

Resurrection of HR-DDS system : towards merged DDS / MDB / MMDB capabilities

JF Piollé (Ifremer), Dave Poulter (Pelamis), Jamie Shutler (PML) Veronica Guidetti, Craig Donlon (ESA)

... is not a new brand of cat food !!

... is not a new brand of cat food !!

...the project name was forged by an expert team at ESA

... is not a new brand of cat food !!

... the project name was forged by an expert team at ESA

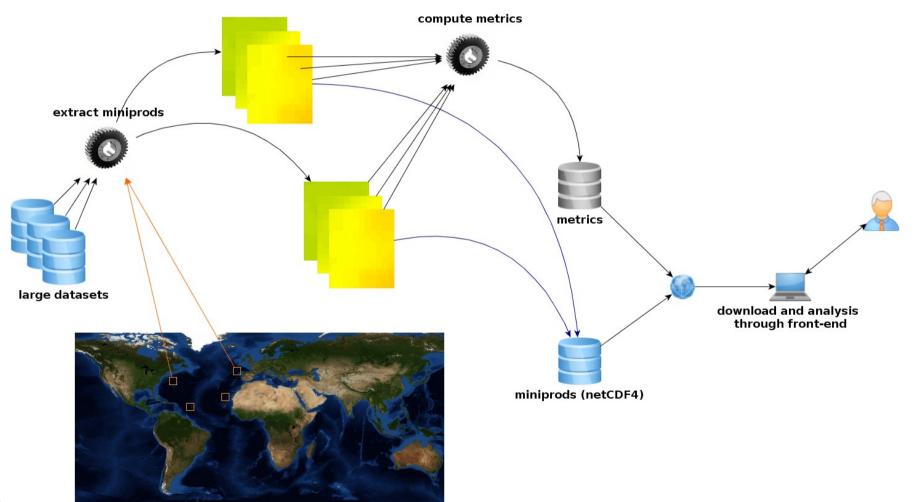
No, this is not a glass of wine !!

Felyx

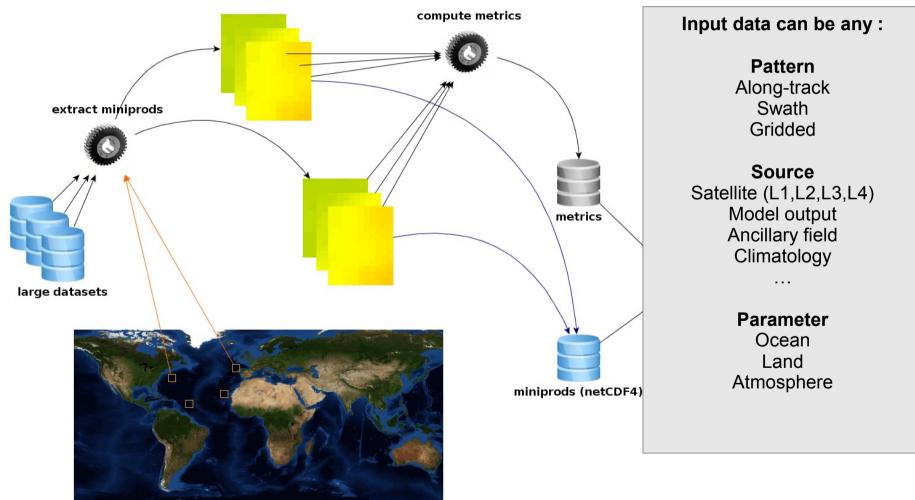
So...what is Felyx ?

