
Learning of Exception Strategies in Assembly Tasks

Bojan Nemec, Mihael Simonič, Aleš Ude

Abstract— Assembly tasks performed with a robot often
fail due to unforeseen situations, regardless of the fact that
we carefully learned and optimized the assembly policy. This
problem is even more present in humanoid robots acting
in an unstructured environment where it is not possible to
anticipate all factors that might lead to the failure of the given
task. In this work, we propose a concurrent LfD framework,
which associates demonstrated exception strategies to the given
context. Whenever a failure occurs, the proposed algorithm
generalizes past experience regarding the current context and
generates an appropriate policy that solves the assembly issue.
For this purpose, we applied PCA on force/torque data, which
generates low dimensional descriptor of the current context.
The proposed framework was validated in a peg-in-hole (PiH)
task using Franka-Emika Panda robot.

I. INTRODUCTION

Robot task executions often stop due to a variety of errors

that cannot be forseen in advance. In such cases it is most

often necessary for a human cooperating with a robot to

manually eliminate the cause of the error and restart the task

[1]. In the vast majority of cases, the robot does not learn

anything from such experiences. If a similar or even the same

situation is again encountered, the intervention of a human

will be needed again and again. The frequency of such events

depends on the process. The less the process is structured and

determined, the more such events occur. In view of this, we

can expect that this problem will be even more pronounced

by the upcoming generation of humanoid and service robots

that will perform a variety of tasks in domestic environments,

which are often not well structured.

Despite the impressive development of robotics in recent

years, there are only a few research works dealing with the

above-mentioned problems [2]. The most common solution

is to appended the existing control policy with a fixed

search/rescue pattern, such as stochastic search patterns,

spiral search, raster search [3], tilt strategy, dithering and

hopping, etc. [4]. A more systematic approach to the policy

execution failures was considered in [5], where the robot

recognizes when it is unable to proceed and requires human

intervention to complete the task. In [6] this approach was

extended with the ability to correct the state sequencing

by a human demonstrator. A framework where the teacher

corrects a continuous action selection was proposed in [7].

More work has been done in the field of automatic classi-

fication of robot failures. Tovar et al. [8] proposed Bayesian

Humanoid & Cognitive Robotics Lab, Department of
Automatics, Biocybernetics and Robotics, Jožef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia, (bojan.nemec,
mihael.simonic,ales.ude)@ijs.si

network classifier, which was able to classify between three

different failure situations during PiH operation using force-

torque data. A similar approach was realized using multilayer

neural networks [9]. Neural networks were also applied for

fault detection of robot actuators [10]. Karapinar et al. [11]

developed experience-based learning of failure contexts from

sensor data. Investigation of the cause of the failure using

Hidden Markov Models was studied in the work of Altan et

al. [12]

Our research aims to develop an integrated solution

for automatic handling of failures in assembly processes.

The proposed approach combines incremental kinesthetic

learning, failure detection and classification, and statistical

learning. Exception learning is initially supervised by an

operator who first resolves the issue on the occurrence of the

error, and then demonstrates appropriate action that enables

the continuation of the given assembly task. Robot builds

a database of demonstrated actions and associates them

with the detected error context. Using statistical learning, it

generates appropriate action for unforeseen errors from the

demonstrated actions. The robot becomes more and more

autonomous and eventually does not require any human

intervention to resolve assembly failures.

The paper is organized into 6 sections. In the next sec-

tion, we present our main idea. The proposed framework

is composed of three main technologies: 1) an algorithm

which allows to incrementally update of a nominal trajec-

tory along the refinement tube, 2) error classification using

principal component analyses (PCA) and 3) non-parametric

statistical learning using locally weighted regression (LWR).

They are presented in Sections III, IV and V, respectively.

Experimental verification on a generic assembly task, peg-in-

hole, is described in Section VI. Our final conclusions and

discussion about limitations and possible future extensions

of the proposed framework are given in Section VII.

II. FRAMEWORK FOR LEARNING EXCEPTION

STRATEGIES

In this work, we assume that the basic control policy

to execute the desired task was appropriately learnt and

optimized. An efficient way to learn the assembly policy

is kinesthetic guidance [13], but other methods can also

be used, e.g. off-line programming using CAD models etc.

