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• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system
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Introduction and background

• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Fluctuations carrying some valuable information about the system 
dynamics

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system
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Introduction and background

• Fluctuations could be used for “diagnostics”, i.e.:

• Early detection of anomalies

• Estimation of dynamical system characteristics

… even if the system is operating at steady-state conditions

 Fluctuations in the neutron density in nuclear reactors can be used 
for core diagnostics and monitoring



Ex-core neutron detectors

Fixed in-core neutron detectors

Movable in-core neutron detectors

Introduction and background
• Neutron detectors present both as in-core and ex-core:

Advantage: “sense” perturbations even far away from the perturbations
Disadvantage: western-type reactors do not always contain many in-core neutron detectors



Introduction and background

• Neutron noise diagnostics requires establishing relationships between 
neutron detectors and possible perturbations
The “reactor transfer function”            needs to be determined , ,G pr r
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Introduction and background

• But noise diagnostics requires the inversion of the reactor transfer 
function 
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Introduction and background

• But noise diagnostics requires the inversion of the reactor transfer 
function

Machine learning could be used for that purpose
Unfolding possible even if very few detectors available (due to the spatial 

correlations existing between a localized perturbation and its effect throughout the nuclear core)   
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CORTEX project overview

• Basic principle:
• Annotated data can only be provided by simulations:

Machine learning-based 
unfolding

Measured plant data
Anomaly classification 
and characterization

Training and validation datasets 
provided by simulations



CORTEX project overview

• 4-year project financed by the European Union (ended in August 2021)
• 18 European organizations + 1 American partner + 1 Japanese partner
• More than 70 researchers involved

More info at:
cortex-h2020.eu

http://cortex-h2020.eu/
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Theoretical basis of neutron noise and 
core diagnostics
• Modelling of the neutron noise can be done using the neutron 

transport equation (Boltzmann equation):

A model to represent the effect of a given perturbation onto the 
macroscopic cross-section is required
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Theoretical basis of neutron noise and 
core diagnostics
• Modelling of the effect of the cross-section perturbations onto the 

neutron flux can be done in several ways:
• Low/high order in angle
• Low/high order in space
• Low/high order in energy
• Time- or frequency-domain
• Deterministic methods or probabilistic methods (Monte Carlo)



Theoretical basis of neutron noise and 
core diagnostics
• For diagnostic purposes, one needs to check that the induced neutron 

noise is significantly different, depending on the type of perturbation 
and its location
Examination of the amplitude and phase of the neutron noise usually 

allows differentiating the type of perturbation
Nevertheless, some more intricate responses can arise in some cases
Requires a faithful modelling of the reactor transfer function



Theoretical basis of neutron noise and 
core diagnostics
• For the identification of the location of a perturbation, an appreciable 

deviation from point-kinetics is required
• Induced neutron noise in first-order in the frequency-domain:

with
fluctuations of the “amplitude factor”
fluctuations of the “shape function”
static neutron flux
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Theoretical basis of neutron noise and 
core diagnostics

Illustration of the difference between the point-kinetic component and the total 
induced neutron noise in the frequency domain at 1 Hz, for a perturbation located 

at -30 cm from the centre of a nuclear core of size 300 cm.
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Application to commercial reactors

• Several machine learning-based architectures developed based on:
• Either time-domain simulations for training/validation

De Sousa Ribeiro, F., Calivà, F., Chionis, D., Dokhane, A., Mylonakis, A., Demazière, C., 
Leontidis, G., Kollias, S. (2018), Towards a deep unified framework for nuclear reactor 
perturbation analysis. Proc. IEEE Symposium Series on Computational Intelligence (SSCI 2018), 
Bengaluru, India, November 18 – 21, 2018

Durrant, A., Leontidis, G., Kollias, S. (2019), 3D convolutional and recurrent neural 
networks for reactor perturbation unfolding and anomaly detection. European Physics 
Journal Nuclear Sciences and Technologies, 5, 20

