

2nd European Photon & Neutron EOSC Symposium

26 October 2021

Machine Learning-based Spectra Classification

Yue Sun; Sandor Brockhauser; Christian Plueckthun; Zuzana Konopkova European XFEL; University of Szeged

26 October 2021

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.

Background

Background (Big data):

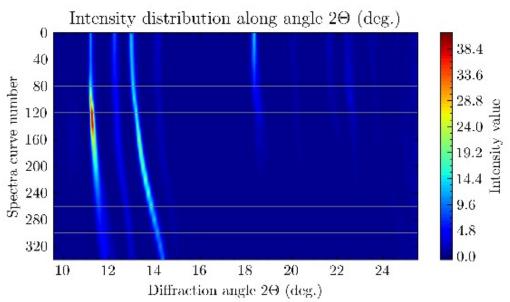
• Experiments in photon sciences at synchrotrons or XFELs (e.g. SCS, FXE and HED experiments) always generate a large volume of data.

□ ML algorithms and its requirements:

• A great amount of data which are clearly annotated and complete for covering the requirements of scientific reuse.

□ ML, Big Data requirements on Ontologies, and Application Definition:

- The research outputs should align with the 'FAIR' principles, meaning that data, software, models, and other outputs should be *Findable*, *Accessible*, *Interoperable*, and *Reusable*;
- For data re-use, the metadata shall follow a scientific experiment data model; Appropriate NeXus application definitions shall be defined.

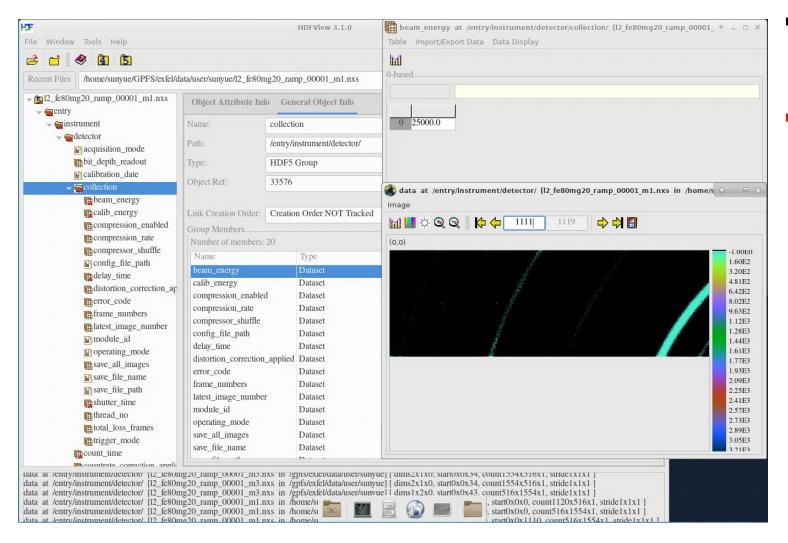


Example of Data Reuse

HED Diffraction Spectra data

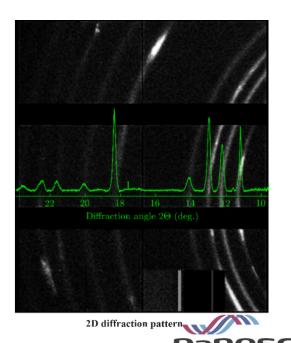
[Mg0.2,Fe0.8] 50s ramp, 100 ms exposure n = 0n = 20n = 40n = 60n = 80n = 100Intensity n = 120n = 140n = 160n = 180n = 200n = 220n = 240n = 260n = 280n = 300n = 320n = 34010 12 16 22 24 26 14 18 20 Diffraction angle 20 (deg.)

Data set: 349 samples with each of 4023 features **Two phases**: Low and High pressure **Training data**: 4 (original)+40 (simulated) = 44


on and neutron

Measured at PETRA III beamline P02.2 using a 25.6 keV beam.

