritise the constraints at system level. The architect is
expected to review the architecture based on his experience and
expertise. This enables possibilities of expanding the enterprise
goals; taking advantages of previous investments in
architecture. Thus, software architecture significantly reduces
the cost and effort of system building through reusability.

Consequently, in the process of getting influenced, the
software architecture impacts the business and technological
advancements too. It ensures that the supporting business
solutions reflect the technological expansions stimulated at
architectural levels.

Industrial trends too, have been changing drastically since
invention of computers that manifested 3" industry generation.
Advent of the internet, ascent of data and large globalised
businesses, growth in computer power and interlinked financial
systems let to evolution of sophisticated software engineering
process that was directed by software architectural
patterns.

Rapid technology change in fields of artificial intelligence,
data analytics are leading to automation and hyper
connectivity. Due to high agility, industries are moving
towards Internet of Things, Internet of everything. Over all,
there is a drastic shift from enterprise to digital enterprise and
to intelligent enterprise. In such circumstances, the role of
software architecture is indebted because of its capabilities.

The notion of devising software architecture for a system
and implementing from that have several advantages. A few of
them are listed below [7]:

SA acts as a communication media between various
stakeholders to share their perspectives about the
system.

Allows architects to incorporate quality attributes into
the system being built and evaluated at the early
development stage.

Helps architects in “capturing design decisions and past
experiences of stakeholders in the form of a document
that serves as shared, semantically rich vocabulary for
any organization”.

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

Enables architects to reuse idioms, patterns and styles at
abstract level through ‘Routine Design’.

Makes it possible for organizations to build the products
at reduced cost through reusability.

Reduces the efforts of developers and testers by
facilitating them through architecture-based frameworks
and tools.

Enables organizations to achieve Time to Market
through faster ~ and efficient development
techniques.

V. EVOLUTION OF SOFTWARE ARCHITECTURE

The beginning stage of evolution of Software Architecture
can be traced back to the days when scientific basis was
applied to engineering practice during 1960 [1]. Different
programming languages were invented during this era namely,
COBOL, ALGOL, PASCAL, FORTRAN and so on. Data was
embedded in the programs. Each of these programming
languages had their own file systems which made it difficult for
the programs to deal with data in other programs and avoided
programs to access data of other’s. The maturity in theories led
to abstraction of data structures from individual programs.
Because it describes process without referring to actual data,
abstract data types were born and formed a way to the
beginning of software architecture.

Abstract data types gave a way to explore and address
issues like specifying abstract models, representing software
structures, language issues, data protection, integrity constraints
and rules of composition [1]. Programming language provided
solutions to these issues through predicates and language
constructs bound by conventional syntax and semantics. With
the proliferation of programming languages, it became
necessary to describe functionality of a system without
referring to its features which is second stage in evolution of
software architecture.

Third stage in evolution was to describe a procedure before
writing programs. This procedure was common for all
programming languages like flow-chart or algorithms and lead
to Single processor-multi threading, multitasking and multi-
processing concepts. Examples of such programming
languages are Interface Definition Language (IDL) and Module
Interconnection Language (MIL).

Further, with complete separation of data and programs,
separate ownership of data and programs were established.
This requirement raised several issues like securing data,
connecting between data and core computation, etc. Software
Design alone was not sufficient to handle the issue as these
concerns were beyond the selection of data structures and
algorithms for computation. This provided a way to go ahead
of design to address system concerns (quality attributes) like
security, reliability, performance, etc. This is the fourth step of
software architecture Evolution.

Through these stages, it is evident that programming
constructs evolved first and then software architecture evolved
through them. In concise, software architectures evolved as
generic models which are abstractions from a number of real
systems and which encapsulate the principal characteristics of
these systems.

383

Functional requirements of a system are quantitative in
nature and easily attainable through programming languages.
Achieving non-functional requirements is a challenge as they
are both quantitative and qualitative and requires software
architecture to imbibe these aspects at early stage of system
development. Now that we have realized the significance of it,
we write SA first and then use programming languages to put
them into operation.