Tasakos, T., Ioannou, G., Verma, V., Alexandridis, G., Dokhane, A., Stafylopatis, A. (2021), 
Deep learning-based anomaly detection in nuclear reactor cores. Proc. Int. Conf. 
Mathematics and Computational Methods Applied to Nuclear Science and Engineering 
(M&C2021), Raleigh, NC, USA, October 3-7, 2021



Application to commercial reactors

• Several machine learning-based architectures developed based on:
• Or frequency-domain simulations for training/validation

Calivà, F., De Sousa Ribeiro, F., Mylonakis, A., Demazière, C., Vinai, P., Leontidis, G., Kollias, S. 
(2018), A deep learning approach to anomaly detection in nuclear reactors. Proc. 2018 Int. 
Joint Conf. Neural Networks (IJCNN), Rio de Janeiro, Brazil, July 8-13, 2018

De Sousa Ribeiro, F., Calivà, F., Chionis, D., Dokhane, A., Mylonakis, A., Demazière, C., 
Leontidis, G., Kollias, S. (2018), Towards a deep unified framework for nuclear reactor 
perturbation analysis. Proc. IEEE Symposium Series on Computational Intelligence (SSCI 
2018), Bengaluru, India, November 18 – 21, 2018

Durrant, A., Leontidis, G., Kollias, S. (2019), 3D convolutional and recurrent neural 
networks for reactor perturbation unfolding and anomaly detection. European Physics 
Journal Nuclear Sciences and Technologies, 5, 20



Application to commercial reactors

• Several machine learning-based architectures developed based on:
• Or frequency-domain simulations for training/validation

Demazière, C., Mylonakis, A., Vinai, P., Durrant, A., De Sousa Ribeiro, F., Wingate, J., Leontidis, G., 
Kollias, S. (2020), Neutron noise-based anomaly classification and localization using machine 
learning. Proc. Int. Conf. Physics of Reactors – Transition to a Scalable Nuclear Future 
(PHYSOR2020), Cambridge, United Kingdom, March 29-April 2, 2020

Durrant, A., Leontidis, G., Kollias, S., Torres, L. A., Montalvo, C., Mylonakis, A., Demazière, C., 
Vinai, P. (2021), Detection and localisation of multiple in-core perturbations with neutron 
noise-based self-supervised domain adaptation. Proc. Int. Conf. Mathematics and Computational 
Methods Applied to Nuclear Science and Engineering (M&C2021), Raleigh, NC, USA, October 3-7, 
2021

 Ioannou G., Tasakos T., Mylonakis A., Alexandridis G., Demazière C., Vinai P., and Stafylopatis A., 
Feature extraction and identification techniques for the alignment of perturbation simulations 
with power plant measurements. Proc. Int. Conf. Mathematics and Computational Methods Applied 
to Nuclear Science and Engineering (M&C2021), Raleigh, NC, USA, October 3-7, 2021



Application to commercial reactors

• Overall conclusions:
• Very good unfolding capabilities, both in terms of classification and localization 

of anomalies
Significant enough deviation from point-kinetics
• Satisfactory results:

• Even when using very few detectors (but more detectors give better predictions)
• Even when adding uncorrelated noise

• More evenly distributed detectors lead to more robust predictions



Application to commercial reactors

• Example of machine learning-based unfolding applied to actual plant 
data:

Fuel assembly vibrations
Travelling perturbation

Absorber of variable strength
Control rod vibrations

Example of machine learning-based unfolding at 10 Hz in a commercial 4-loop pre-Konvoi PWR
Figure from Durrant, A., Leontidis, G., Kollias, S., Torres, L. A., Montalvo, C., Mylonakis, A., Demazière, C., Vinai, P. (2021), Detection and 

localisation of multiple in-core perturbations with neutron noise-based self-supervised domain adaptation. Proc. Int. Conf. Mathematics and 
Computational Methods Applied to Nuclear Science and Engineering (M&C2021), Raleigh, NC, USA, October 3-7, 2021



Conclusions



Conclusions

• CORTEX project demonstrated that machine-learning based 
unfolding using annotated simulated data can be used for core 
monitoring

• Could be used by utilities as a decision-making supportive instrument 
for plant operation and maintenance
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