
EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021), 14-17 JUNE 2021

OBPMARK (ON-BOARD PROCESSING BENCHMARKS) – OPEN SOURCE
COMPUTATIONAL PERFORMANCE BENCHMARKS FOR SPACE APPLICATIONS

David Steenari1, Leonidas Kosmidis3,2, Ivan Rodriguez-Ferrandez2,3, Alvaro Jover-Alvarez2,3, and Kyra Förster1

1European Space Agency, ESTEC, The Netherlands
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ABSTRACT

Computational performance benchmarking of on-board
processing (OBP) applications has often been done in
a case-to-case basis, taking into account only a small
subset of devices and specific, often proprietary, appli-
cations, limiting domain coverage and reproducibility.
While commercial benchmarks exist for embedded
systems, they are usually limited to CPUs and are based
on synthetic algorithms non-relevant for space. Con-
sequently, they are not generally suitable for assessing
highly parallel processors (GPUs, DSPs, etc.) and/or
hardware implementations (i.e. ASICs and FPGAs)
which are commonplace in space systems.

In the space domain, there are a number of OBP
applications which reoccur over multiple missions. Such
applications are often driving the overall computational
requirements of the mission, e.g. in the case of image and
radar processing, RF signal processing and compression.
There are certain performance metrics in each case –
such as the number of pixels processed per second –
which are well-known and easily understandable by
equipment designers and customers.

With the recent rise of machine learning applica-
tions in on-board space applications, tasks such as
image classification and object detection using SVMs
and CNNs are becoming commonly used. These new
processing methods put additional requirements on
on-board systems, and must be understood in terms of
their specific performance parameters.

In this paper, OBPMark (On-Board Processing Bench-
marks) is introduced. OBPMark defines a set of
benchmarks covering the typical classes of applications
commonly found on-board spacecraft. The benchmark
suite is publicly available to enable easy comparison of
different systems and to quickly down-select possible
processing solutions for a mission. It is open source
and includes multiple implementations, as well as easily
extensible, which allows it to be ported and optimized to
target platforms, including heterogeneous ones, for a fair
comparison. Currently, implementations in standard C,
OpenMP, OpenCL and CUDA are provided.

1. INTRODUCTION

In the last years the number of different device used for
OBP is increasing, driven mainly by the the availability
of COTS components implemented in deep sub-micron
process nodes. Heterogeneous system-on-chip devices
are now available that integrate several types of proces-
sors and accelerators, such as multi-core clusters, task-
specific DSP processors, embedded GPUs, and dedicated
accelerators for tasks such as FFTs, image/video com-
pression, encryption and NN (neural network) inference
processing. A survey of processor and FPGA devices that
are being used or proposed for use in on-board processing
is outlined in [1].

While FPGAs are still the most commonly used de-
vice type for on-board tasks that require a high perfor-
mance, massively parallel devices are now also used in
space, including many-core devices, stochastic arrays,
GPUs (graphics processing units), VPUs (visual process-
ing units). The introduction of massively parallel pro-
cessing devices poses its own challenges for performance
comparisons. Using traditional metrics such as MIPS or
MFLOPS as a metric for the performance of all process-
ing cores, only depicts the peak theoretical performance
as if all core units were utilized at the same time, and does
not take into account issues related to memory throughput
and synchronization. Considering the architectural differ-
ences between such devices, it is becoming increasingly
difficult to accurately assess their relative computational
performance for representative OBP applications, when
considering only traditional metrics of peak performance.

Extending the scope to compare processors to FPGAs,
simple performance metrics are difficult to find. For
instance, one could take the number of MACs or DSP
blocks provided by an FPGA and multiply by the max-
imum clock frequency to get an estimate of the maxi-
mum theoretical performance, but again – such numbers
would not be feasible to achieve for a real algorithm im-
plementation. More realistic performance measurements
should take into account accelerator soft-core IPs for spe-
cific processing tasks. As this requires implementing the
specific algorithm as dedicated IP, comprehensive perfor-
mance benchmarking can become quite time demanding.



Certain systems may be optimized for increased perfor-
mance for highly parallel tasks (such as GPUs), while
others offer higher performance for pipelined operations
or bit-manipulation tasks (such as FPGAs). Finally, het-
erogeneous systems provide multiple means of imple-
menting the same processing tasks, or even to divide cer-
tain pipelines of processing tasks over processor cores
and accelerators with different architectures, depending
on which is most efficient for the specific pipeline stage.

Processing performance benchmarks for space applica-
tion are commonly made on a case-to-case basis, target-
ing actual software implementations to only on a few tar-
get devices based on schedule and effort limitations, due
to the inherent complexity of implementing full applica-
tions on several devices with different architectures and
software models. While these benchmarks target similar
application cases, it is difficult to compare the results, due
to the large amount of test parameters that may vary from
case to case. Even in the case of standardized process-
ing tasks, such as CCSDS image compression, published
performance results of different software and hardware
implementations are difficult to compare – as both com-
pression settings and input data sizes may affect the per-
formance results. As such, these compressor throughput
results are usually accompanied with clarifications of the
settings used.