Further, we quote a few systems as best examples that
leveraged from implementation level to architectural level
imbibing general characteristics represented more abstractly.

Example 1: Transformation of compilers from traditional
model to modern canonical compilers:

Initially, compilation was regarded as a sequential process
of translation through lexical analysis and code generation
phases. The model represented Pipes and Filters Architectural
Styles belonging to batch sequential version. As this model
was not completely accurate, it was improved by adding a
separate symbol table and was connected to lexical analyser.
Data was passed to subsequent phases in sequential order.

As the complexity of algorithms increased, intermediary
code generation phase that attributed parse tree was introduced
leading to Modern Canonical Compilers. These compilers
represented a significant shift in the architectural styles. They
were moulded as more appropriate structures that re-directed
attention from sequences of passes to central shared
representation of data structures. The symbol table and parse
tree were now connected directly to all phases of compiler
which enabled direct data access and manipulation. This
system advanced into Repository architecture style that is more
accurate and appropriate [1].

This process leads to following accomplishments at
architecture level:

e System components could be structured to operate
independently, and at the same time, interact through

each other via shared data repository.

e Flexibility was introduced in determining the order of

execution of operations.
Example 2: Pipes and Filters in Unix operating system:

Successful implementation of pipe and filter commands in
the shell to transfer data from one command to another lead to
Pipe and Filter Architectural Style [1]. Here, Filters represent
components and pipes represent connectors.

Accomplishments at architecture level:

e System components were organized to form a series of

operations that produce highly specific results.

Components were structured as independent entities
leading to parallel programming.

Connectors carried specific type of data and connected
output of one component to be fed as input to
subsequent component.

Example 3: In certain systems, where there was a need for
two or more processes to communicate in one system, Shared
Memory concept evolved. Advancement in this technology led

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

to development of Multi-Processing and Distributed Systems.
Remote Procedure Call (RPC) was introduced to send request
parameters from client stub, execute the procedure in server,
and send back the response to respective client through server
skeleton. RPC was used only when the client and server
systems are built using same platform.

To address portability issues when servers were built on
multiple platforms, Remote Method Invocation (RMI) was
introduced. RMI was soon replaced by CORBA technology to
solve Heterogeneity issues [6]. CORBA proved to be a
successful concept to handle active objects (COM and DCOM).
Thus, Broker Architecture arrived [7].

Accomplishments at architecture level:

e Software Architectures allowed for flexibility in
choosing underlying communication protocols based on

the application domain.

Addressed quality issues such as portability and security
through inclusion of relevant platform and frameworks.

These examples are substantiating that, as the requirements
for specific systems evolve, the corresponding architecture that
addressed both quantitative and qualitative system attributes
also advanced. This led to the conceptualization (modelling) of
Architectural Patterns.

During system modelling, repeatedly occurring issues were
observed in the problem space (real world environment). To
solve these issues, a set of generic functionalities (including
both functional and non-functional) were framed for the
associated solution space (software system being developed to
solve the problem).

To realize these functionalities, a set of individual and
reusable software elements were found; the relationships
between them were outlined and generalized into architectural
patterns. Various architectural patterns were introduced based
on the specific problem domain, structuring of software
elements (also called as components) using interfaces (also
called as connectors) which are course-grained structures.

As the architects got more experience in a specific domain,
they documented all their previously known design solutions in
handbooks and manuals. The software engineers with medium
credentials started reapplying this knowledge to achieve system
requirements. Later, such design solutions were identified and
categorized based on requirements/goals they met. Additional
information like, trade-offs they made or system structures they
created made it easy for engineers to reuse large portion of
prior solutions. These reusable methods were enriched,
standardized and documented that led a foundation for ‘Routine
Design’ patterns.