Next, we assume that the policy is parameterized with Carte-

sian space DMPs [14], although our framework enables to

use also other popular parameterization techniques, such as

Gaussian Mixture Models and Gaussian Mixture Regression

(GMM-GMR) [15], Probabilistic Motion Primitives (ProMP)

Accepted to International Conference on Robotics and Automation (ICRA), Paris, France, 2020.
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The publisher's version can be accessed through DOI: 10.1109/ICRA40945.2020.9197480

[16], Radial Basis Functions (RBF), etc. Optimization of the

desired control policy can be done using standard techniques,

such as iterative learning control (ILC) [17] or reinforcement

learning (RL) [18]. Our framework does not aim to change

the demonstrated control policy, here denoted by πd. Rather,

it enables the generation of an alternative strategy at the

onset of an unexpected situation, which results in failure

and consequently the suspension of the task. The reasons

for failure can vary, from the incorrect grasping of parts,

deviations in the geometry of components, damaged parts,

etc.

The follow-up actions are demonstrated once the failure

occurs. These demonstrations are captured together with the

sensory information, which is used later to classify the cause

of the failure. The basic strategy is illustrated in Fig. 1.

Whenever a failure occurs, the robot stops. Initially, the robot

has no knowledge how to continue, therefore it expects the

intervention of the operator. The operator first rolls back

the robot action to the point from which it is possible to

continue the task. Next, using incremental learning along the

refinement tube [19], [20], the human operator demonstrates

an alternative policy, which allows the robot to perform

the given task from the current context. The context is

determined from sensor signals. In assembly operations, we

typically rely on a force-torque sensor, but other sensors such

as pressure sensors, vision sensors, etc. can also be used.

Fig. 1. Left: A failure occurs and the robot stops and waits for the
intervention of the operator. Center: Operator rolls back the robot actions
to resolve the issue. Right: Operator demonstrates alternative policy

As explained above, the robot analyzes the cause of failure

using sensory data. It memorizes the current context and

the alternative control policy and saves both of them in a

database. When a failure occurs for the second time, the

robot checks if it has any experience about the failures in

similar contexts. If this is the case, the robot generates an

alternative policy using statistical learning [21] and executes

it. If the robot either does not have any previous experience

or the alternative policy was not successful, it stops and waits

for the operator to demonstrate the appropriate policy for the

current context and stores both of them to the database. Even-

tually, the robot does not require any human intervention to

resolve failures. The flow chart of the proposed framework

is shown in Fig. 2.

The process of partially autonomous database expansion

for learning motor primitives was also considered by Petrič

et al. [22], who focused on analyzing the required size

of the database to ensure accurate task execution and the

stability of the resulting control policies. The distinguishing

feature of our work is the automatic determination of features

that are used to guide the process of database expansion

succeeded

execute control

policy

calculate

context

previous

experience

calculate and execute

new policy using

statistical learning

succeeded

incremental LfD

update database

NO

NO

NO

YES

YES

YES

START

Fig. 2. Flow chart of the proposed approach with learning and execution
of the exception strategies

and the generation of query points for statistical learning.

While feature selection can sometimes be easily performed

manually, there are many tasks where features can be selected

only by a computational method.

The framework explained in this section is general and can

be applied to most of the robot policies. In the continuation

of the paper, we will focus on the assembly policies.

III. TEACHING OF FOLLOW-UP ACTIONS

As the robot stops due to an error, it needs an intervention

from the operator, as explained in the previous section.

First, the operator needs to rollback the robot actions to

the point from which the robot can continue the task.

Next, he has to demonstrate a new policy, which fits the

current situation. In most cases, only minor modifications

of the existing policy are necessary. After that, the operator

has to test the demonstrated policy applied in the current

context and refine it, if appropriate. Finally, the operator

demonstrates a new velocity profile if the original does not

suit the newly demonstrated policy. To fulfil all of these

requirements, the operator must be able to freely move the

robot forward and backward along the existing policy at any

speed and change only parts where changes are needed. For

this purpose, we applied our previously developed method

[20] based on kinesthetic guiding within a refinement tube

[19]. In this method, actions are parameterized with Cartesian

speed-scaled dynamic movement primitives (CSDMP) (see

Appendix). Here, we will review the main idea of this

method and present some modifications that enable more

efficient trajectory refinement.