In recent years, ESA has funded several activities for ap-
plication benchmarking of different processing devices.
The ESA-funded “HIPNOS” study aimed at benchmark-
ing a VBN (visual-based navigation) algorithm on dif-
ferent processors and FPGAs. In the conclusions of the
study, MPSoCs (multi-processor system-on-chips) were
found to be the most favorable for the application tar-
geted. In addition, SoC with processors and accelerated
specifically for image processing were also identified
as particularly energy-efficient for VBN tasks [2].The
ESA-funded “HP4S” study aims to benchmark several
multi- and manycore processors, such as the quadcore
GR740 LEON4 processor. In the activity, software run-
ning OpenMP, to enable parallel execution over multi-
ple cores, was used to measure and optimize the per-
formance of the target applications [3]. The currently
on-going ESA-funded ”MLAB” activity is targeting the
benchmarking of machine learning for several FPGAs
and processors using space applications [4].

The ESA-funded “GPU4S” study aims to evaluate low-
powered GPUs for the use in space [5][6]. In the study,
several embedded GPU SoCs have been evaluated and
benchmarked. A survey of typical on-board process-
ing tasks among multiple space domains was conducted.
Each task was divided down into building blocks (such as
FFT, convolution, etc.) and a selection of building blocks
was done for implementation – aiming to cover as many
of the identified applications as possible. In addition, an
application with a complete processing pipeline, based
on the on-board processing algorithms from the ESA Eu-
clid mission, was implemented [7]. In the study, the
lack of openly available benchmarks for space applica-
tions was identified. As such, it was decided to release the

benchmark suite that was implemented targeting process-
ing building blocks for embedded GPUs as the ”GPU4S
Bench” [8]. In addition, it was decided to continue the
work on an openly available application-level benchmark
in the later parts of the activity, in coordination with inter-
nal work carried out at ESA on the implementation of on-
board processing applications based on on-going work of
several ESA missions. The work resulted in the OBP-
Mark (On-Board Processing Benchmarks) suite, which is
presented in this paper.

2. COMPARISON TO OTHER BENCHMARKS
2.1. Comparison to Existing Benchmarks
Traditionally, in the field of space processors, metrics
such as MIPS (millions of instructions per second) or
MFLOPS (millions of floating point operations per sec-
ond) have been used to determine the peak processing
performance of processors. DMIPS (Dhrystone MIPS) –
or DMIPS/MHz – is a commonly used used benchmark
for processors, and is also referred to for space proces-
sors. It targets general CPU integer performance and is
based on synthetic applications, covering topical compu-
tational loads. It is highly compact and portable, and has
become a de-facto standard for benchmarking CPUs [9].
However, such processing loads may not be fully repre-
sentative of typical satellite on-board high-performance
processing tasks - and they serve only for the benchmark-
ing of processors.

The EEMBC (Embedded Microprocessor Benchmark
Consortium) has released several benchmarks for proces-
sors and embedded systems. The most widely used is
the CoreMark, which is intended to replace the Dhrys-
tone benchmark [10]. As Dhrystone, it is also based on
synthetic applications, and addresses issues with Dhry-
stone such as complications to compiler optimizations
and the fact that there is no standard way of reporting
Dhrystone results. CoreMark has been used in the space
domain, e.g. [11] and [12] provides CoreMark results
of single- and multicore LEON processors. While such
benchmarks are useful for classic CPU-type processing
devices, it is not suited to compare CPUs (central pro-
cessing units) to other types of processing devices, such
as FPGAs, GPUs and ML accelerators.

Other EEMBC benchmarks, such as Multibench for mul-
ticore processor performance and FPMark for multi-
threaded floating point performance are provided by
EEMBC. Two benchmarks for heterogenous systems
have also been released, ADASMark and MLMark.
ADASMark targets advanced driver-assistance systems
(ADAS) tasks for autonomous driving in SoCs (system-
on-chips). It includes a image processing pipeline con-
sisting of typical pre-processing (debayer, dewarp, color
convert, etc.) as well as object detection (e.g. so-
bel edges) which are common for ADAS systems. The
benchmark is released in OpenCL, targeting CPUs, GPUs
and DSPs. While both the approach and image pro-
cessing in general are close to processing done on-board
spacecraft, it does not fully map to the specific image pro-
cessing tasks for space applications. As such, it can be



useful for general image processing benchmarking, but it
is not fully representative for space systems.