It is obvious that, any changes in the problem space
demands alternative selection of architectural patterns. Since
the quality attributes that a system must imbibe depends on
changed environmental and business goals, the selection and
refinement of relevant architectures becomes a crucial and
significant process. This process is also iterative and depends
on the “Design Decisions” made by the architects. Such design
decisions include system rationale, design rules and design
constraints [15].

384

These architectural patterns are innovative in nature and
require sufficiently fine-grained software entities. The entities
involve design decisions to achieve quality attributes in a
system and are also termed as design tactics [6]. Different
Architectural Patterns can be used to realize one or more
tactics. At the same time, one tactic can be used in many
patterns; provided, the solution is based on the context of
related problem space.

Following examples are indication that patterns arrived
from continuous observation, experience and expertise of
Software Architects.

Examplel: Layered architecture was applied to networks
and a few good operating systems [1], [7]. This led to
standardization of OSI ISO model and some of the X Window
System protocols. This success influenced the pattern to be
applied to model systems in other domains.

Accomplishments at architecture level:

Reusability of architectural decisions
fundamental aspect of Software Architectures.

° became

e The pattern support enhancement of system components

with little modifications.

Example 2: Programming language constructs correlate
with abstract data type architectural styles as explained in
previous sections of this paper.

Accomplishments:

e Data Representation is independent of functionality as
changes in data formats are easily accommodated

through interfaces.

Modularization allows changes in processing algorithm
and enhancement of system components.

Based on above illustrations, it is determined that design
patterns emanated from reusable entities at architectural level
similar to origin of language constructs from reusability
concept.

Further, a critical need to reduce complexity in software
gave birth to Object Oriented Paradigm. Many architectures
including Abstract Data Types and Objects, layered and
hierarchical patterns may be implemented using object-oriented
programming to control complexity through abstractions.

In third industrial revolution, the software design
methodologies aimed at one-of-a-kind applications, designs are
expressed in terms of objects and classes, and software was
coded manually. Gradually, the role of software became
decisive factor with advancement in industry trends and change
in business priorities.

The fact that factories do not manufacture individual
products, but instead create families of closely related products,
lead to development of integrated systems. System
functionalities such as material requirements planning was
superseded by Enterprise Resources Planning tools that enabled
humans to plan, schedule and track product flows through
factory. Distribution of these factories across wide spread
geographical locations lead to concept of Supply Chain
Management.

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

With this advancement, software intensive systems became
more complicated and required different approaches.

Numerous architectural styles/patterns were introduced
which are domain specific and a few others are widespread. A
few significant ones are listed below:

e Process Control Systems were intended to provide
dynamic control of a physical environment [16].

e State Transition Systems organized many reactive
systems and defined systems as states; denoting a set of
named transitions that move system from one state to
another [17].

e Product-Line Architectures were designed for families
of related applications. PLA served as blue-print for
creating families of related applications [18].

e Domain-Specific Software Architectures [19] were
specialized to increase the descriptive power of
structures.

e REST architectural styles were developed for
applications that are accessed over network in the form
of services identified by URIs. Restful Web Services
represent stateless client server architecture [20].

e Service Oriented Architecture (SOA) style represented
collection of services communicating and coordinating
with each to perform activities. SOAs applications
enabled applications to be more responsive and
competitive [21].

e Microservices Architectures structures formed a set of
fine-grained autonomous services modelled around a
business domain [22].

Several architecture styles can be combined in a single
design giving rise to Heterogeneous Styles. This enables
sophisticated system development that imbibes good practices
of all the embedded styles. The quality attributes accomplished
here at the architecture level are:

e The architectural representation helped in understanding
the its system complexity more clearly; serving as
communication medium across all stakeholders.

e Efforts were made in Software Architectures to
accomplish reusability of system artefacts over multiple
products and reduce the costs of software development.

e Realized scalability and maintainability by making
informed architectural decisions.