In order to allow the operator to move the robot for-

ward and backward along the demonstrated trajectory πd,

we replace the speed scaling factor τ associated with the

demonstrated CSDMP [30], [24] with a new speed scaling

factor, which is inversely proportional to the force projected

to the tangent of the path defined by trajectory πd. The

tangent of the path is calculated as tp(s) =
ṗd(s)

‖ṗd(s)‖
, where

pd ∈ R
3 are commanded (demonstrated) positions and s

denotes the phase. The corresponding tangential direction

for the rotational motion is given by tr(x) =
ωd(s)

‖ωd(s)‖
, where

ωd ∈ R
3 is the commanded robot end-effector angular

velocity in Cartesian space. We compute the new speed

scaling factor τ as follows

τ(s) =
1

k1F · tp(s) + k2M · tr(s)
, (1)

where (·) denotes dot product and k1, k2 are positive scalars,

used to scale the velocities of the translational and rotational

motion along the πd(s). F ∈ R
3 and M ∈ R

3 are

the measured vectors of forces and torques at the robot

tool and expressed in robot base coordinate system. If

F · tp(s) +M · tr(s) → 0, then τ(s) → ∞, which stops the

CSDMP integration. We apply this τ to the DMP and phase

integration [30] to move the robot along the trajectory πd(s)
in the direction of the applied forces and torques, with the

speed proportional to them. This makes the guiding process

extremely intuitive. An operator just pushes the robot along

the tangent of the trajectory. In order to prevent uncontrolled

robot movement along the trajectory due to the force/torque

sensor noise, a threshold is usually applied to (1).

CSDMP as a dynamical system becomes unstable for

negative τ , i.e. when the motion is reversed. In such a case

we have to apply a reverse CSDMP, learnt from the time-

reversed trajectory πr(s) = πd(e
−αs/s) (see also Eq. (6)).

In order to modify the originally demonstrated trajectory

represented by a CSDMP, the robot should be compliant in

the directions of normal and binormal directions of the path

[23] and stiff in the tangential direction, which is ensured

by applying an appropriate control law [24]. This way we

are allowed to displace a robot in a plane along these two

directions and sample new poses. The modification to the

original trajectory at phase s is given by the error vector e

e(s) =

[

ep(s)
eo(s)

]

=

[

p(s)− pd(s)
log(q(s) ∗ qd(s))

]

, (2)

where p, q and q, qd denote the positions and quaternions

that describe the current orientation and the positions and

quaternions computed by the CSDMP, respectively. ∗ denotes

the quaternion product and q the conjugate quaternion,

whereas the quaternion logarithm is defined as

log(q) = log(v,u) =







arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (3)

It maps the quaternion describing orientation to the angular

velocity that rotates the identity orientation to the current

orientation within unit time.

In [20] we proposed to sample robot poses during the

above described kinesthetic guiding process and calculate

the new nonlinear forcing term of the CSDMP using batch

regression whenever the sign of τ(s) changes. For this

process to work, the modified robot positions and orienta-

tions must be sampled at exactly the same phase s as the

original trajectory. This means that the phase of the modified

trajectory should be determined very accurately. Even small

deviations of s can lead to a wrong sequential order of the

captured end-effector poses, which can corrupt the modified

trajectory.

In this paper, we propose an alternative solution which is

less sensitive to the accuracy of phase calculation. Instead

of capturing the complete modified trajectory and updating

the nonlinear forcing term at the change of the direction,

we concurrently modify weights of the CSDMP’s nonlinear

forcing terms, W(s) = [Wp(s)
T, Wo(s)

T] ∈ R
N×6, using

recursive regression formulas

W(s) = W(s−1) +P(s)x(s)e(s)TKl (4)

P(s) =
1

λ

(

P(s−1)−
P(s−1)x(s)x(s)

T P(s−1)

λ+ x(s)T P(s−1)x(s)

)

, (5)

where P(s) ∈ R
N×N is the error covariance matrix and

x(s) ∈ R
N is a vector of Gaussian kernel functions (see

Appendix). N is the number of kernel functions, s−1 denotes

the phase in the previous step, λ is a forgetting factor,

which is usually kept close to 1, and Kl ∈ R
6×6 is a

diagonal estimation gain matrix that modifies the compliance

of the robot during the kinesthetic guidance. We reset the

covariance error matrix to the default value, P(s) = γI,
whenever the temporal scaling factor τ changes its sign. I

denotes identity matrix and γ > 0 is a suitably chosen scalar.