EEMBC’s MLMark is a benchmark that targets machine
learning (ML) tasks on the edge. [13] It includes im-
plementations for TensorFlow/TensorFlow Lite and ded-
icated implementations for a number of devices, such as:
Intel Myriad devices (OpenVINO); NVIDIA GPUs (Ten-
sorRT); ARM Cortex-A processors (ARM NN library);
and ARM Mali GPUs (OpenCL); Google Edge TPU –
which have all been proposed for the use in space. The
ML workloads are based on de-facto standard deep neu-
ral network architectures: ResNet-50 v.10, MobileNet
v1.0, and SSDMobileNet V1.0. Such model architec-
tures are also expected to be used in space. However,
the models have been trained on ILSVRC2012 (Ima-
geNet Large Scale Visual Recognition Challenge 2012)
and COCO2014 (Common Objects in Context), which
are not related to space. In addition, they do not take into
account the necessary pre-processing stages required to
execute such applications using typical sensor sizes used
in space (i.e. by downsampling or tiling).

MLPerf is a set of benchmarks aimed at the computa-
tional performance evaluation of machine learning (ML)
tasks, initiated by a consortium of researchers. It includes
includes both benchmarks for training and inference of
ML models [14]. While both MLPerf and OBPMark in-
clude benchmarks for ML inference, such as image clas-
sification and object detection, the inference models used
in MLPerf (as those used for MLMark) are not targeted
at space applications. Instead MLPerf uses image data
sets such as ImageNet and COCO, which both target gen-
eral visual object recognition with large networks. The
ML inference computational benchmarks of OBPMark
are targeting specific applications related to space imag-
ing and Earth Observation that are suited (both in terms of
overall complexity and memory footprint) for execution
on space hardware.

The NAS Parallel Benchmarks (NPB) from NASA [15]
are intended for the evaluation of the performance of
highly parallel supercomputers. The benchmarks are
taken from applications in the field of computational fluid
dynamics. The application cases of NPB are not com-
monly used in on-board processing applications – which
is the target of OBPMark. While both benchmarks share
e.g. an implementation of FFT (Fast Fourier Transform),
there is otherwise little other overlap between the bench-
marks both in terms of target and choice of benchmarks.

2.2. Relation to ESA NGDSP Software Benchmarks

A set of benchmarks for DSPs on-board spacecraft
were previously defined in 2008 in the “Next Gener-
ation Space Digital Signal Processor Software Bench-
mark” (“NGDSP benchmarks”) document [16] which
was mainly intended for the selection of DSP devices and
architectures as part of the now cancelled NGDSP initia-
tive. It also included aspects related to I/O data trans-
fer rate and acquisition from mixed signal data convert-
ers. OBPMark succeeds and replaces the NGDSP bench-

marks. Wherever possible, benchmark elements and re-
porting parameters have been reused from the NGDSP
benchmark, to be able to retain results from previous
benchmarks at best effort. OBPMark focuses only on
the digital processing aspects. Note that with the intro-
duction of of OBPMark, the use of the NGDSP Software
Benchmarks is no longer recommended.

2.3. Relation to GPU4S Bench
The GPU4S Bench was developed for the purpose of
evaluating highly parallel processors, such as GPUs for
use in space applications. It includes implementations of
multiple optimized kernels for the execution of GPUs and
other processors, capable of executing parallel code us-
ing standard frameworks such as OpenCL and/or CUDA
[8] as well as OpenMP [17]. In addition to simple algo-
rithmic building blocks used in multiple space domains,
GPU4S Bench includes also implementation of neural
network layers and a CIFAR-10 inference chain.

The GPU4S Bench is closely related to OBPMark: some
algorithmic building blocks are shared between the two
benchmark suites. Specifically implementations of op-
timized kernels for e.g. FFT and FIR filtering from
GPU4S are reused in OBPMark. Other benchmarks in
OBPMark are mainly targeting multi-stage algorithms,
which reuse the optimized parallel kernel implementa-
tions from the GPU4S Bench. GPU4S Bench and OBP-
Mark are provided as complementary benchmarks and
they are hosted together. They share the same bench-
mark structure and the same optional automation system
for facilitating benchmarking. Due to their relation, when
porting them to new architectures, it is recommended to
start from GPU4S Bench blocks and reuse them in the
complex OBPMark chains.

3. OBPMARK OVERVIEW
OBPMark (On-Board Processing Benchmarks) has been
initiated by ESA together with BSC to define a set
of benchmarks covering applications commonly found
on-board spacecraft. Five categories of benchmarks
are defined 1) Image Processing Pipelines; 2) Standard
Compression Algorithms; 3) Standard Encryption Algo-
rithms; 4) Processing Building Blocks; and 5) Machine
Learning Inference. In each category, specific bench-
marks are included, e.g. both image and radar image
compression. The processing building blocks include e.g.
FIR filters and FFT processing. In all the OBPMark con-
sists of the following components:

1. Technical Note (TN) defining the benchmark algo-
rithms and result reporting

2. Reference input and output data for verification
3. Reference implementations
4. Database of reported benchmark results

The TN contains the descriptions of the benchmark algo-
rithms (or in the case of standard algorithms, references
to the appropriate documents describing the algorithms)
to a level that an implementer can opt to implement a spe-
cific benchmark without referring to any of the reference



implementations. The reference input data is provided to
be used during both verification and performance bench-
marking.