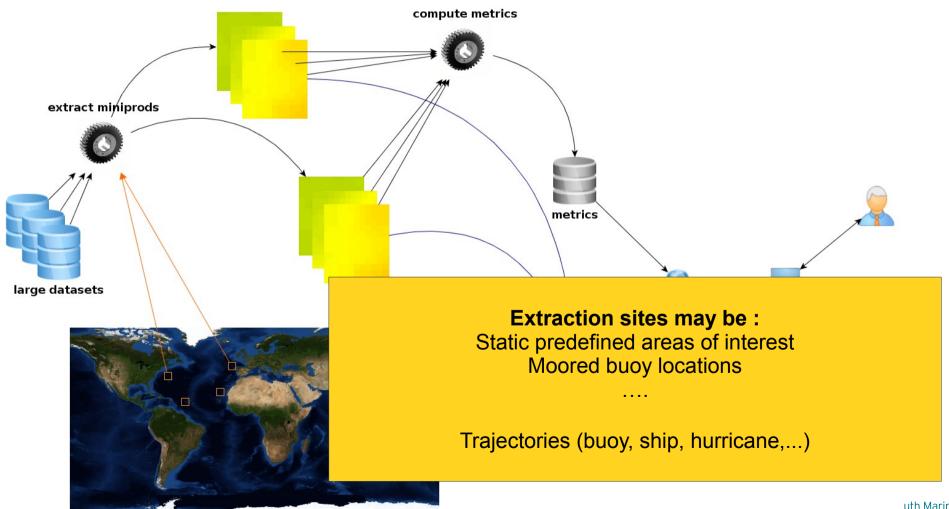
- Felyx is a re-design of former HR-DDS system because :
 - It has been traditionnally re-designed years after years !
 - Need for a working and sustained system former instances are not online anymore
 - Opportunity to better design and revise existing pieces of code while offering a free and open source solution to the community for common tasks
 - Principle shall apply to a larger audience :
 - The concept of HR-DDS system shall apply to (and is not restricted to) any types of quantities : sea surface temperature, ocean colour, ...
 - Need for cal/val activities of upcoming missions (Sentinel)
 - Avoid multiple system implementation for such activities
 - We want to stick to the very small subset extraction principle, and not duplicate existing global frameworks

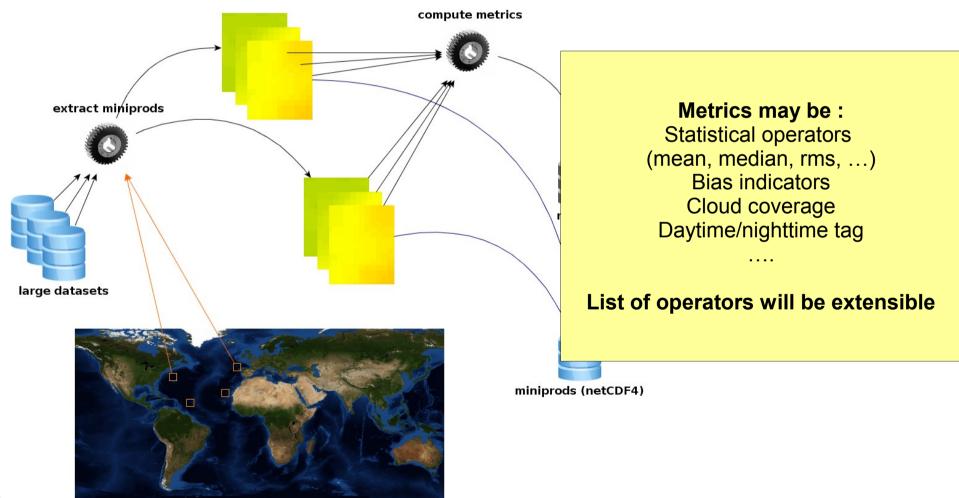
Targeted use cases


To provide a set of tools and ressources for :

- Comparison of various processing algorithms (L1, L2)
- Inter-comparison of various datasets performances
- Detection and analysis of processing issues
- Long term survey of parameters, climate application
- Trend estimation, cross-dependencies of variables over various representative sites
- Collaborative and educational science

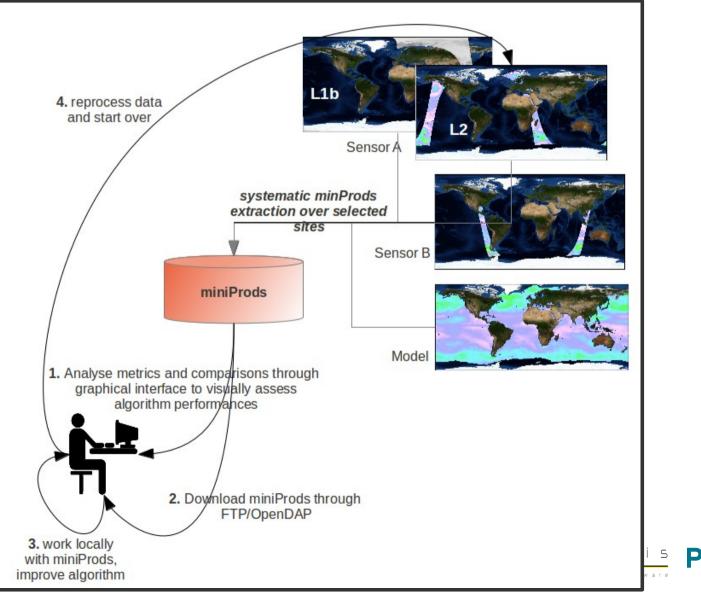



- Subsetting back-end (from larger datasets)
- Analysis and intercomparison front-end