Software architectures of third generation led to refinement
and generalization of components. Software systems were
benefited from codeless form of programming (plug and play).
Code generators were invented. Many executable systems were
generated automatically or semi-automatically directly from
architectural ~ descriptions. It was achieved through
sophisticated configuration of components, connectors and its
constraints. This paved a way to digitization and automation of
business processes.

VI. CURRENT ARCHITECTURAL CHALLENGES

New technologies in 21* century is giving rise to disruptive
services, products and business models. Cutting edge

385

technologies like Additive Manufacturing, Robotics, IIoT and
Cyber Physical Systems are posing new challenges. Cloud
computing, Agile Technologies, Analytics and Automation are
driving the business [23]. Aspects like compliance with
security standards, adherence to data privacy policy and
intelligent analytics guide the ‘intelligent actions’ within the
applications developed. User Experience defines customer
satisfaction directing to business success.

Typical challenges that must be addressed by Software
Architects include:

e Shorter delivery cycle — time to market.

e Collaboration with development and operation teams
high level stakeholders — the stakeholders must be
involved.

e Large and complex testing environment due to huge
amount of unstructured data spread across networked
artefacts.

e Securing collaborative systems with diversified culture
— architects may have to think about new/alternative
security tactics as and when existing solutions get
compromised.

Doman Specific Issues:

e Cyber-Physical Systems (CPS) are more vulnerable to
threats than ever before. There is a need for closely
monitoring and synchronizing data/information between
physical factory floor and cyber computational space
[24].

e Systematically deployed CPS envisages the ability to
perform efficiently, collaboratively and resiliently.
Software architecture should cater for all such
quality attributes with deliberate trade-off among
them.

e Complex systems such as digital/intelligent enterprises
integrate cloud computing with various wearable
devices and IoT. They exhibit dynamic features such as
interoperability, cross-platform functionality —and
dynamic organization of system structures. Since
modern applications are multi-disciplinary and spread
across variety of networked machines, segregation and
categorization of styles and processes is a tedious
task.

e Expectations are more in terms of performance,
availability and scalability even for hand held devices
such as smartphones in spite of their battery and
processing limitations. Identifying relevant activities
and integrating them into a process to achieve desired
solution is highly challenging in such environments.

VII. RECOMMENDED SOLUTION AT SOFTWARE ARCHITECTURAL
LEVEL

There is need to deliver business values as fast as it is
demanded. Old approaches adapted by organizations are
posing risk of losing competitive advantages.

It is need of the hour to refocus all our intelligence and
efforts on constantly evolving existing architectures making
suitable changes in their design and enable them to respond to

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

the changing requirements. Software architecture must
integrate data and functionality in a better way to enable data
availability and collaboration.

All above mentioned quality attributes may be achieved by
tuning existing design to support following enablers in
Software Architectures [25]:

e Agility — having characteristics of speed and
coordination, ability to react quickly and appropriately
to change.

e Velocity — fast development through automation
techniques and tools.

e Modularity — building self-contained entities and
integrating them based on needs in different ways.

e Self-Healing System — to monitor and repair

themselves. This enables systems to be responsive,
resilient, elastic and message driven [26].

Supporting Elastic Test Infrastructure — for rapid
deployment and scaling. This improves adaptability in
systems like data centres by swiftly adding or removing
load balancing and other application resources [27].

After discussing variety of Architectural Styles and their
evolution towards fulfilling the needs of changing industrial
trends, we suggest Software Architects to focus on following
thumb rules in order to suit current scenarios:

e Constantly evolve/enhance existing architectures
through Artificial Intelligence, advanced analytical and

automation techniques.

roles of
through

Effectively communicate converged
stakeholders and enhance their skills
understanding Software Architectures.

Design Architectural Structures that are loosely coupled
and provide extension points to add new components
safely.

In order for software intensive systems to cater for
increasing demands of the present and upcoming industrial
trends Software Architectures must be built to:

e Enable components to manipulate data on itself or its

execution environment or state.

