

Development of Satellite Ocean Products by CMA

Feng LU

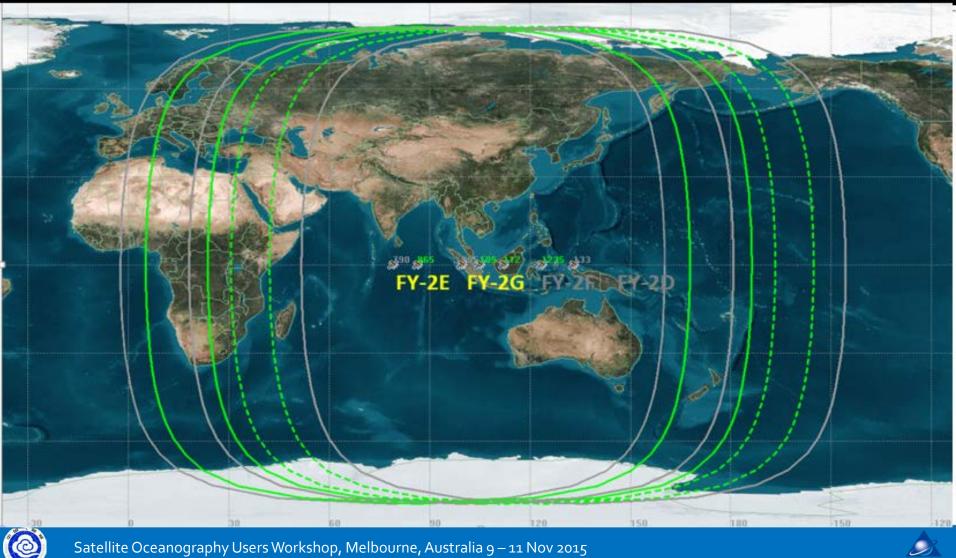
Office of System Development National Satellite Meteorological Center China Meteorological Administration (NSMC/CMA)

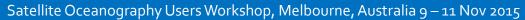
Satellite Oceanography Users Workshop, Melbourne, Australia 9 – 11 Nov 2015

Brief view of CMA Satellite

- Satellite Oceanography products used CMA
- Forword look

NSMC responsibilities




NSMC was created in 1971 as an auxiliary organ of the China Meteorological Administration for the objective of establishing the Chinese meteorological satellite systems, operating the satellite, and delivering satellite data and derived products to end users.

- 1. Study and draft strategy and development program for China's meteorological satellites.
- 2. Development and construction ground segment for Chinese meteorological satellites.
- 3. Acquisition, process, dissemination meteorological satellite data.
- 4. Provision of nationwide services of satellite data, information and product.

CMA Geo.

Current operational satellite FY-2E(86.5E) FY-2E(104.5E)

CMA Leo constellation

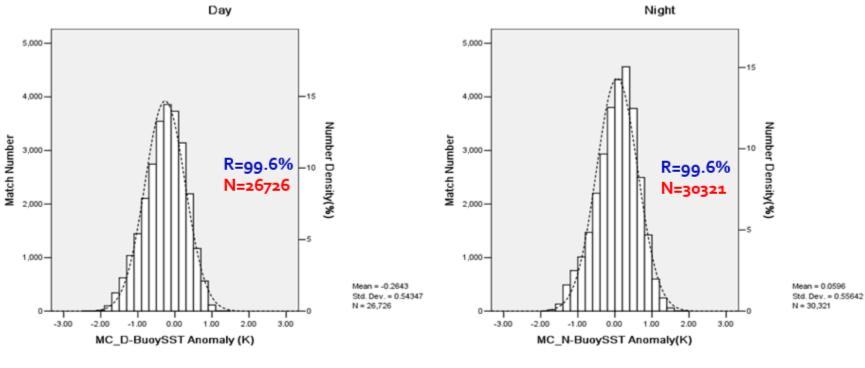
(FY-3C:Morning,FY-3B:Afternoon)

- Decommission: FY-1D
- To be decommission: FY-3A
- In operation: FY-3B + FY-3C global coverage 4 times per day