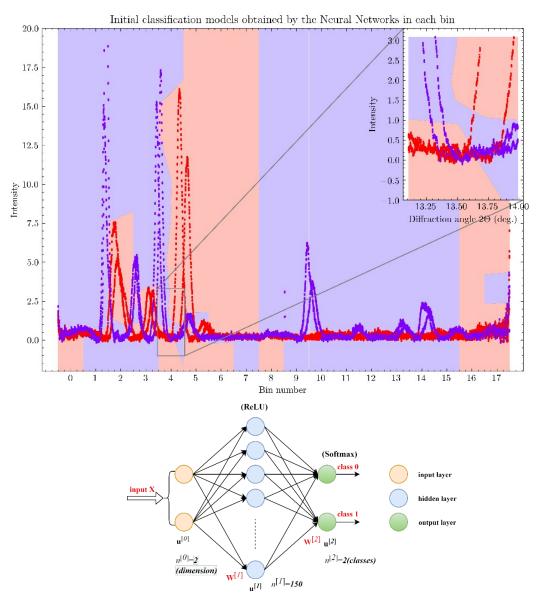
The major spectral changes we aim to capture are

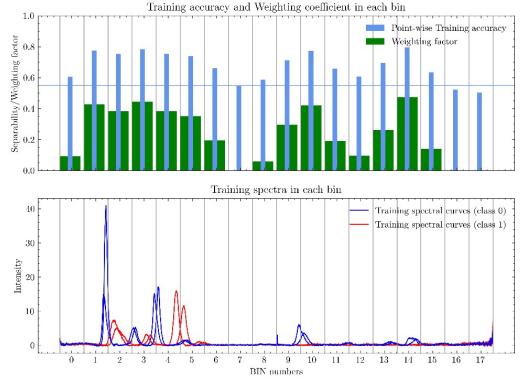

- the change of intensity distribution (e.g. drop or appearance) of peaks at certain locations, or
- the shift of those in the spectrum.

NeXus Raw data file example

One of the NeXus Raw data file displayed in HDFview software

- NeXus base classes are used, but no application definitions (only free key-values under NXcollection).
- No real experimental data was registered (e.g. beam_energy).





hoton and neutron open science cloud

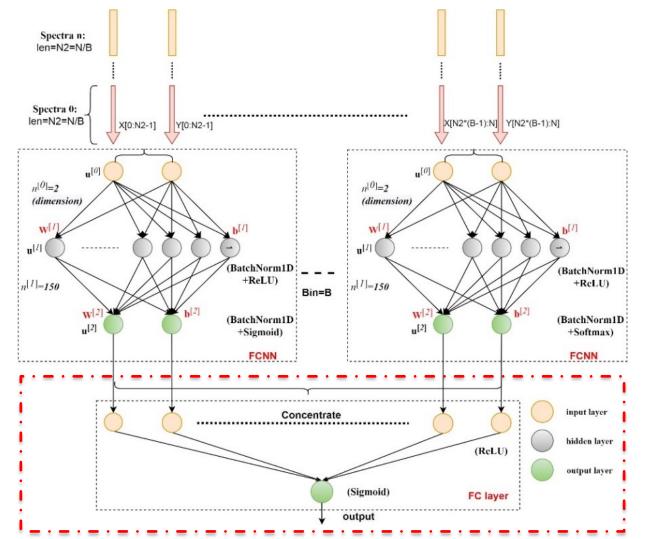
Two-layer NN with Weighting technique for spectra classification

In this work, the spectra classification task is regarded as a general two-dimensional (2D) space segmentation problem.

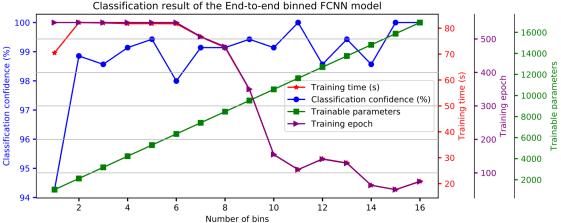
The distribution of point-wise training accuracy (separability), and the believability weighting factor for each bin.