Self-Organizing Architectures supporting Reflective
Programs [28], [29] are best example that adjusts their
behaviour based on their context. In other words,
Architectural reflection performs computation about its
own software architectures making them self-
representative. This enables them to be explicitly
observed and manipulated [30].

Support reusability at all phases of system development
life cycle.

For example, providing means to reuse named
functionality to operate on different types across
diversified products.

Model an organizational structure tailored to a family of
applications, such as avionics, command and control, or
vehicle management systems. These specialized

386

architectures enhance the descriptive power of
structures by clearly defining technological,
environmental and business constraints on them.

Reference Architectures for specific domains [31] are
best examples of this category which make it possible to
generate executable systems automatically or semi-
automatically directly from architectural descriptions.

VIII. CONCLUSION AND FUTURE WORK

The work highlights major aspects in software architecture
evolution due to change in technology, business capabilities
and system requirements. Insights on past and present
architectural perceptions give directions for continued research
related to qualitative measurement of software systems.
Software issues are identified from basic stand-alone systems
to collaborative systems built across various domains.
Relevant examples are quoted in order to enable readers to map
specific architectural styles to address their problems.
Reusability at architectural level requires better understanding
of architectural patterns (code reuse is already extensive; e.g.,
opensource). Hence, the review emphasizes on choice of
architectural patterns based on several scenarios and provides
recommendations ~ for building sustainable software
architecture.

It is evident that all major institutions and industries are
heading towards researching new possibilities in software
architecture. This justifies that all aspects of architectural
activities are inevitable and must be explicitly dealt as a
separate phase in SDLC. There is a need to build and evaluate
software architectures in an organized manner so that every
aspect of architecture and design are reused, systems are built
cost-effectively and focus on time-to-market.

REFERENCES
(1

Shaw M., Garlan D, “Software Architecture: Perspectives on an
Emerging Discipline”, Prentice Hall, 1996, pp. 10-68.

E. Eide, A. Reid, J. Regehr and J. Lepreau, “Static and Dynamic
structure in design patterns”, Proceedings of the 24th International
Conference on Software Engineering (ICSE’02), IEEE,
pp. 208-218.

Srikanth Narasimhan, Jagadish Chundury, “Enterprise Digitization
Patterns: Designing, Building and Deploying Enterprise Digital
Solutions”, Notion Press, Incorporated, 2018, pp. 246.

(2]

(3]

Holmes, Benedikt, and Ana Nicolaescu. "Continuous architecting: Just
another buzzword." Full-scale Software Engineering/The Art of
Software Testing (2017): 1.

http://www.sei.cmu.edu/architecture/start/glossary/bibliographicdefs.cfm
. (website active as on date of submission).

(5]

[6]

Bass, Len, Paul Clements, and Rick Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. “Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns”, 1996.

Cloutier, Robert, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani,
Eirik Hole, and Mary Bone. "The concept of reference
architectures." Systems Engineering 13, no. 1, 2010, pp.14-27.

(7]
(8]

Lago, Patricia, Ivano Malavolta, Henry Muccini, Patrizio Pelliccione,
and Antony Tang. "The road ahead for architectural languages." IEEE
Software 32, no. 1, 2015, pp. 98-105.

Estefan, J. A., K. Laskey, F. G. McCabe, and D. Thornton. "OASIS
Reference Architecture for Service Oriented Architecture." Version 1.0,
OASIS Public Review Draft 1, 2008.

Lankhorst, Marc. “Enterprise architecture at work: Modelling,

communication and analysis.” Springer Science & Business Media,
2009.

[10]

[1

PROCEEDING OF THE 30TH CONFERENCE OF FRUCT ASSOCIATION

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Lyons, "A Total AUTODIN System Architecture," in IEEE
Transactions on Communications, vol. 28, no. 9, Sep 1980, pp. 1467-
1471.

