

An Introduction to GHRSST Products and Services

To provide operational users and the science community with the SST measured by the satellite constellation

Gary Corlett
GHRSST Project Coordinator

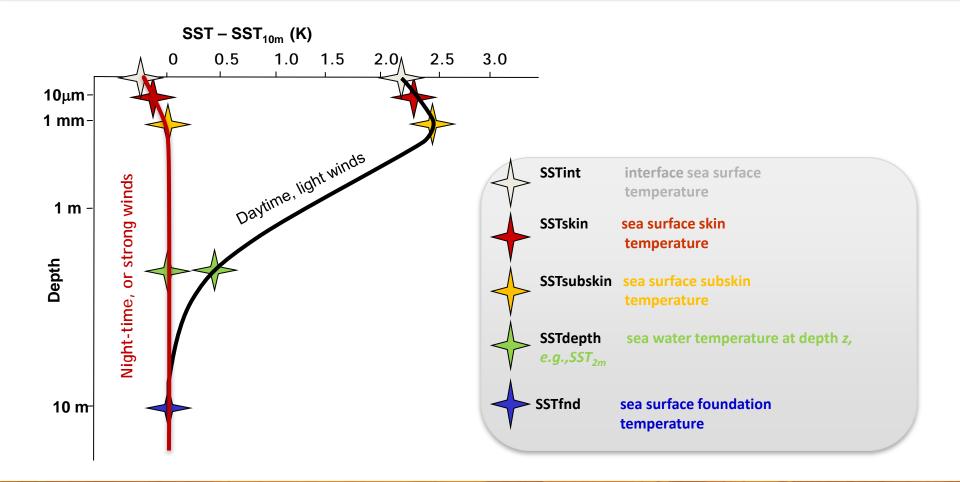
GHRSST and CEOS SST-VC

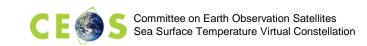
GHRSST

- The Group for High Resolution Sea Surface Temperature
 - Grew out of a Pilot Project of the Global Ocean Data Assimilation Experiment (GODAE), 1997-2008.
- Composed of an international Science Team of researchers and operational practitioners.
- Coordinates research and operational developments in satellite-derived SST.
- Data processing through Regional and Global Data Assembly Centers.

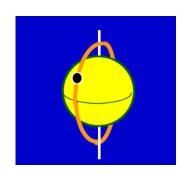
SST-VC

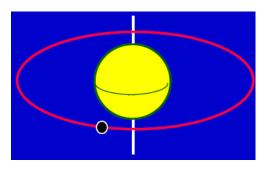
- The Sea Surface Temperature Virtual Constellation (SST-VC) serves as the formal link between GHRSST and the broader CEOS community.
- The SST-VC provides a means for CEOS to present its needs and requirements to GHRSST and for GHRSST to present its needs directly to CEOS.



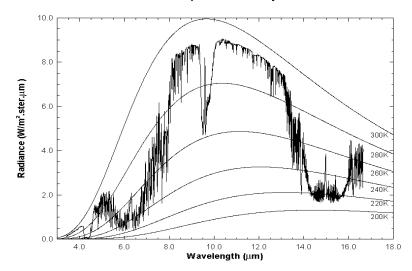


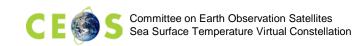
What is SST?

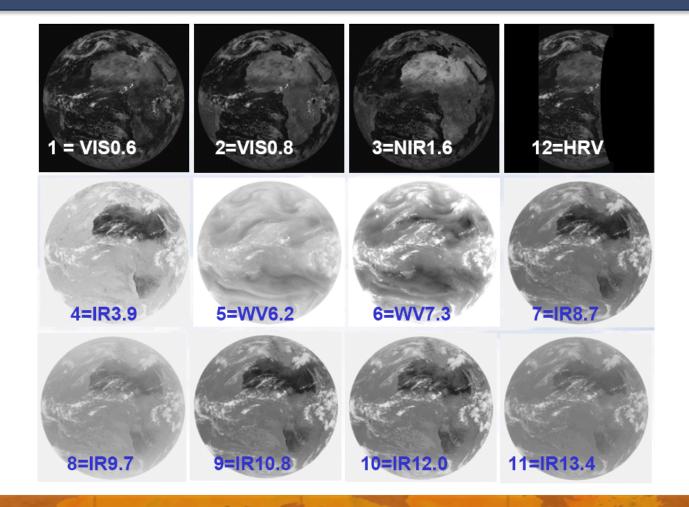


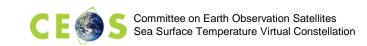


How do we measure SST from Space?