Several reference implementations are provided: a
”golden model” in standard C, without any parallelization
or optimizations; parallel implementations using stan-
dard parallelization software frameworks are provided to
lower the porting effort of the benchmark suite to many
multicore processors, GPUs, etc. OBPMark, as GPU4S
Bench, features the same optional automation framework
which facilitates the compilation, execution and result
collection of its benchmarks. A database of reported per-
formance test results per device and benchmark will be
maintained as part of the OBPMark repository.

3.1. Selection of Benchmarks
Currently the processing requirements for on-board pro-
cessing systems are driven by a number of key applica-
tions. These include image processing; multi- and hy-
perspectral image processing; SAR (synthetic aperture
radar) processing; data compression and encryption; ra-
dio signal processing; etc. In the field of image pro-
cessing, particular processing intensive tasks include: co-
registration of successively acquired images; scrubbing
of radiation effects in the detector; and image compres-
sion. Traditionally, the purpose of on-board image pro-
cessing is to calibrate and correct the image as to effi-
ciently remove non-homogeneity that can negatively af-
fect the (lossless) compression performance. In the field
of micro-satellites, further image processing and data re-
duction methods have been deemed necessary to meet
data budget requirements. In recent times, there has also
been an increasing interest for deep learning applications
on-board, in particular for classification and segmenta-
tion of images.

Note that the OBPMark suite does not target the low-level
aspects of performance benchmarking of processor cores,
but focuses instead on the system-level and application-
level performance of the target well-known (in the space
community) processing applications.

3.2. Benchmark Objectives and Requirements
The objective of these benchmarks are:

• To provide a suite of application level benchmark
for space on-board applications.

• To promote a standard set of benchmarks, as to en-
able a method of comparing end-user performance
of different devices and systems – such as both
RHBD and COTS processors, FPGAs and ASICs.

• To better understand limitations of different types of
devices and systems.

• To quickly decide the division of tasks in hardware
and software for implementations in heterogeneous
systems.

• To allow ESA to quickly provide recommendations
for processing systems in future missions, through
identifying key parameters together with the project
teams.

• Benchmark standard on-board processing functions,
so that implementers will have a reference of the
expected performance and even the possibility for
reusing the invested work in real-world use cases.

Four key requirements were considered for the definition
of the benchmarks: application coverage, comparability,
portability and openness. The benchmarks shall cover
common OBP applications: image processing, compres-
sion, radar processing, encryption, signal processing and
machine learning - and it shall be possible to add ad-
ditional benchmarks in the future (through version up-
dates). The benchmarks shall include metrics for com-
paring the results, including: overall performance, per-
formance per power, and power dissipation of DUT - and
dfine all necessary configuration parameters and test data.

For portability, the base version shall be provided in stan-
dard C, with additional ports using standard parallelliza-
tion schemes (such as OpenMP, OpenCL and CUDA) and
support the porting to FPGA implementations. For open-
ness, the benchmark definitions and standard ports are
provided as open-source on a public repository - to al-
low community response/feedback and contribution (e.g.
additional ports). The benchmarks have been specified
without a specific processing architecture or device in
mind. However, the intention is to allow implementations
in a multitude of device types, i.e. CPUs, DSPs, FPGAs,
ASICs, GPUs, many-core devices, stochastic arrays, etc.
– as well as heterogeneous systems. That is, systems that
consists of more than one device type, such as combined
CPU and FPGA systems, where a part of the processing
is done in software in CPU and another part is done in
logic in the FPGA.

3.3. Parallelization, Optimization and Porting

One important aspect of the applications is the paral-
lelization scheme applied on the algorithm to allow effi-
cient and full resource utilization of devices with parallel
capabilities, such as multi- and many-core processors, as
well as multiple DSP blocks in FPGAs. OBPMark does
not define the parallelization schemes for the algorithms,
as these will be significantly dependant on the type of de-
vice benchmarked. It is therefore up to the implementer
to find the most suited parallelization scheme for the de-
vice they are targeting for a new port – and document the
approach with the benchmark results. However, example
parallelized implementations in common parallelization
frameworks are provided as part of the code-base. These
can be run as-is, or be optimized for specific targets. In a
similar manner, in the case of multi- and many-core de-
vices, the performance is often dependent of the use of
intermediate software framework for task and data par-
allelization. Different parallelization frameworks for the
same device may give significantly different results. It is
therefore required to include information also any used
software frameworks and libraries with the benchmark
results. In the case of processors, there is usually signifi-
cant gain in manual assembly optimization of the kernels
part of the processing chains – especially for VLIW archi-
tectures and cores with vectorization modules. The type



level of software tools, i.e. use of assembly, compiler
optimization flags, etc., should also be reported together
with the benchmark results.