Believability weighting factor:

 $w_b = \max(0, 1.4337A_b^2 - 0.4337)$



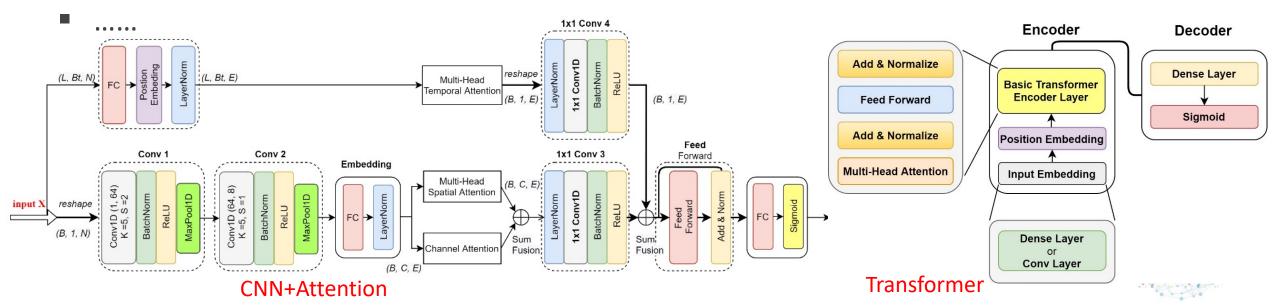
Ambigious regions corresponding to different number of bins. Relationship between confidence and number of bins BIN=1 Confidence vs Bnum -150-140BIN = 5-160Intensity Intensity sity -50BIN = 11-1600.8 Inten -170-100-180-180confidence 0.6 -200-150-19020 25sification 10 15 2510 1520 2510 15 20Diffraction angle 2Θ (deg.) Diffraction angle 2Θ (deg.) Diffraction angle 2Θ (deg.) -170Final cla 0.4 -175-180-180-180Intensity -180 Intensity Intensity 0.2-185BIN = 18-190BIN = 24BIN = 29190 -200-195-2000.0 -20015 20 2530 0 5 10 10 15 20 2510 15 20 2515 202510Number of bins Diffraction angle 2Θ (deg.) Diffraction angle 2Θ (deg.) Diffraction angle 2Θ (deg.) N_B $L_{curve} = \operatorname*{argmax}_{k \in \{0, \cdots, C-1\}} \sum_{h=1}^{\infty} w_b \sum_{i=1}^{\tilde{\nu}} \hat{C}_k^{(i)}$ Performance metrics: $P_{conf} = 1 - \frac{N_f}{N_f}$


- Submitted a paper 'Machine Learning Applied for Spectra Classification in XFEL Sciences' to Data Science Journal;
- <u>https://github.com/European-XFEL-examples/panosc-ml-spectra-classification</u>.

End-to-End FCNN with automatically capturing weighting factors model

Classification results under different number of bins:

As the number of bins increases: Classification confidence increases; Trainable parameters increase linearly; Training epochs decreases; Training time decreases.



End-to-end FCNN with automatically capturing weighting factors model

Other classification models

Under the setting of 1D spectral time series classification:

- 1D Fully Connected NN (FCNN)
- Convolutional Neural Network (CNN) solution, ResNets solution
- LSTM-based solution
- Transformer-based solution
- CNN+Multi-head Attention

Conclusion and Perspectives

- The process of selecting/creating the training set is still limited, because the data is not properly annotated and some key information (such as the pressure value for each diffractogram) is missing.
- Appropriate NeXus Application Definitions needs to be developed.
- PaN portal is enabling 'FAIR' principle:

• Data search;

- Download / Data Analysis and Visualization cloud environment;
- Automatic data interpretation via NeXus ontologies for
 - interoperability, and
 - reusability

2nd European Photon & Neutron EOSC Symposium

26 October 2021

Yue Sun (European XFEL, University of Szeged): yue.sun@xfel.eu

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.