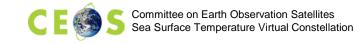

- We need two things:
 - A high-performance radiometer in Space
 - An effective Atmospheric Correction


High resolution atmospheric absorption spectrum and comparative blackbody curves.



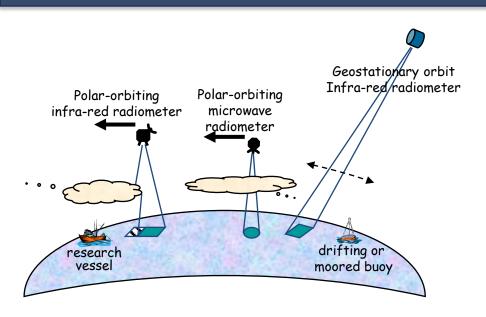
SEVIRI spectral images

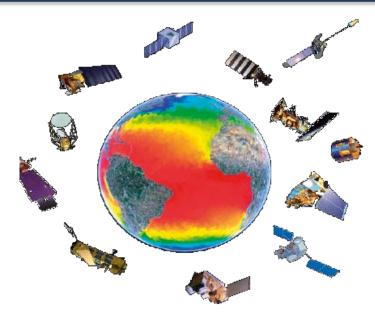
Satellite SSTs at a glance


Infra-red observations

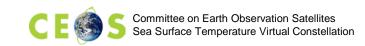
- Spatial resolution: 1 to 10 km
- Uncertainty: 0.15 to 0.5 K
- Limitations: cloud cover
- Temporal resolution per sensor (not accounting for clouds): sub-hourly (geo), ~ twice-daily (polar)
- Since 1981

Passive microwave observations


- Spatial resolution: 50 to 100 km
- Uncertianty: 0.4 to 0.75 K
- Accuracy (bias): few tenths
- Limitations: rain, margin around land and ice, radio frequency interference
- Temporal resolution per sensor (not accounting for contaminants): ~ twice daily
- Since 1997

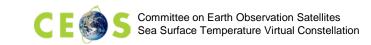

Optimising the SST constellation

GHRSST exploits complementary data sources

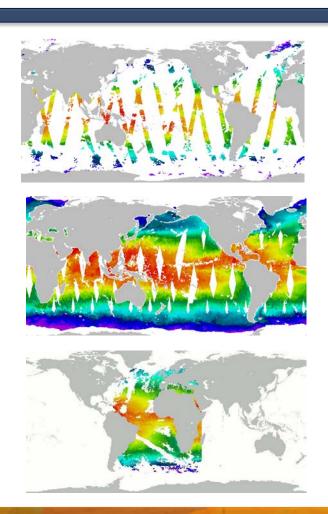

- Polar Orbiting infrared has high accuracy & spatial resolution
- Geostationary infrared has high temporal resolution
- Microwave Polar orbiting has all-weather capability
- In situ data provide *reality in all weather conditions*

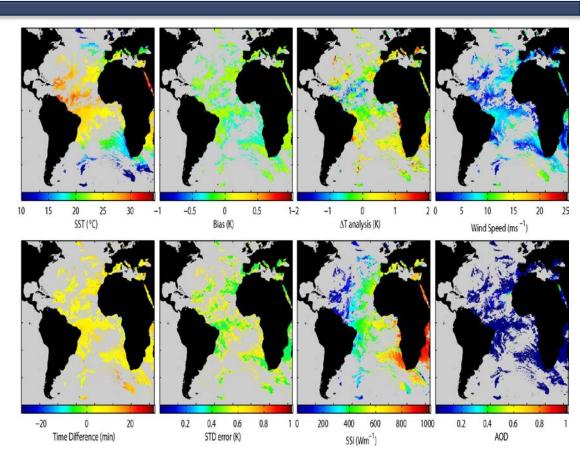
SST constellation gap analysis

- Current gaps that need attention include:
 - Redundant capability in microwave SST measurements (NSOAS)
 - Geostationary SST over Indian Ocean (ISRO; CMA)
 - Replacement 'reference' dual-view satellite radiometer (SLSTR)