Overall, it is recommended to also document the imple-
mentation effort for the target device or devices when re-
porting benchmark results. It may be that a certain de-
vice gives better performance than another, but with the
penalty of a larger effort in implementation. Such in-
formation is certainly very useful when considering the
overall effort for the implementation of a processing al-
gorithm in a certain system. In the case of FPGAs, it
should also be considered that not all logic resources may
be available in when the FPGA is integrated in a process-
ing system, as dedicated data, control and memory inter-
faces will also be necessary to be included in the design.
Hence, it is recommended to include with the benchmark
results information regarding the overall FPGA system
design and resources utilization (including any applied
TMR strategy in the design).

One important aspect for space applications is the power
consumption of a processing system. It may be that very
good results can be achieved with a certain set of devices,
but that additional effort is required to remove the heat
dissipated to be able to operate the system. Condition-
ings regarding the temperature environment and power
dissipation is therefor also considered important param-
eters. Another important aspect of systems on-board
spacecraft is the radiation hardening and fault-tolerance.
In the case the used device gives options of switching off
fault-mitigation techniques this should be listed with the
benchmark results and the power dissipation.

The implementation effort to cover all OBPMark bench-
marks can be significant, particular in the case of FPGAs.
However, it is not the intent that all benchmarks need to
be implemented to report on the performance for a par-
ticular application case. In fact, some of the benchmarks
have intentionally been split to allow reporting of the per-
formance of a specific task – such as the standardized
compression methods. In fact, it is not expected that all
benchmarks are implemented in the targeting devices and
systems, although we would welcome such implementa-
tion to make comparisons more compete.

4. OBPMARK BENCHMARKS
The OBPMark benchmarks are summarized in Table 1.
In the sections below, an overview of each of the bench-
marks are outlined and explained.

4.1. Benchmark #1.1: Image Calibration and Cor-
rection

Benchmark#1.1 is intended to represent typical on-board
processing tasks necessary for imaging instruments in
scientific remote sensing applications with panchromatic
sensors, for instance for deep space telescopes where
long exposure times are usually required. To overcome
the limitations of the sensor, multiple frames are acquired
from the front-end, which are then stacked/summed (also
called ”temporal binning”) to form a final image. Prior to

stacking several pre-processing stages are performed on
the individual acquisition frames:

1. Image offset correction
2. Bad pixel correction
3. Radiation scrubbing
4. Gain correction
5. Spatial binning
6. Temporal binning

The computational performance of the benchmark in-
cludes the metrics: pixels/s, which is calculated as an
average over the entire processing pipeline for a number
of iterations, and pixel/s/W which is calculated by divid-
ing the pixels/s by the average power consumption, as
measured by sampling the power consumption during the
time the processing is active.

4.2. Benchmark #1.2: Radar Processing

This benchmark is intended to cover the generation of
images from raw radar data. It follows the range-Doppler
algorithm. The following stages shall be performed for
each frame in a series:

1. Range Compression
(a) Range FFT
(b) Range Matched Filter Multiply
(c) Range Inverse FFT

2. Corner turn (matrix transpose)
3. Azimuth Compression

(a) Azimuth FFT
(b) Range Cell Migration Correction (RCMC)
(c) Azimuth Matched Filter Multiply
(d) Azimuth Inverse FFT

4. Multilook (spatial binning)

Just as for Benchmark #1.1, the performance is measured
as function of the number of samples/s that can be pro-
cessed, averaged over the entire processing pipeline, and
samples/s/W for performance per unit power.

4.3. Benchmark #2: Standard Compression Algo-
rithms

Benchmark #2 is included to give a guideline on parame-
ters and data sets to use for measuring the computing per-
formance of standard CCSDS compression algorithms:

• #2.1: CCSDS 121.0 Data Compression
• #2.2: CCSDS 122.0 Image Compression
• #2.3: CCSDS 123.0 Hyperspectral Image Compr.

The benchmarks are based on the following CCSDS stan-
dards: [18], [19] and [20]. The implementations and par-
allelization of the CCSDS 121.0, 122.0, and 123.0 algo-
rithms are based on the work described in [21]. Instruc-
tions and guidelines for the implementation of the stan-
dard compression algorithms are outlined in their respec-
tive CCSDS Blue Books and Green Books. Parameters
selection for the CCSDS 123.0 standard has been based
on the recommendations outlined in [22].



ID Benchmark Name Sub ID Sub-Benchmark Name
#1 Image Processing #1.1 Image Calibration and Correction

#1.2 Radar Image Processing
#2 Standard Compression #2.1 CCSDS 121.0 Data Compression

#2.2 CCSDS 122.0 Image Compression
#2.3 CCSDS 123.0 Hyperspectral Image Compression

#3 Standard Encryption #3.1 AES Encryption
#4 Processing Building Blocks #4.1 FIR Filter

#4.2 FFT Processing
#4.3 Convolution
#4.4 Matrix Multiplication

#5 Machine Learning Inference #5.1 Object Detection
#5.2 Cloud Screening

Table 1. OBPMark benchmarks overview

Reference implementations for the compression bench-
marks are provided (both sequential and parallelized).
However, existing implementations from 3rd parties can
be benchmarked by following the OBPMark guidelines
for parameter selection and input/output data.