- Subsetting back-end (from larger datasets)
- Analysis and intercomparison front-end

- Subsetting back-end (from larger datasets)
- Analysis and intercomparison front-end

- Subsetting back-end (from larger datasets)
- Analysis and intercomparison front-end

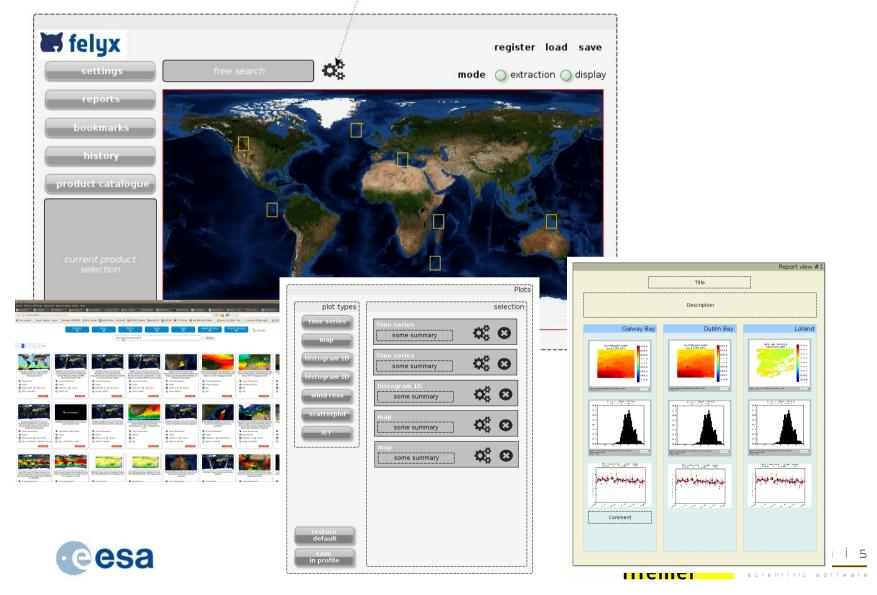


front-end

Plymouth Marine

Laboratory

The front end will allow the data analysis and intercomparison for various kind of applications, all based on a common set of plots


front-end

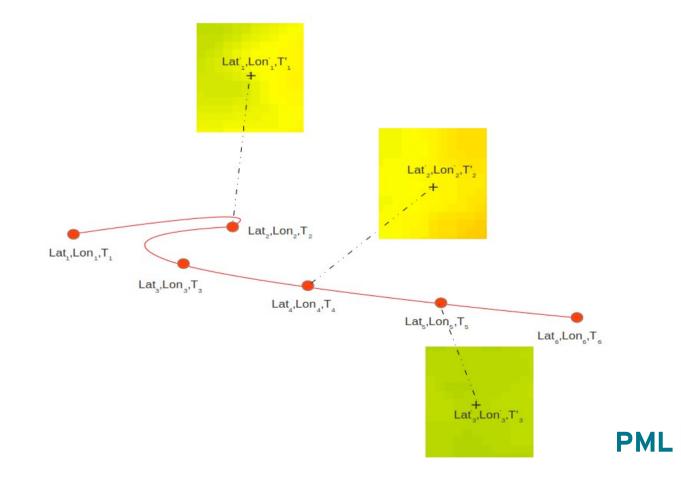
Plymouth Marine

Laboratory

PM

The front end shall allow the data analysis and intercomparison for various kind of applications, all based on a common set of plots