Leiner, Barry, Robert Cole, Jon Postel, and David Mills. "The DARPA
Internet protocol suite." IEEE Communications Magazine 23, no. 3
(1985): 29-34.

Bellman, Beryl, and Felix Rausch. "Enterprise architecture for e-

government." In International Conference on Electronic Government,
pp. 48-56. Springer, Berlin, Heidelberg, 2004.

Anton Jansen, Jan Bosch, "Software Architecture as a Set of
Architectural Design Decisions", WICSA, 2005, Software Architecture,
Working IEEE/IFIP Conference on, Software Architecture, Working
IEEE/IFIP Conference on 2005, pp. 109-120.

Astrom, Karl J, B. Wittenmark, “Computer-Controlled Systems Design”.
Prentice Hall, second ed., 1990.

D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”

Science of Computer Programming, vol. 8, pp. 1987,
231-274.
Batory, Don. "Product-line architectures." In Smalltalk and Java

Conference. 1998.

Binns, Pam, Matt Englehart, Mike Jackson, and Steve Vestal. "Domain-
specific software architectures for guidance, navigation and control."
International Journal of Software Engineering and Knowledge
Engineering 6, no. 02, 1996, pp. 201-227.

Medvidovic, Nenad, and Richard N. Taylor. "Software architecture:
foundations, theory, and practice." In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
2, pp. 471-472. ACM, 2010.

Rosen, Michael, Boris Lublinsky, Kevin T. Smith, and Marc J. Balcer.
Applied SOA: service-oriented architecture and design strategies. John
Wiley & Sons, 2012.

Hasselbring, Wilhelm, and Guido Steinacker. "Microservice
architectures for scalability, agility and reliability in e-commerce." In
2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 243-246. IEEE, 2017.

387

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Sniderman, Brenna, Monika Mahto, and Mark J. Cotteleer. "Industry 4.0
and manufacturing ecosystems: Exploring the world of connected
enterprises." Deloitte Consulting, 2016.

Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems
architecture for industry 4.0-based manufacturing
systems." Manufacturing Letters 3, 2015, pp. 18-23.

Richard Monson-Haefel, “97 things every software architect should
know: collective wisdom from the experts”. O'Reilly, 2009.

Pepper, Joél, and Ana Nicolaescu. "A Look at the Evolution of Software
Architecture Evolution since 2010." Full-scale Software
Engineering/The Art of Software Testing (2017): 25.

Gambi, Alessio, Waldemar Hummer, and Schahram Dustdar.
"Automated testing of cloud-based elastic systems with AUToCLES." In
Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering, pp. 714-717. IEEE Press, 2013.

Affonso, Frank José, and Elisa Yumi Nakagawa. "A reference
architecture based on reflection for self-adaptive software." In 2013 VII
Brazilian Symposium on Software Components, Architectures and
Reuse, pp. 129-138. Ieee, 2013.

Garlan, David, Bradley Schmerl, and Shang-Wen Cheng. "Software
Architecture-Based Self-Adaptation." In Autonomic computing and
networking, pp. 31-55. Springer, Boston, MA, 2009.

Tisato, Francesco, Andrea Savigni, Walter Cazzola, and Andrea Sosio.
"Architectural reflection realising software architectures via reflective
activities." In Engineering Distributed Objects, pp. 102-115. Springer,
Berlin, Heidelberg, 2001.

E. Mettala and M. H. Graham, eds., “The Domain-Specific Software
Architecture” Program. No. CMU/SEI-92-SR-9, Carnegie Mellon
Software Engineering Institute, June 1992.

ChristophRieger, Tim A.Majchrzak, “Towards the definitive evaluation
framework for cross-platform app development approaches”, Journal of
Systems and Software Volume 153, July 2019, Pages 175-199.

Fowler, Martin. Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

Hasselbring, Wilhelm. "Software architecture: past, present, future." The
Essence of Software Engineering. Springer, Cham, 2018. 169-184.