Satellite Oceanography Users Workshop, Melbourne, Australia 9 – 11 Nov 2015

Brief view of CMA Satellite

Satellite Oceanography products used CMA

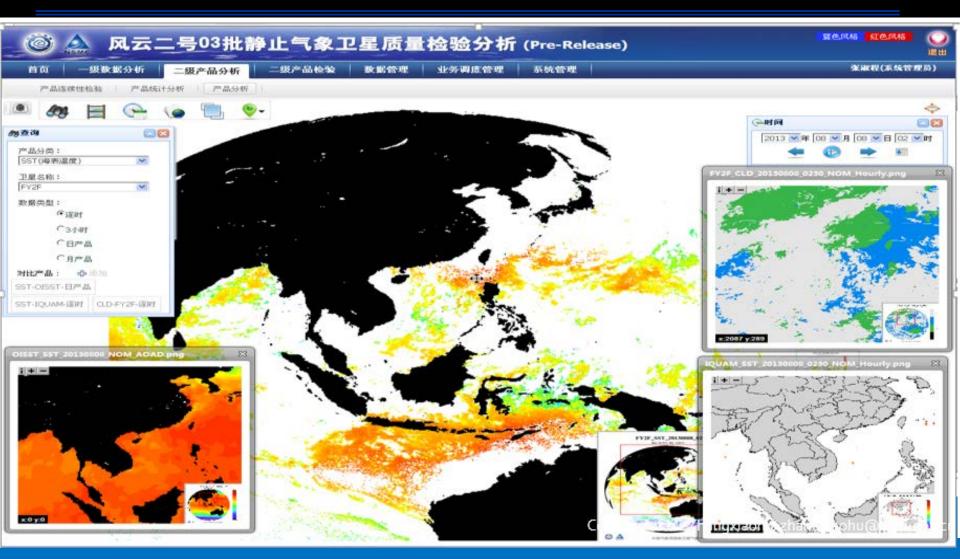

- 1) Satellite SST Products
- 2) Satellite Ocean Winds products
- 3) Satellite Sea ice products

Forword look

1) Satellite SST Products

Satellite used : FY-2D/E/F/G FY-3A/B/C products derived : SST QC : comparison vs in situ data from the iQUAM

Validate FY-3C/VIRR SST against in situ data (matchup analyses 2014.5~7)



MC_D bias: -0.26K STD:0.54K

MC_N bias: 0.06K STD:0.56K

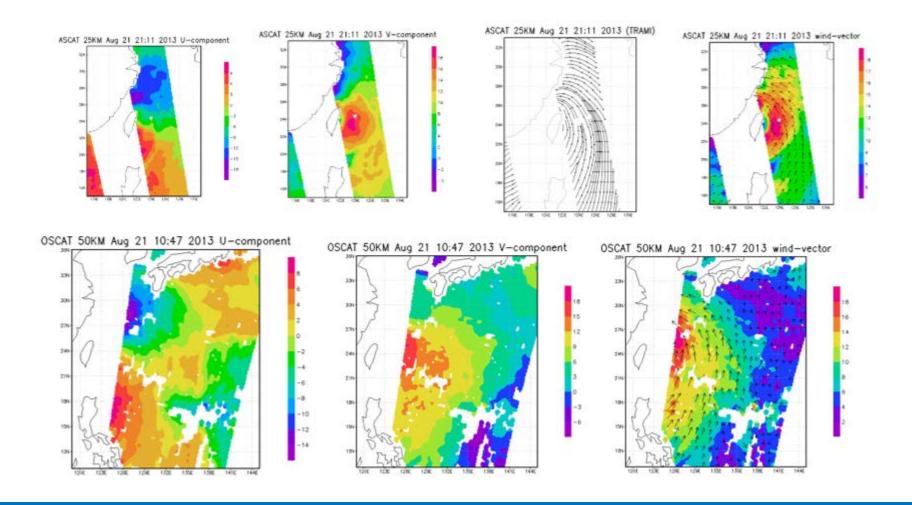
1) Satellite SST Products (cont.)