This is necessary because the recursive algorithm becomes

increasingly less sensitive to the new trajectory updates with

the number of iterations. Namely, from (5) it follows that

the error covariance matrix P(s) is independent of mea-

surements and has monotonically decreasing eigenvalues.

Consequently, the magnitude of updates computed by (4)

is also decreasing and thus influencing the resulting control

policy less and less. Note that the magnitude of updates is

also affected by the choice of forgetting factor λ.

The procedure described above is simultaneously applied

to the reversed CSDMP of the demonstrated trajectory. Based

on the sign of τ(s) defined in Eq. (1), we either integrate

the original (in case of positive sign) or reversed CSDMP

(in case of negative sign, but in this case −τ(s) is used for

integration). To compute the current phase sr of the reversed

CSDMP from the phase s of the original CSDMP and vice

versa, we exploit the following relationship

ssr = e−αst/τ0e−αs(τ0−t)/τ0 = e−αs . (6)

This is true because the temporal constants in the original and

reversed CSDMP are constant. Hence sr = e−αs/s and s =
e−αs/sr. The update formulas (4) and (5) are then applied

to both the original and reversed CSDMP.

Using the procedure described above, we generate a new

exception policy directly in the CSDMP form, where the

forcing term weights Wp and Wo are new but all other

CSDMP’s parameters are taken from the CSDMP represent-

ing the originally demonstrated insertion policy. Thus the

speed (or equivalently, the temporal scaling factor τ(s)) of

the resulting CSDMP is still determined by the demonstrated

policy, which is suboptimal. Therefore, we demonstrate a

new speed profile by executing the newly learnt CSDMP

while the user is pushing the robot along the trajectory. The

new temporal scaling factor τ(s) is computed from the user-

applied forces and torques as specified in Eq. (1). During this

demonstration, the robot is stiff in all directions to prevent it

from deviating from the learnt path. We sample the resulting

τ(s), which is then associated with the CSDMP representing

the exception strategy instead of the temporal scaling factor

obtained from the originally demonstrated insertion policy.

For statistical learning it is beneficial to store the learnt

exception strategy as a time-dependent trajectory (see Sec-

tion V). Thus the resulting CSDMP is integrated with the

newly sampled τ(s(t)) one more time (without executing

the generated motion with the robot) and the points on the

resulting trajectory are sampled to generate the training data

set (11) for statistical learning. Finally, we re-compute the

CSDMP parameters from the sampled data (11), setting (for

the i-th exception strategy) τi(s) = τ0,i = ti,Ti
, gp,i = pi,Ti

,

go,i = qi,Ti
, and computing the suitable Wp,i and Wo,i.

IV. DETERMINATION OF FAILURE CONTEXT FROM

FORCE-TORQUE SENSOR DATA

During the assembly task execution, it is necessary to mon-

itor the exerted forces on the robot hand in order to prevent

damaging of the parts or even robot itself at the occurrence

of an unexpected situation. Forces and torques are typically

used also to actively guide the assembly process. Execution

failures are in most cases characterized by a sudden increase

of forces and torques. In our work we therefore used a simple

approach where a failure is detected if the sensed forces

and torques exceeds a predefined threshold. An autonomous

robot should have the ability to detect the reason for the

execution failure, which enables it to plan an appropriate

recovery action. In this section we propose an algorithm for

the calculation of low dimensional features that characterize

the detected failures based on the sensed forces and torques.

We map the sensed forces and torques to a low dimensional

feature space because feature dimensionality is important

for statistical learning. For this purpose, we apply Principal

Component Analyses (PCA) as a popular dimensionality

reduction technique.

Let’s assume that we have m measurements of forces and

torques, hi = [FT
i MT

i], i = 1, . . . ,m, captured at the time

when the i-th failure has been detected. Each measurement

thus corresponds to exactly one failure during the assembly.