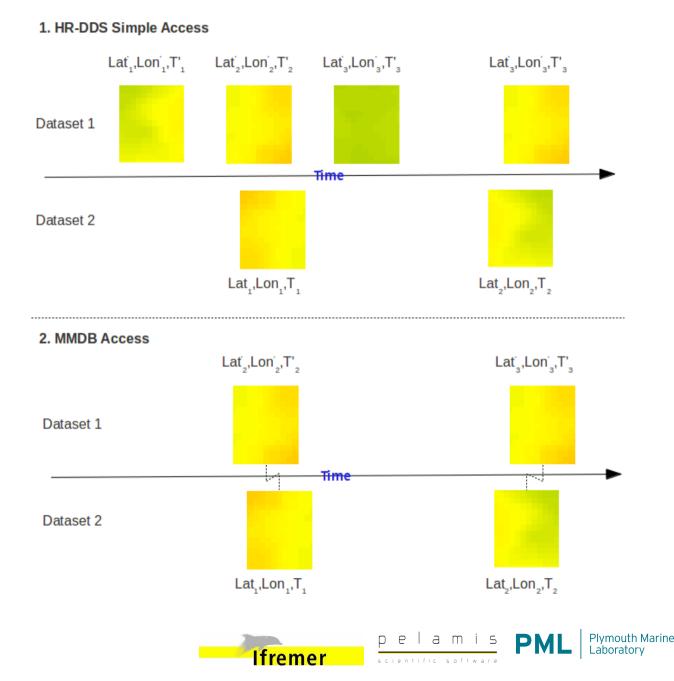
outputs


- Raw data (extracted miniprods and metrics) accessible through :
 - FTP / OpenDAP
 - Query through web interface (tar file or values) for more advanced selection criteria
 - Netcdf format for miniprods
 - Csv, netcdf, json for metrics
- Reporting
 - Any relevant set of plots displayed during a work session can be saved, emailed or exported in a single report
 - Report content can be automated for periodic generation over the latest data

FOR THE SECONDERS OF THE SECOND SECO

- Shall manage trajectories
 - Extraction along the path of buoys, cruise or hurricane
- Extract miniprods centered on trajectory locations closest in time, within a time limit => match-up database processing

Plymouth Marine Laboratory


felyx How different from HR-DDS?

Multiple datasets will be extracted at the same location (static sites) or along the same trajectory

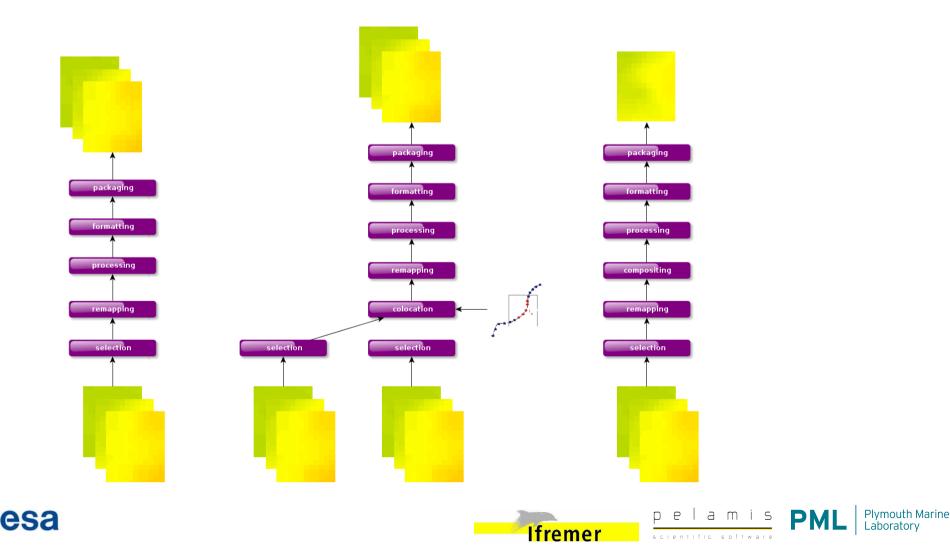
It shall be possible from this base of miniprods to apply additional filtering allowing for a multi-sensor matchup capability, selected miniprods close enough from each other.

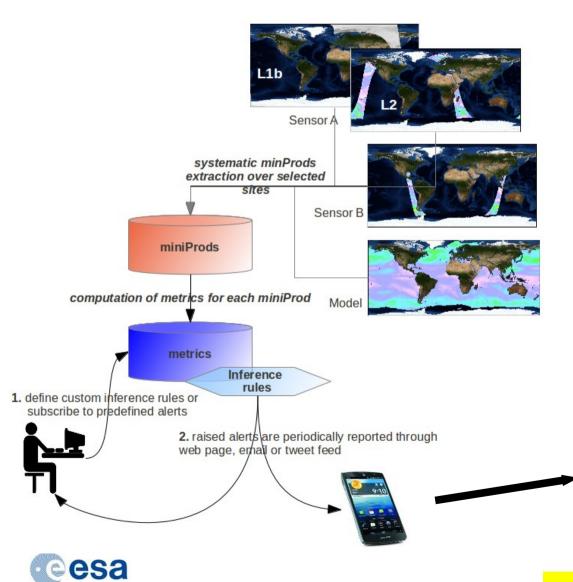
Colocation rules to consider work done by CDR-TAG, SST CCI,

