

E x P a N D S European Open Science Cloud Photon

and Neutron Data Services

2nd European PaN Symposium Project results, use cases and the future!

Patrick Fuhrmann (DESY, ExPaNDS), **Andy Götz** (ESRF, PaNOSC) With contributions by Sophie Servan (DESY) and Jordi Bodera (ESRF) For the Project teams!

ExPaNDS and PaNOSC in the PaN EU project landscape

Policies	Common data policy	FAIR data po	olicy Data M	anagement Plans
Analysis	Software Catal	logue	Remote analysis	Jupyter
AAI	UmbrellaID	AARC Bluepri	nt e	eduTeams
Training	e-neutron		Training pl	atform

*** * * **

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.

photon and neutron open science clou

How do we achieve our goal ?

The Big Picture of EOSC in PaNOSC and ExPaNDS

* * * * * * *

What did we achieve and what will we have achieved until the end of our projects?

Highlights from PaNOSC and ExPaNDS and table of content.

From Open Science to FAIR Data

- FAIR data policy and DMPs FAIR assessment
- Common PID framework
- Ontologies, Meta Data and standardized searching
 - Standardised metadata (Nexus/HDF5, PaN ontologies)
 - Federated search API for PaN data catalogues
- PaN-learning platform (pan-learning.org + pan-training.org)

Services

- Core: Community AAI (GEANT eduTeams)
- Portable and easy to verified analysis pipelines
- JupyterLab notebooks and Nexus/HDF5 files visualization
- Remote data analysis with VISA + portable data analysis pipelines
- Simulation software for simulating experimental data (SIMEX)
 - Only by use case

Open Science: Open Data, FAIR Data Policies, PIDs, DMPs

From Open Science to FAIR data.

Elements of the Data Policy Framework

Our contribution to Data Polices, DMPs and FAIR data handling.

We provide

- Data Policy
 - Framework for easy adoption in not so complex cases
 - Guidebook to compose a customized, more complex Data Policy.
- Per Facility consultation
 - > We provided the Data Policy Guidebook to the facility responsible person.
 - > We provided a facility by facility consultation and discussed the Guide Book.
 - > We collected feedback and redesigned accordingly.
 - > We help and monitor the implementation or the Policies at the facilities.
- Help on permanent FAIR assessment of the facilities
 - We provide guidelines on how to continuously verify FAIRness of the beamline data taking process, the meta data and the repositories.

Meta Data Ontologies, Keywords in Catalogues and NeXus

photon	Showing 1 of 1099	Sort: Search Rank 🗸		
PaN Experimental	classes			
The PaNET ontology provides a taxonomy and thesaurus of photon and neutron (PaN)				
experimental techniques,	based mainly on accelerator-based light sources and neutron			
facilities				
Uploaded: 6/19/21				

Meta Data Ontologies and their consequences

- Worked on a common ontology for different techniques in PaN;
- Checked 'keywords' for duplication in other sciences and searchability;
- Modelled our Ontology into the BioPortal;
- Working on making the BioPortal (not our service) available through the EOSC Portal;
- Publishing hints for catalogues to pick up the right keywords form our ontology;
- Involved in the NeXus definitions following our ontology. (NIAC Involvement).

Training and Learning Platform

Our contribution to the teaching and learning platform.

- The lack of a central platform for PaN Teaching and Learning has been identified by the facilities.
- We evaluated available, state of the art technologies for teaching and data collection platforms.
- We introduced a PaN training platform to
 - create/store courses and to
 - collect existing material.
- We are re-using successful projects developed by
 - Elixir (TeSS) and
 - SINE2020 e-neutrons.

PaN-Training.hzdr.de

PaN-Learning.org

Training and Learning Platforms

oton and neutron

nen science clou

PaN-Learning Portal

and innovation programme under grant agreements 823852 and 857641, respectively.

photon and neutron open science cloud

Training and Learning Platforms

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 resear and innovation programme under grant agreements 823852 and 857641, respectively.

photon and neutron open science cloud

Training and Learning Platforms

Now live at

PaN-Training.hzdr.de

&

PaN-Learning.org

Prerequisite for open access : The common AAI

PaN and EOSC Core service: Authentication and

• Originally

Identity Management (AAI)

- Scientist needed a different identity at each facilities to access their services.
 - Lots of passwords to remember and to loose
 - Difficult with cross facility services.
- UmbrellaID
 - Scientist only needs one identity with UmbrellaID (on top of home identity)
 - 'Catch all' identity providers are no longer state of the art and might not trusted.
- Now: eduTeams [GEANT service] (in progress)
 - Scientist only needs the one identity from his/her home facility!
 - Single Sign On: for cross facility services (data orchestration and automatic analysis)
 - One service can use another services somewhere else on your behalf!
 - Less Prison Time: Legal Issues for IdPs and Services are sorted out (AARC Blueprint)
 - Security: We are part of the European wide CERT system.
- EOSC-Future -> Science agnostic AAI
 - Scientist can use his home Identity for different sciences
 - PaN can co-utilize services from other sciences: e.g. Data Hub and Data Lakes. PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.

The next generation PaN Facility

Towards the PaN Facility Next Generation

Towards the PaN Facility Next Generation

High level harvesting of our PaN treasures.

Harvesting API

and innovation programme under grant agreements 823852 and 857641, respectively.

The PaN search API and the Open Data Portal

Federated PaN Search and the data portal.

nen science clou

and innovation programme under grant agreements 823852 and 857641, respectively.