We form a data matrix

Z =







h1 − h̄
...

hm − h̄






∈ R

m×6, (7)

where h̄ is the row vector of average values of all forces

and torques. PCA is an orthogonal linear transformation that

maps the data Z to a new coordinate system such that the

biggest variance occurs in the first coordinate, which is called

the first principal components. All subsequent coordinates

have a lower variance than the previous one. PCA can be

calculated by applying singular value decomposition in the

form

Z = UΣVT , (8)

where matrix V ∈ R
6×6 is orthogonal and maps the data to

a new coordinate system

C = ZV, (9)

such that the principal components are sorted as columns in

C. Also, the singular values that form the diagonal matrix

Σ = diag(σi) ∈ R
m×6 are nonnegative and sorted from

the biggest to the lowest value σj , j = 1, . . . , 6. The

magnitude of singular values determines the significance

of each direction determined by eigenvectors in V. The

dimensionality reduction is performed in such a way that

we keep only the first p columns of V, which correspond to

the first p biggest singular values. Whenever a new failure

occurs, we calculate the corresponding context data from the

measured force-torque vector h using

c = (h− h̄)Vp, (10)

where Vp ∈ R
6×p denotes the matrix composed of first p

principal eigenvectors of V. The resulting context vector c

is used as query for statistical learning.

V. STATISTICAL LEARNING OF EXCEPTION STRATEGIES

FROM FAILURE

Initially, every failure requires that a user demonstrates

a new exception strategy as described in Section III. An

exception strategy enables the robot to continue the task

after a failure has occurred. It is fully defined by the time

evolution of tool poses given in Cartesian coordinates and

the associated context. Let’s define a set of m exception

strategies as

G = {pi,k,qi,k, ṗi,k,ωi,k, p̈i,k, ω̇i,k, ti,k; ci}
m
i=1

Ti

k=1, (11)

where pi,k ∈ R
3 are the positions, qi,k ∈ S3 are the unit

quaternions describing orientation, S3 is a unit sphere in R
4,

i is the demonstration index, k are trajectory samples, and

Ti is the number of samples on the i-th exception strategy.

Each exception strategy is associated with the context vector

ci calculated according to Eq. (10) from the measured forces

and torques hi at the time the failure occured.

Once a sufficient number of exception strategies becomes

available, we can exploit previously learnt strategies to gener-

ate new ones. This is accomplished using statistical learning

techniques. For this purpose we applied locally weighted re-

gression, due to its simplicity and efficiency. LWR belong to

a class of non-parametric statistical approximation methods

[25] and it has been successfully applied to may robotics

applications such as throwing, reaching, drumming, etc. [26].

When the next failure occurs, we first determine the

current context c using the measured forces and torques and

Eq. (10). The resulting context vector is used as query point

for LWR. Given this query point and a number of existing

exception strategies, LWR can compute a new exception

strategy. Recall from Section III that in our work, exceptions

strategies are defined by CSDMPs. A CSDMP contains a

number of parameters (see Appendix), but in the context of

exception strategies only some of them change; the weights

specifying the nonlinear forcing term, the temporal scaling

factor τ0, the goal position gp, and the goal orientation go.

Thus a function that maps query points into a new exception

strategy can be written as follows

G(G) : c 7→ {Wp,Wo, τ0,gp,go}. (12)

Note that the temporal scaling factor τ(s) is constant for

all exception strategies as nonlinear speed scaling is ap-

plied only to the initially demonstrated trajectory. Once the

initially demonstrated trajectory is adapted by kinesthetic

teaching and a new exception strategy is generated, the

resulting control policy is resampled to (11) with constant

temporal scaling factor as described at the end of Section

III.

As explained in [26], G(G) becomes a smooth function

of c only if example trajectories, in our case exception

strategies, are similar and transition between each other

smoothly. This is the case in our work because the policy

adaptation method described in Section III ensures that the

adapted exception strategy is similar to the original control

policy. Thus the solution trajectory computed by LWR is

similar to other exception strategies but adapted to the current

context c.