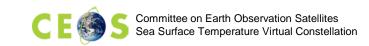


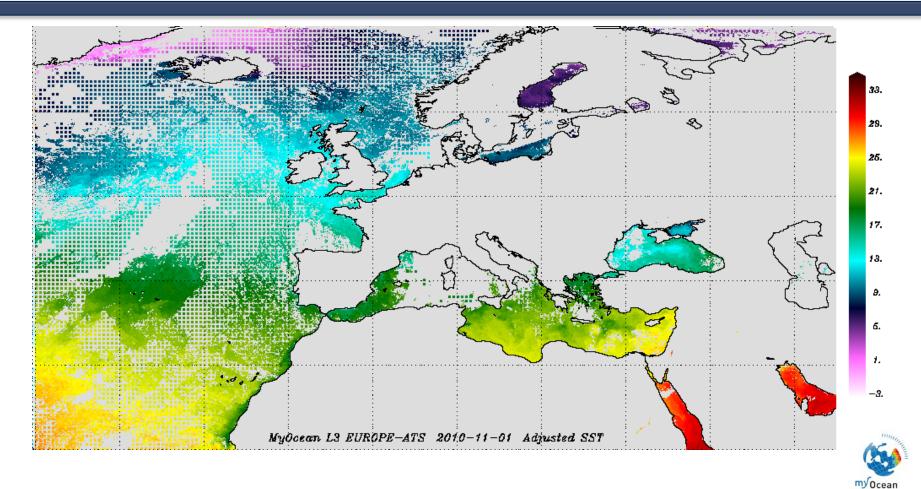
Data Processing Levels



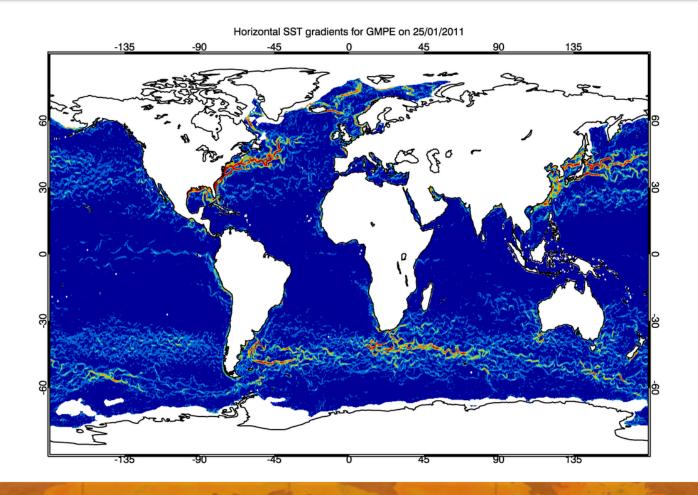

Data Level	Description
Level 0	Reconstructed, unprocessed instrument and payload data at full resolution.
Level 1B	Level 0 data that have been processed to geolocated radiances
Level 2P	Derived SST at the same resolution and location as Level 1B source data.
Level 3	Variables mapped on uniform space-time grid scales, with some degree of spatial averaging (L3U and L3S) and temporal averaging (L3C).
Level 4	Output from analyses of lower-level data (e.g., variables derived from multiple measurements).

L2P: Common format with uncertainties

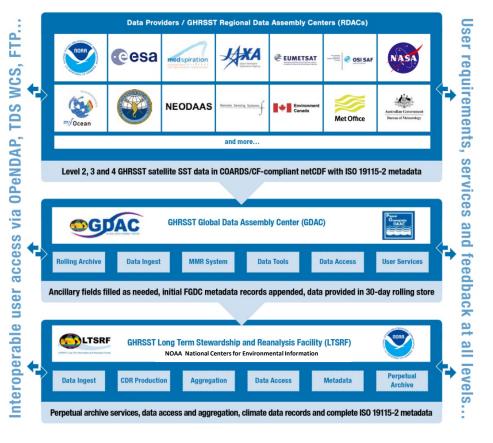



Ancillary information in L2P products: dynamic flags

Example L3S: Multiple sensors SST_{foundation}

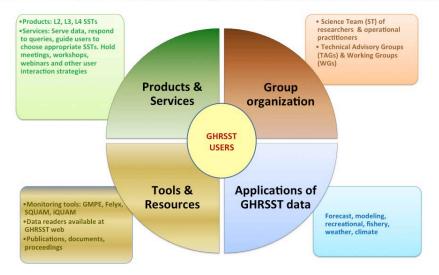


Example L4: GHRSST Multi-Product Ensemble (GMPE)