4.4. Benchmark #3: Standard Encryption Algo-
rithm

In the ”Standard Encryption Algorithms” the throughput
of the standard encryption algorithms shall be measured.
The ”AES Encryption” benchmark implements the Ad-
vanced Encryption Standard (AES) encryption algorithm
as per [23] and the related CCSDS standard [24], with
128-, 196- and 256-bit key-lengths. The performance
metrics are: encrypted samples/s and samples/s/W.

4.5. Benchmark #4: Processing Building Blocks
The “Processing Building Blocks” benchmarks are in-
clude processing functions that can be found in multiple
on-board processing applications such as optical image
processing, radar processing, SDR (Software Defined Ra-
dio) processing as well as AOCS processing. The follow-
ing sub-benchmarks hae been defined:

• Benchmark #4.1: FIR Filters
• Benchmark #4.2: FFT Processing
• Benchmark #4.3: Convolution
• Benchmark #4.4: Matrix Multiplication

In the first benchmark, one dimensional real and complex
data shall be filtered with the use of FIR (Finite Impulse
Response) filters. The target applications include RF
and other on-board signal processing of instrument time
signals that require filtering. FFT (Fast Fourier Trans-
form) is a computationally efficient algorithm for DFT
(Discrete Fourier Transform), introduced by Cooley and
Tukey in 1965. FFT processing is used in a multitude of
on-board applications in optical and radar imaging sys-
tems, telecommunications and as well as other RF ap-
plications. The radix-2, decimation in time FFT variant
of the algorithm shall be used for all benchmarks. All
of the provided reference benchmark implementations in
Benchmark #4 are based on the GPU4S Bench imple-
mentations [8].

4.6. Benchmark #5: Machine Learning Inference
The ”Machine Learning Inference” benchmark includes
processing tasks that have been identified for use of ar-
tificial intelligence (AI) and machine learning (ML) on-
board spacecraft. Training of machine learning parame-
ters (e.g. for neural networks) is not expected to be made
on-board, and is hence not included in this benchmark
set.

A survey of openly available annotated training data sets
and available standard DNN (Deep Neural Networks) ar-
chitectures have been carried out, to identify possible ap-
plication benchmarks that can be made openly available.
Two sub-benchmarks have been tentatively defined:

• Benchmark #5.1: Object Detection
• Benchmark #5.2: Cloud Screening

The object detection benchmark will tentatively be based
on using EO (Earth Observation) imaging data for ship
(or airplane) detection. This application was chosen due
to the availability of training data, and the fact that it has
already been used on in several other ESA activities tar-
geting demonstration of ML techniques on-board.

Cloud screening is a common application for EO optical
instrument. As mentioned, it is already implemented on
Φsat-1 (using deep neural networks) and will be used on
CHIME (using SVMs). In OBPMark, it will be imple-
mented as a DNN segmentation task.

The selected approach includes the use of standard mod-
els as much as possible (eg. such as SSD MobileNetV2
for object detection), to ease the implementation effort
and support many tools and devices out of the box.

Outside of the ML inference, the benchmarks will pos-
sibly also include specific image pre-processing that is
required on-board to adapt typical sensor data (in the
range of 1024x1024 or 2048x2048 pixels) to sizes that
are appropriate for inference. This will be done through
either downsampling (through binning) or ROI selection
(through patching).

Pre-trained models will be provided, based on standard



formats such as TensorFlow and TensorFlow-Lite. More-
over, both non-quantized and quantized models will be
provided. As a baseline at least FP32, FP16, INT16 and
INT8 models will be provided. The training data will
be based on openly available data, so that in-case re-
training of the model of or a specfic framework or device
is needed, it will be possible.

Reference implementations and optimization for addi-
tional frameworks and specific devices (such as Open-
Vino for Intel devices; TensorRT for NVIDIA; ROCm
for AMD; or VitisAI for Xilinx) may also be considered
for future versions. In addition, OBPMark will aim to
harmonize its approach with other on-going ESA activi-
ties that are targeting machine learning benchmarking of
specific systems.

5. BENCHMARKS IMPLEMENTATION STATUS
In the first phase of the activity, the following benchmarks
have been implemented:

• #1.1 ”Image Calibration and Corrections”
• #2.1 ”CCSDS 121.0 Data Compression”
• #2.2 ”CCSDS 122.0 Image Compression”
• #4.1 ”FIR Filter”
• #4.2 ”FFT Processing”
• #4.3 ”Convolution”
• #4.4 ”Matrix Multiplication”

Reference implementations for the following benchmarks
will be implemented in the next phase of the activity:

• #1.2 ”Radar Image Processing”
• #2.3 ”CCSDS 123.0 Hyperspectral Image Compr.”
• #3.1 ”AES Encryption”
• #5.1 ”Object Detection”
• #5.2 ”Cloud Screening”

For Benchmark #1.2, a tentative definition of the bench-
mark has been specified. It could be foreseen that some
adjustments to the benchmark may be done after the first
implementations have been performed.