To compute the generalized CSDMP forcing terms weights

Wp,Wo ∈ R
3×N , we apply the following optimization

problem

min
Wp,Wo

m∑

i=1

||Xi[W
T

p ,W
T

o]− [P̃i, Q̃i]||
2K(c, ci), (13)

with P̃i ∈ R
Ti×3 being a matrix with rows p̃i,k = (τ20,ip̈i,k+

αzτ0,iṗi,k − αzβz(gp − pi,k))
T, and Q̃i ∈ R

Ti×3 a matrix

with rows calculated as q̃i,k = (τ20,iω̇i,k + αzτ0,iωi,k −
2αzβz log(go ∗ qi,k))

T. The rows of matrix Xi ∈ R
Ti×N

are calculated using Gaussian DMP kernels x at phases si,k,

i.e. Xi = [x(si,1), . . . ,x(si,Ti
)]T [14]. We selected the

tricube kernel [27] for K(c, ci), which is defined as

K(c, ci) =







(1− (||c− ci||/h)
3)3, ||c− ci||/h ≤ 1

0, otherwise
,

(14)

where h is a hyper-parameter that determines the range and

importance of training data used for generalization.

Since the temporal scaling constants and goal position and

orientation are measured directly, i.e. τ0,i = ti,Ti
, gp,i =

pi,Ti
, go,i = qi,Ti

, their generalization by LWR is easier.

They are computed as follows

τ0 =

∑m
i=1 K(c, ci)τ0,i
∑m

i=1 K(c, ci)
, (15)

gp =

∑m
i=1 K(c, ci)gp,i
∑m

i=1 K(c, ci)
, (16)

go =
g̃o

‖g̃o‖
, g̃o =

∑m
i=1 K(c, ci)go,i
∑m

i=1 K(c, ci)
. (17)

VI. EXPERIMENTAL EVALUATION ON PEG-IN-HOLE TASK

The proposed framework was experimentally verified on a

peg in hole task (PiH), which is a typical assembly operation.

For this purpose, we performed square peg insertion in

Cranfield Benchmark [28], which is a standardized tool that

encompasses a typical level of complexity for an industrial

assembly task. The initial PiH policy was obtained with

kinesthetic guidance. In our experiments, we focused on

a typical source of failure in automated assembly, i.e. bad

pose estimation of the assembly part, which causes either

imperfect grasping or non-adequate insertion policy (or both

of it). We used the collaborative robot arm Franka Emika

Panda in all experiments. Integrated joint-torque sensors

were used to estimate the Cartesian forces and torques.

Our first goal was to evaluate whether the proposed

estimation of the context during the failure is appropriate to

generate query points that are suitable for statistical learning.

We started by evaluating the case where the robot grasped the

assembly part at wrong angles. The experiment was repeated

for 8 equally spaced angles around zero (which was the

correct angle for the learnt control policy) with a spacing

of 3 degrees, as illustrated in Fig. 3.

Due to the offset in the grasping angle, the robot failed

to insert the peg and stopped the execution as it exceeded

the force threshold, which was set to 10N in z direction. At

that moment we recorded the forces and torques. Due to the

different metric, we scaled the torque data by a factor of 10.

We performed PCA on this set of data. Only the first singular

value of the matrix ΣΣΣ deviated from the others, which were

practically equal to zero, meaning that our context is one

dimensional. Figure 4 shows the evolution of this context

depending on the offset in the grasping angle. Note that

the estimated function is almost linear and, most of all,

monotonically increasing, which makes it a perfect query

for statistical learning. If we compare the estimated context

to the forces and torques of our data set, we can see that it is

very similar to the torque around x axis. This is exactly what

an experienced robot operator would intuitively choose as a

query. However, the proposed algorithm learns this without

any human intervention.

Next, we evaluated the effectiveness of context determina-

tion with offsets in grasping position along y axis. Similar as

in the previous case, we applied 8 equally spaced values with

a spacing of 2 mm and recorded forces and torques during

the attempts of insertion. Fig. 5 shows that the estimated

context function is again monotonic, which is essential for

query points.

Fig. 3. Square PiH with Franka-Emika Panda robot where the part is
grasped at different offsets from the ideal grasping position.

-15 -10 -5 0 5 10 15

grasping angle error [deg]

-5

0

5

c
o

n
te

x
t

v
a

lu
e

-15 -10 -5 0 5 10 15

grasping angle error [deg]

-0.5

0

0.5

to
rq

u
e

 [
N

m
] M

x

M
y

M
z

Fig. 4. Above: Context as a function of grasping angle offset. Below: The
measured torques.