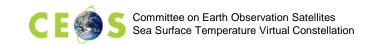
Regional/Global Task Sharing

- GHRSST products geenrated by RDACs
 - Some RDACs are self-serve
- GHRSST offers to serve data on-behalf of RDACs
 - Optional step but recommended
 - Addtional metadata for discovery services
- Real time
 - Global Data Assembly Centre (GDAC)
 - Primary system hosted by NASA JPL
 - See http://podaac.jpl.nasa.gov/
 - Secondary system hosted by Ifremer
 - See http://cersat.ifremer.fr/data/collections/ghrsst (requires simple registration)
 - Not all datasets are mirrored
- Delayed mode
 - Long-term Stewardship and Reanalysis Facility (LTSRF)
 - Hosted by NOAA NODC
 - See http://data.nodc.noaa.gov/ghrsst/
- Data can be accessed using many methods
 - ftp, http, DAP, WMS, WCS, LAS, Geoportal, Granules, CWI
- Anv issues
 - Please contact the GHRSST Project Office (gpc@ghrsst.org)



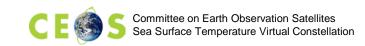
Finding the SST you need

Interested in GHRSST data:


- Real-time data (collection GHRSST): http://podaac.jpl.nasa.gov
- Long-term data: http://ghrsst.nodc.noaa.gov/
- Which data to use? Please check "Quick Start": www.ghrsst.org/quick-start
- Tools/resources/codes: https://www.ghrsst.org/products-and-services/tools/

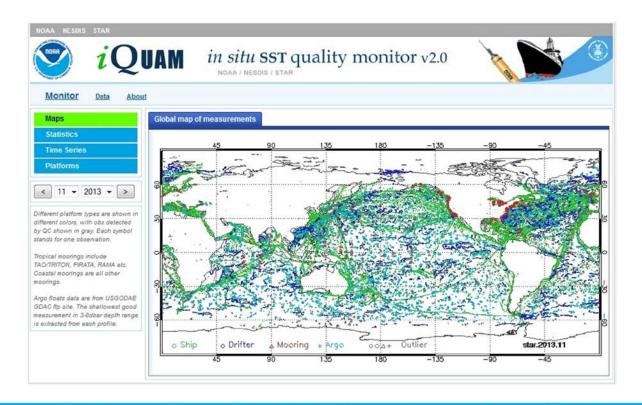
Interested in GHRSST activities:

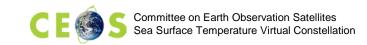
- Visit the GHRSST website at https://www.ghrsst.org
- For your interest in a particular technical advisory group (TAG) or working group (WG), please check the description for that working group



Diagnostic Datasets (Felyx)

Felyx (http://www.felyx.org) is funded by ESA and provides a free open source solution for scientists to analyse and inter-compare large collections of EO (here SST) data over static sites or moving targets (buoys, ships).



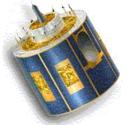


Product Validation

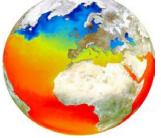
 GHRSST exploits online monitoring systems to access quality controlled in situ data for validation and use in L4 analyses

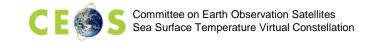
Future meeting dates

- GHRSST-XVII
 - Washington DC, USA, 6th 10th June 2016
- GHRSST-XVIII
 - Qingdao, China, 5th 9th June 2017
- GHRSST-XIX
 - Darmstadt, Germany, 4th 8th June 2018



Summary


 GHRSST mission: To provide satellite-derived global SSTs with good estimates of uncertainty to operational users and the science community



- The provision of SST data by GHRSST has grown to a mature sustainable essential service
- GHRSST provides a wide range of user driven SST-related products and services
- Do they meet your needs?



Contact details

- Thank you for your attention
- For further information please contact
 - Gary Corlett, GHRSSTProject Coordinator,gpc@ghrsst.org