In regards to Benchmarks #2.3 and #3.1, specifications of
these benchmarks are based on already CCSDS standard-
ized algorithms and implementers can already use the
specifications provided in the OBPMark Technical Note
for algorithm and data parameters for testing.

For the ML-oriented benchmarks, #5.1 and #5.2, they are
as of writing in their specification stage, more details are
provided above.

6. INITIAL BENCHMARKING TEST RESULTS
Initial benchmark tests of a number of devices have been
performed with the beta version of the existing bench-
marks. Test setups for each device was developed, includ-
ing dedicated power measurements, for several COTS
GPU SoCs. The result of four GPUs are presented here:
NVIDIA Xavier, NVIDIA TX2, AMD Embedded Ryzen
V1000 (V1605B) and HiSilicon Kirin 970 Hikey970, fea-
turing an ARM Mali-G72 GPU. For fair comparison, all

devices were operated at equivalent 15W TDP modes.
Additional tests at lower TDP modes will be published
in a later paper. Dedicated power measurements were
performed in some of the cases to get a better estimate of
actual power consumed. The number of cores used in the
OpenMP multicore benchmarks was limited to four (4).

Results from Benchmark #1.1 are presented in Table 2.
The three standard image sizes (as specified in the OBP-
Mark technical note) were used: 1024x1024, 2048x2048
and 4096x4096. Quasi-random data, generated with a
fixed seed were used as input data. The input data may
be replaced with representative space imaging data in the
future. As can be seen in the table, the NVIDIA TX2
and Xavier were the highest performing in GPU perfor-
mance, whereas the AMD V1605B had the highest CPU
performance. Please note that due to an unofficial custom
driver issue causing issues with OpenCL performance,
the results presented for the V1605B GPU tests are sig-
nificantly lower than the expected value. This issue is ex-
pected to be corrected, which will result in higher results.
The issue is currently under investigation.

Device Target Impl. Image Size Mpixels/s Mpixels/s/W
TX2 CPU (OpenMP) 1024 4.99 1.61
TX2 CPU (OpenMP) 2048 5.41 1.75
TX2 CPU (OpenMP) 4096 5.42 1.69
TX2 GPU (CUDA) 1024 13.10 3.80
TX2 GPU (CUDA) 2048 20.76 5.97
TX2 GPU (CUDA) 4096 34.86 9.95
Xavier CPU (OpenMP) 1024 6.93 1.05
Xavier CPU (OpenMP) 2048 8.83 1.35
Xavier CPU (OpenMP) 4096 13.94 1.98
Xavier GPU (CUDA) 1024 42.85 6.29
Xavier GPU (CUDA) 2048 57.59 8.52
Xavier GPU (CUDA) 4096 55.41 8.28
V1605B CPU (OpenMP) 1024 18.81 1.25
V1605B CPU (OpenMP) 2048 17.35 1.16
V1605B CPU (OpenMP) 4096 16.27 1.08
V1605B GPU (OpenCL) 1024 (*)1.89 (*)0.13
V1605B GPU (OpenCL) 2048 (*)2.06 (*)0.14
V1605B GPU (OpenCL) 4096 (*)2.11 (*)0.14
Kirin 970 CPU (OpenMP) 1024 5.60 0.37
Kirin 970 CPU (OpenMP) 2048 11.23 0.75
Kirin 970 CPU (OpenMP) 4096 14.98 0.97
Kirin 970 GPU (OpenCL) 1024 5.60 1.00
Kirin 970 GPU (OpenCL) 2048 11.23 2.02
Kirin 970 GPU (OpenCL) 4096 14.58 2.61

Table 2. OBPMark Benchmark #1.1 ”Image Calibration
and Corrections” test results for COTS GPU devices

Results from two compression benchmarks are also pre-
sented, only results for the NVIDIA Xavier and the AMD
Embedded Ryzen V1605B are presented here. Results
of Benchmark #2.1, CCSDS 121.0 Data Compression,
using three different block sizes (J): 16, 32 and 64 are
presented in Table 3. No power (efficiency) results are
presented for #2.1 here, details to be included in later
publications. In the data compression benchmarks, the
V1605B performed up to 2x higher than the Xavier in
specific benchmark configurations when using the CPUs.
When using the GPUs, the results were comparable be-
tween both devices.