-10 -5 0 5 10

grasping position error [mm]

-4

-2

0

2

4

c
o

n
te

x
t

v
a

lu
e

Fig. 5. Context as a function of grasping position offsets.

Finally, we evaluated our framework as a whole. Again we

tested the influence of grasping offset in the y direction. We

generated 4 grasps with equally spaced offsets with spacing

of 3 mm around the correct grasp, i.e. the grasp applied

during the initial demonstration. Because of this offset, the

robot failed to insert the peg and stopped the execution due

to excessive forces in the z direction. We captured the forces

and torques, calculated the context value and demonstrated

the alternative policy for each case as explained in Section

III. These data were used to generate the initial database of

exception strategies (11) for generalization. The original peg

insertion policy, the four demonstrated exception policies,

and one of the generalized exception startegies are shown in

Fig. 6. The success rate in 50 experiments was 82%. Note

0.06

0.07

0.08

0.06

0.09

y

0.1z

0.11

0.04

x

0.62

0.12

0.13

0.02 0.6

0.14

original

demo1

demo2

demo3

demo4

generalized

Fig. 6. The original policy, the four demonstrated exception policies and
one of the generalized exception policies. Due to the offset in the grasping
position, the final positions of the robot’s end-effector are different although
the final position of the peg is the same in all cases.

that the robot was stiff during the insertion. By exploiting

the robot’s compliance and also by making use of a larger

database of pretrained exception policies for generalization,

the success rate could be improved.

VII. CONCLUSIONS

In this work we proposed an integrated framework for

learning exception strategies as they arise. It integrates learn-

ing by demonstration, PCA-based classification of failures

using the resulting force-torque data, and the generation

of exception strategies by statistical learning. The main

novelties are 1) determination of the exception context using

PCA and the 2) the application of the determined context

for statistical learning of exception strategies. We also im-

proved our previously developed method for the adaption

of policies [24] by replacing batch regression with recursive

regression. Finally, the proposed method for generalization

of orientation DMPs by minimizing (13) is new. The result is

a novel framework for learning and adaptation of exception

strategies. The proposed approach was evaluated on the peg-

in-hole task where we demonstrated the effectiveness of our

approach.

In the current implementation, the context for the data-

base query was calculated based on a single measurement of

forces and torques. In general, however, forces and torques

need to be taken into account as a time function. We can

easily do this by encoding them as RBFs and expanding the

measurements h with weights of RBFs. More challenging

remains, how to include also other sensors such as vision to

calculate the failure context. Our future work will involve

integration of such multi modal data and direct estimation

of low-dimensional context using deep auto-encoders.

REFERENCES

[1] A. F. Fudzin and M. A. Majid, “Reliability and availability analysis
for robot subsystem in automotive assembly plant: a case study,” in
3rd International Conference of Mechanical Engineering Research

(ICMER 2015), 2015.

[2] B. Argall, S. Chernova, M. M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous

Systems, vol. 57, pp. 469–483, 2009.

[3] F. Abu-Dakka, B. Nemec, A. Kramberger, A. Glent Buch, N. Krüger,
and A. Ude, “Solving peg-in-hole tasks by human demonstration
and exception strategies,” Industrial Robot: An International Journal,
vol. 41, pp. 575–584, 10 2014.

[4] J. A. Marvel, R. Bostelman, and J. Falco, “Multi-robot assembly
strategies and metrics,” ACM Computing Surveys, vol. 51, no. 1, 2018.

[5] M. N. Nicolescu and M. J. Mataric, “Learning and interacting in
human-robot domains,” IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, vol. 31, no. 5, pp. 419–
430, 2001.

[6] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot
task learning: Instructive demonstrations, generalization and practice,”
in Proceedings of the Second International Joint Conference on

Autonomous Agents and Multiagent Systems, 2003, pp. 241–248.

[7] B. D. Argall, B. Browning, and M. Veloso, “Learning robot motion
control with demonstration and advice-operators,” in 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2008, pp.
399–404.

[8] J. Alonso, B. Saha, J. Romero, and D. Ortega-Aranda, “Bayesian
network classifier with efficient statistical time-series features for the
classification of robot execution failures,” SSRG International Journal

of Computer Science and Engineering (SSRG-IJCSE), vol. 3, pp. 80–
89, 11 2016.