A SST products validation system have be operational since 2014

Courtesy of Mr.Zhangxiaohu zhangxiaohu@cma.gov.cn

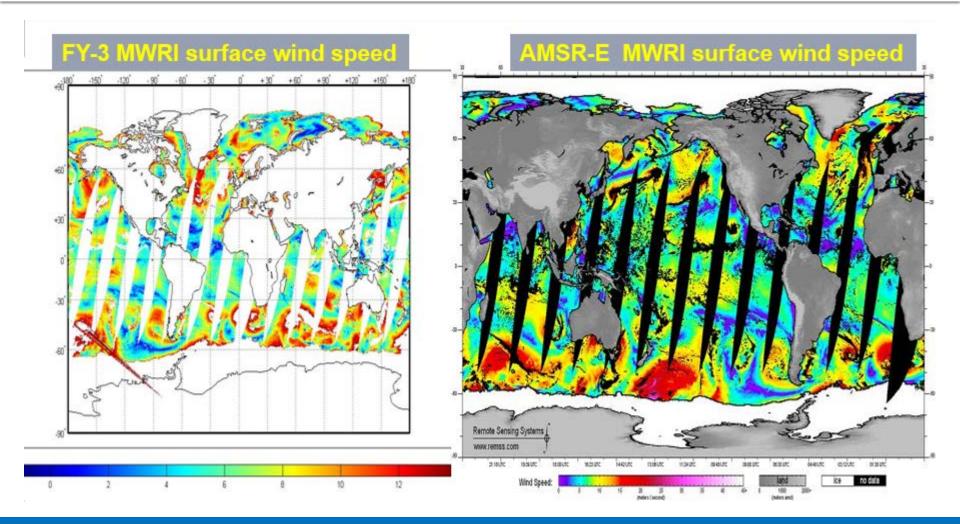
1) Satellite SST Products (cont.)

SST Algorithms used in NSMC


night	day	MCSST(D/N)	$T_s = a_0 + a_1 T_{11} + a_2 (T_{11} - T_{12}) + a_3 (T_{11} - T_{12}) (\sec \theta - 1)$
		QDSST(D/N)	$T_{s} = a_{0} + a_{1}T_{11} + a_{2}(T_{11} - T_{12}) + a_{3}(T_{11} - T_{12})^{2} + a_{4}(\sec\theta - 1)$
		NLSST(D/N)	$T_s = a_0 + a_1 T_{11} + a_2 T_{FG} (T_{11} - T_{12}) + a_3 (T_{11} - T_{12}) (\sec \theta - 1)$
		TCSST(N)	$T_{s} = a_{0} + a_{1}T_{11} + a_{2}T_{4} + a_{3}T_{12} + a_{4}(T_{4} - T_{12})(\sec\theta - 1) + a_{5}(\sec\theta - 1)$
l		DNSST(N)	$T_s = a_0 + a_1 T_{11} + a_2 T_{FG} (T_4 - T_{11}) + a_3 (\sec \theta - 1)$

- Ts : satellite-derived SST
- TFG : first-guess SST
- θ : satellite zenith angle
- $a_0 \sim a_4$: coefficients

T₄, T₁₁, T₁₂ : brightness temperature in $3.7\mu m$, $10.8\mu m$, $12\mu m$ bands The $3.7\mu m$ band is very transparent and is available for SST retrievals at night, while during daytime it is contaminated by solar reflectance.


2) Satellite Ocean Winds products

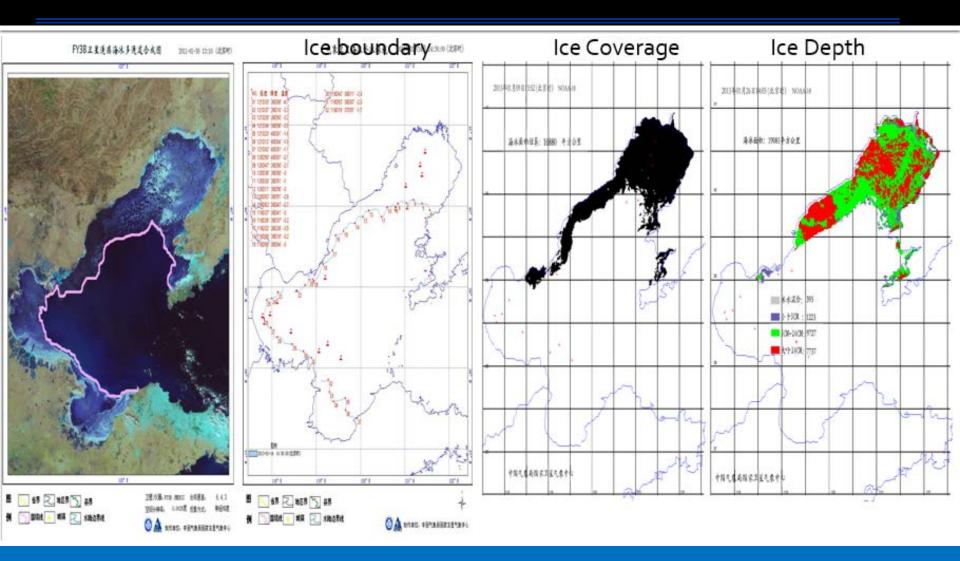
Satellite used : ASCAT, OSCAT Data source: EumetCast