Results of Benchmark #2.2, CCSDS 122.0 Image Data
Compression, using two images sizes: 2048x2048 and
4096x4096 are presented in Table 4. Again here it is



Device Target Impl. Msamples/s Msamples/s Msamples/s
(J=16) (J=32) (J=64)

Xavier CPU (Seq.) 12.10 6.13 3.18
Xavier CPU (OpenMP) 22.00 10.31 6.52
Xavier GPU (CUDA) 12.81 9.62 6.41
V1605B CPU (Seq.) 18.59 9.67 4.49
V1605B CPU (OpenMP) 41.00 22.45 11.50
V1605B GPU (OpenCL) 16.91 10.28 5.50

Table 3. OBPMark Benchmark #2.1 ”CCSDS 121.0 Data
Compression” test results for COTS GPU devices

shown that the Xavier GPU performs the highest over-
all, both in absolute throughput and in energy efficiency.
However, due to the issues with the OpenCL support for
the V1605B described above – the V1605B GPU results
shown here are not representative of the device capabili-
ties. When measuring the CPU performance for the im-
age data compression benchmark, the V1605B again out-
performs the Xavier in throughput in all modes. How-
ever, in energy, efficiency, the results are roughly equiva-
lent.

Device Target Impl. Image size Mpixels/s Mpixels/s/W
Xavier CPU (Seq.) 2048x2048 3.84 0.48
Xavier CPU (Seq.) 4096x4096 3.31 0.40
Xavier CPU (OpenMP) 2048x2048 4.32 0.48
Xavier CPU (OpenMP) 4096x4096 4.14 0.49
Xavier GPU (CUDA) 2048x2048 17.07 1.87
Xavier GPU (CUDA) 4096x4096 30.64 2.79
V1605B CPU (Seq.) 2048x2048 5.48 0.37
V1605B CPU (Seq.) 4096x4096 5.39 0.36
V1605B CPU (OpenMP) 2048x2048 7.40 0.49
V1605B CPU (OpenMP) 4096x4096 6.01 0.40
V1605B GPU (OpenCL) 2048x2048 (*)0.88 (*)0.06
V1605B GPU (OpenCL) 4096x4096 (*)0.88 (*)0.06

Table 4. OBPMark Benchmark #2.2 ”CCSDS 122.0 Data
Compression” test results for COTS GPU devices

These initial benchmark result shows that it is impor-
tant to consider several applications, implementation ap-
proaches and parameters when making fair comparisons
between different processing devices and systems.

7. SUMMARY AND CONCLUSIONS

Currently, there is a lack of openly available compara-
ble processing benchmarks for space applications. In
this paper OBPMark, a set of computational performance
benchmarks for on-board processing applications has
been presented, reusing and extending the implementa-
tions of GPU4S Bench open source benchmarking suite.
It is proposed to use the benchmarks for general perfor-
mance evaluation of on-board systems and devices.

The OBPMark and GPU4S Bench source code reposi-
tories are available at: OBPMark.org. Researchers in
the field of on-board data processing and vendors of pro-
cessing devices, modules and systems who wish to work
on performance benchmarks for space are encouraged to
reach out and contact the authors through:
OBPMark@esa.int

8. FUTURE WORK
In the next phase of the activity, the remaining bench-
marks (listed above) will be finalized and implemented.
Additional ports of the benchmarks, targeting multicore
RHBD (radiation hardended by design) and RT (radia-
tion tolerant) processors are planned. In future versions
of OBPMark dedicated optimizations for commonly used
ISAs, such as SPARC, ARM and RISC-V may be consid-
ered.

OBPMark has been specified to allow the inclusion of ad-
ditional benchmarks in the future. Possible expansions of
the OBPMark benchmark suite include video encoding/-
compression; additional compression standards; and/or
additional machine learning benchmarks again related to
representative space use. Future use of video encoders
are currently being evaluated by ESA, including com-
mercial standards such as H.264/H.265. Possible adap-
tion of existing video standards for future use in space
may be required. As commercial compression standards,
such as JPEG2000, become more popular for space appli-
cations, guidelines for performance benchmarks may be
also added. In addition, dedicated benchmarks for com-
pression of SAR data based on upcoming standards may
be added. As machine learning is a rapidly evolving field,
there may be a need to complement the current plan with
additional model architectures or new algorithms. Ad-
ditional benchmarks covering AOCS/GNC applications
and/or visual-based navigation may be added, as these
are currently a topic of research and have been cov-
ered by several ESA activities. Application-level bench-
marks for telecommunication applications, such as DVB-
S2 transceivers, will also be considered. Inclusion of ad-
ditional benchmarks will be subject of community feed-
back of early public released version of OBPMark.
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Abella, Olivier Notebaert, Francisco J Cazorla, and
David Steenari. GPU4S: Embedded GPUs in space.
In 2019 22nd Euromicro Conference on Digital Sys-
tem Design (DSD), pages 399–405. IEEE, 2019.

[6] Leonidas Kosmidis, Iván Rodriguez, Álvaro Jover,
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