[9] A. Diryag, M. Mitic, and Z. Miljkovic, “Neural networks for prediction
of robot failures,” Journal of Mechanical Engineering Science, vol.
228, no. 8, pp. 1444–1458, 2014.

[10] C. N. Cho, J. T. Hong, and H. J. Kim, “Neural network based adaptive
actuator fault detection algorithm for robot manipulators,” Journal of

Intelligent & Robotic Systems, 2018.

[11] S. Karapinar and S. Sariel, “Cognitive robots learning failure contexts
through real-world experimentation,” Autonomous Robots, vol. 39,
no. 4, pp. 469–485, 2015.

[12] D. Altan and S. Sariel, “Probabilistic failure isolation for cognitive
robots,” in Proceedings of the 27th International Florida Artificial

Intelligence Research Society Conference, FLAIRS 2014, 01 2014, pp.
370–375.

[13] K. Kronander and A. Billard, “Learning Compliant Manipulation
through Kinesthetic and Tactile Human-Robot Interaction,” IEEE

Transactions on Haptics, vol. 7, no. 3, pp. 367 – 380, 2014.

[14] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in
cartesian space dynamic movement primitives,” in IEEE International

Conference on Robotics and Automation (ICRA), Hong Kong, China,
2014, pp. 2997–3004.

[15] S. Calinon, Robot Learning with Task-Parameterized Generative Mod-

els. Cham: Springer International Publishing, 2018, pp. 111–126.

[16] A. Paraschos, E. Rueckert, J. Peters, and G. Neumann, “Model-Free
Probabilistic Movement Primitives for Physical Interaction,” IROS, pp.
2860–2866, 2015.

[17] D. A. Bristow and M. Tharayil, “A Survey of Iterative Learning
Control - A learning-based method for high-performance tracking
control,” IEEE Control Systems Magazine, no. June, pp. 96–114, 2006.

[18] J. Peters, K. Mülling, and J. Kober, “Towards motor skill learning for
robotics,” Robotics Research, pp. 1–14, 2011.

[19] D. Lee and C. Ott, “Incremental Motion Primitive Learning by Phys-
ical Coaching Using Impedance Control,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2010, pp. 4133–
4140.

[20] B. Nemec, L. Zlajpah, S. Slajpah, J. Piskur, and A. Ude, “An Efficient
PbD Framework for Fast Deployment of Bi-manual Assembly Tasks,”
in 18th IEEERAS International Conference on Humanoid Robots,
2018.

[21] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot
learning with locally weighted statistical learning,” in Proceedings

2000 ICRA. Millennium Conference. IEEE International Conference

on Robotics and Automation, vol. 1, 2000, pp. 288–293.

[22] T. Petrič, A. Gams, L. Colasanto, A. J. Ijspeert, and A. Ude, “Acceler-
ated sensorimotor learning of compliant movement primitives,” IEEE

Transactions on Robotics, vol. 34, no. 6, pp. 1636–1642, 2018.
[23] R. Ravani and A. Meghdari, “Velocity distribution profile for robot

arm motion using rational Frenet-Serret curves,” Informatica, vol. 17,
no. 1, pp. 69–84, 2006.

[24] B. Nemec, N. Likar, A. Gams, and A. Ude, “Human robot cooperation
with compliance adaptation along the motion trajectory,” Autonomous

Robots, vol. 42, no. 5, pp. 1023–1035, 2018.
[25] F. Stulp and O. Sigaud, “Many regression algorithms, one unified

model: A review.” Neural networks : the official journal of the

International Neural Network Society, vol. 69, pp. 60–79, 2015.
[26] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-

eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, oct 2010.

[27] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted
Learning,” Artificial Intelligence Review, vol. 11, no. 1-5, pp. 11–73,
1997.

[28] K. Collins, A. J. Palmer, and K. Rathmill, “The development of a
European benchmark for the comparison of assembly robot program-
ming systems,” in Robot technology and applications, K. Rathmill,
P. MacConail, S. O?leary, and J. Browne, Eds. New York: Springer,
1985, pp. 187–199.

[29] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–73, 2013.

[30] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in IEEE-RAS

International Conference on Humanoid Robots (Humanoids), Atlanta,
USA, 2013, pp. 423–428.