2) Satellite Ocean Winds products


Satellite used : FY-3 MWRI(Microwave Radiometric Imager) products derived: Sea Surface wind speed

Courtesy of Dr.An dawei and awei@cma.gov.cn

2) Satellite Ocean Winds products


Satellite used : FY-3 MWRI(Microwave Radiometric Imager) products derived: Sea Surface wind speed

AN Da-wei, LU Feng, DOU Fang-li, ZHANG Peng. MODELING AND QUANTITATIVE RETRIEVAL OF FINITE FIELD FOR THE TROPICAL SEA SURFACE WIND SPEED OF THE FY-3B MICROWAVE IMAGER. Journal of Tropical Meteorology. 2015.21(1):84-91

3) Satellite Sea ice products

Satellite used : FY-3/B/C

Courtesy of XinWang xinwang@cma.gov.cn

Brief view of CMA Satellite

Satellite Oceanography products used CMA

Forword look

Summary

- CMA/NSMC focuses on operational satellite meteorological applications and capacity building. In-depth research and demonstration efforts are encouraged for the applications of new data in weather analysis, NWP, etc., Current CMA Oceanographic application focal point is SST and Sea surface wind.
- CMA will keep its commitment to open data policy for Fengyun data. Engagement of regional and global users in the application of Fengyun data are welcome.
- International partnerships are essential. Satellite
 Oceanography Users community is a very important value
 added benefit to CMA satellite applications.

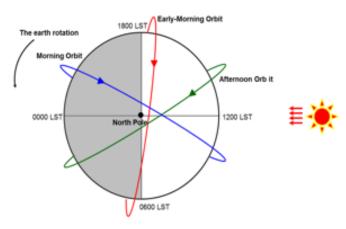
New capabilities form CMA Geo. A hyperspectral sounder on Geo , to be launched 2016

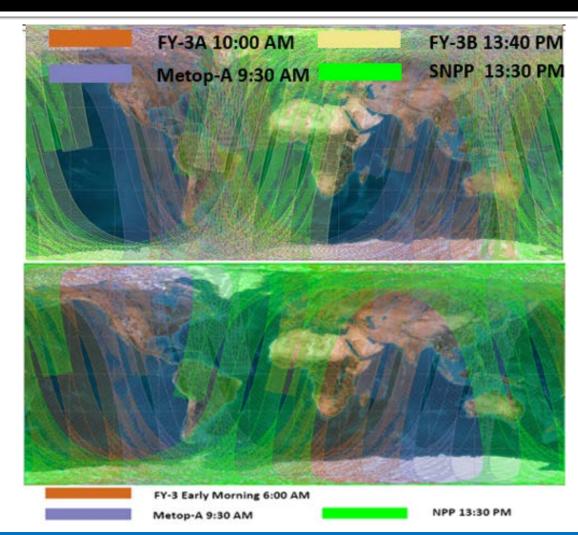
		FY-4A (R&D)	FY-4B (Operational)	
	Spectral Parameters (Normal mode)	Range Resolution Channels - LWIR: 700-1130 Cm -1 0.8 538 S/MIR:1 650-2250Cm -1 1.6 375 VIS : 0.55-0.75 µm 1 -	Range Resolution Channels LWIR: 700-1130 0.625 688 S/MIR:1 650-2250 1.2 500 VIS : 0.55-0.75 μm 1 1	
A	Spatial Resolution	LWIR/S/MIR : 16Km SSP VIS : 2Km SSP	LWIR/S/MIR : 8Km SSP	
	Operational Mode	China area 5000 × 5000 Km2 Mesoscale area 1000 × 1000 Km2	China area 5000 × 5000 Km2 Mesoscale area 1000 × 1000 Km2	
	Temporal Resolution	China area<1 hr	China area<1 hr	
	Sensitivity (mW/m2sr cm-1)	LWIR: 0.5 -1.1 S/MIR: 0.1-0.14 VIS: S/N>200(p=100%)	LWIR: 0.3 S/MIR: 0.06	
$ \rightarrow -$	Calibration accuracy	1.5k (3σ) radiation	1.0k (3σ)	
Ty	Calibration accuracy	10 ppm (3σ) spectrum	5 ppm (3σ)	
	Quantization Bits	13 bits	13 bits	