PaN Data Portal

Example for Ontologies

Techniques -

Special Case of the Open Data Portal (Customized)

Human Organ Atlas

The Human Organ Atlas uses **Hierarchical Phase-Contrast Tomography** (HiP-CT) to span a previously poorly explored scale in our understanding of human anatomy, the micron to whole intact organ scale. Histology using optical and electron microscopy images cells and other structures with sub-micron accuracy but only on small biopsies of tissue from an organ, while clinical CT and MRI scans can image whole organs, but with a resolution only down to just below a millimetre. HiP-CT bridges these scales in 3D, imaging intact organs with ca. 20 micron voxels, and locally down to microns. We hope this open access Atlas, enabled by the ESRF-EBS, will act as a reference to provide new insights into our biological makeup in health and disease.

This project has been made possible by funding from:

- The European Synchrotron Radiation Facility (ESRF) funding proposal MD-1252
- The <u>Chan Zuckerberg Initiative</u>, a donor-advised fund of the Silicon Valley Community Foundation
- The <u>German Registry of COVID-19 Autopsies</u> (DeRegCOVID), supported by the German Federal Ministry of Health
- The Royal Academy of Engineering, UK
- The UK Medical Research Council
- The Wellcome Trust

Collaborators

- <u>UCL</u>, London, England: Peter D Lee, Claire Walsh, Simon Walker-Samuel, Rebecca Shipley, Sebastian Marussi, Joseph Jacob, David Long, Daniyal Jafree, Ryo Torii, Charlotte Hagen
- ESRF, Grenoble, France: Paul Tafforeau, Elodie Boller
- Medizinische Hochschule Hannover, Germany: Danny D Jonigk, Christopher Werlein, Mark Kuehnel
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Germany:M Ackermann
- University Hospital of Heidelberg, Germany: Willi Wagner
- Grenoble Alpes University, Department of Anatomy, French National Center for Scientific Research: A Bellier
- Diamond Light Source, Harwell, UK: Andy Bodey, Robert C Atwood
- Imperial College London, UK: JL Robertus

Aknowledgements

The development of this portal has been done as part of the <u>PaNOSC project</u>. PaNOSC has received funding from the European Union's <u>Horizon 2020</u> research and innovation programme under grant agreement No. 823852. The following people were involved in the development: Paul Tafforeau, Alejandro De Maria Antolinos, Axel Bocciarelli, Marjolaine Bodin and Andrew Götz from the ESRF, Jiří Majer from ELI, as well as the broader PaNOSC and ICAT communities.

Scientists prepared the Content and displayed by the Customized Open Data Portal.

*Walsh, C.L., * Tafforeau, P., * Wagner, W.L., Jafree, D.J., Bellier, A., Werlein, C., Kühnel ,M.P., Boller, E., Walker-Samuel, S., Robertus, J-L., Long, D.A., Jacob, J., Marussi, S., Brown, E., Holroyd, N., Jonigk#, D.D., Ackermann#, M., Lee#, P.D. **Imaging intact human organs locally resolving cellular structures using hierarchical phase- contrast tomography.** Nat Methods (2021) Accepted

Refer to PaNOSC Use Case 23 for more info!

Pan Facility NG VISA Remote Access

Remote data and compute access platform

- Goal: Next generation of data analysis in globalized research;
- Remote access to facilities;
- > Our solution for a portal: develop and deploy **VISA** platform;
- > Make data analysis pipelines interoperable;
- > Make Jupyter notebooks available at all sites;
 - ✓ JupyterLab has been widely adopted as remote analysis-tool
 - ✓ PaNOSC provides:
 - Jupyter-Slurm adaptor.
 - Nexus/HDF5 visualization
 - ✓ PaNOSC + ExPaNDS
 - Developed for Use Cases

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.

d neutron cience cloud

Remote analysis + HDF visualization with Jupyter notebooks

Quick tour through our use cases of today.

Our use cases for today.

Describe data by scripts for future reuse

Petr Čermák

- Describing Data as 'scripts'
- Public Data from ILL
- Publish the scripts on GitHub.
- R and I in FAIR.

Neutron diffraction from Borocarbon for efficient structural analysis and defect detection

Mousumi Upadhyay Kahaly (ELI-ALPS)

- Boron-doped diamond (BDD) for high voltage batteries.
- Inelastic neutron scattering
- Simulated with McStas code
- Making use of WP4/5/6 of PaNOSC

Tomography Case Study

Kamel Madi

- Bio-chars from agricultural waste
- Minting DOI's for precious datasets
- Results are important for a large variety of sciences.
- Water quality, Soil emission of gas
- So F in FAIR is essential.
- Jupyter and WP4 of both projects

TELBE Data Analysis workflow and the PaN training platform UX Spectra Classification

Jan-Christoph Deinert

- TELBE: Stimulation source for elementary low-energy degrees of freedom in matter.
- Culprate Superconductor
- Rendering this workflow in the PaN training platform.

Machine Learning-based Spectra Classification

Yue Sun

- Example to show how Neural Network-based ML can be used for classifying the system state.
- Shows the importance of proper file annotation: NeXus.
 - DOI, FAIR, an MX COVID-19 Use Case

- Frank von Delft
- Covid Moonshoot consortium is looking for a drug to block SARS-CoV-2
- Screening of the available fragment libraries at Diamond with crystals of the Main Protease of the COVID-19
- FAIR
- DOIs: Linking PDB with Zenodo to maximize dissemination of Information.

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.

photon and neutron open science cloud

Open Data Commons and Survey

Next up:

- Facility Survey
- Discussion on consequence of the answer for the Open Data Commons

See Andy's presentation at 11:45

(Stay tuned)

Thank to all who contributed and will contribute to the success of our two projects and enjoy the rest of the day.