Please note this sounder could provide more details on diurnal change information of SS

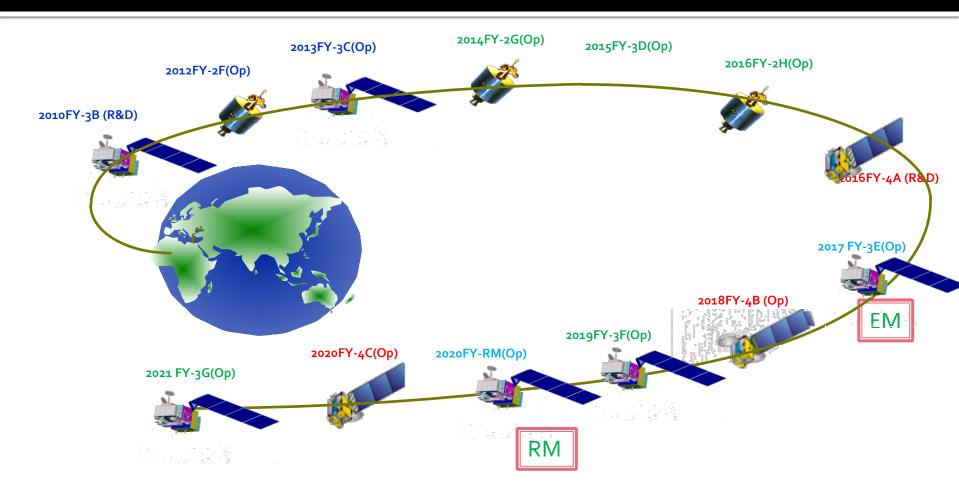
New capabilities form CMA Leo. A Improved imager on FY-3D, to be launched 2016

MERSI


MERSI-II


Primary Usage	Band	Band Center(um)	Bandwidth(nm)	Spatial Resolution(m)
Land/Cloud/Aerosols	1	0.470	50	250
Boundaries	2	0.550	50	250
	3	0.650	50	250
	4	0.865	50	250
	5	1.24/1.03	20	1000
	6	1.64	50	1000
	7	2.13	50	1000
Ocean	8	0.412	20	1000
Color/Phytopiankton/	9	0.443	20	1000
Biogeochemistry	10	0.490	20	1000
	11	0.555	20	1000
	12	0.670	20	1000
	13	0.709	20	1000
	14	0.746	20	1000
	15	0.865	20	1000
Water Vapor	16	0.905	20	1000
	17	0.936	20	1000
	18	0.940	50	1000
Cirrus Cloud	19	1.38	20/30	1000
Surface/Cloud	20	3.8	180	1000
Temperature	21	4.050	155	1000
Water vapor	22	7.2	500	1000
-	23	8.550	300	1000
Surface/Cloud	24	10.8	1000	250
Temperature	25	12.0	1000	250

Please note the 250 meter resolution longwave infrared channel


New capabilities form CMA Leo. FY-3 Early-morning Orbit

- Studies have showed that deploying a FY-3 satellite in early morning orbit can bring positive effects on NWP model through filling up data gap.
- Now,FY-3 Early-morning orbit satellite has passed the feasibility analysis organized by CMA, and payloads onboard the satellite were also determined.

National Program for Fengyun Meteorological Satellite from 2011-2020

By 2020, CMA new generation Geo(FY-4) will be operational. FY-3 series satellites will form a constellation, which includes an early morning orbit satellite, a morning orbit satellite, an afternoon orbit satellite, and a Rainfall mission satellite.

Thank you for your attention

Satellite Oceanography Users Workshop, Melbourne, Australia 9 – 11 Nov 2015