MMDB behavior shall be a special kind of query

FELX GHRSST (M)MDB application

Felyx is designed to be able to generate match-ups :


- Satellite to in situ (MDB)
 - In situ data provided as trajectories (x,y,t) or fix locations
 - Extract subsets and metrics at each location
 - Flexible time colocation criteria
 - Ability to batch process complete data collection, distributed on several nodes
- Satellite to satellite (MMDB)
 - Based on extraction at the same trajectory locations
 - Pairing of multi-sensor data using one sensor as reference. Several methods or flexible criteria can be proposed to user.
 - Rejection of duplicated records too
 - Additional processing (remapping, alignment of colocated subsets,...) can be done client side or using/extending felyx workflow mechanism
- Methodology to generate complete MMDB datasets to be proposed and circulated to interested community (contact me)


workflow

Felyx comes with a workflow mechanism, fully extensible (managed through plugins)

, felyx **How different from HR-DDS ?**

Alert generation

Automatic detection of anomalies based on simple indicator combination (user defined)

Broadcasting to the user

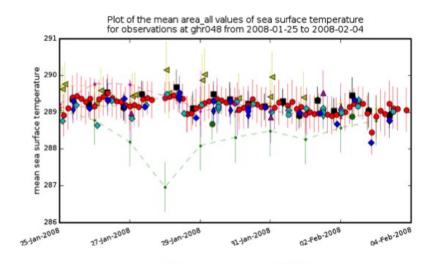
••• EE 3G	14:52				
	y C				
g	Guardian Environment 26d Open thread Wet Christmas: have you been affected by the floods? gu.com/p/3cm58/tf				
Ce	ESA HR-DDS Alert: high chl-a at site #00129				
	ESA HR-DDS @JoeBlogs Alert: Hs >3m, period > 9s at site #00131				
Example of how HR-DDS alert tweets could appear					

on a phone twitter application.

pelamis

Example of how an HR-DDS email alert might look.

> **Plymouth Marine** Laboratory



FIGUX How different from HR-DDS ?

Site

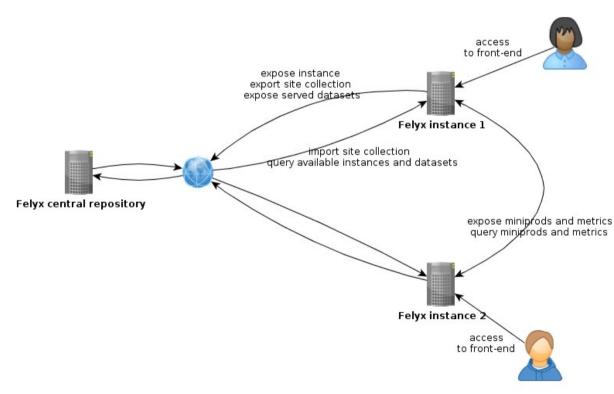
Delet

• Collaborative science

Share interesting cases (plots) => email, social tool

Bookmark typical cases (educational / academic / research interest) => longer term registration and log book

Title	Description	code	Delete
Time series example of gross METOP errors	There are extremely large deviations in SST over the course of 12 hours, up to 10 K $$	ghr020	Delete this MyDDSette
Example very cold METOP.	AVERA TO agree with the warmer WETOP	ghr020	Delete this MyDDSette
Very cold METOP	Look at the last 4 histograms. They show the distribution of SST from the warmer METOP.	ghr020	Delete this MyDDSette
High Coverage Morning 6AM	Really good example	ghr020	Delete this MyDDSette
Atlantic day night issue	Same as pacific, but opposite times	ghr063	Delete this MyDDSette
Atlantic example evening cooling	This one is made spurious by gridding issues, but still provides some insight.		Delete this MyDDSette
Example north of Russia	Cold evening METOP observations, not as pronounced by this example has NAR, NAVO and AATSR obs.	ghr066	Delete this MyDDSette
Example o everything working just right		ghr121	Delete this MyDDSette
This one is just plain wierd!	Might already be marked, not sure.	ghr020	Delete this MyDDSette
AATSR cold compared to METOP	AATSR one degree colder compared to METOP in Antarctic, and swath times only 10 minutes apart.	nmi070	Delete this MyDDSette



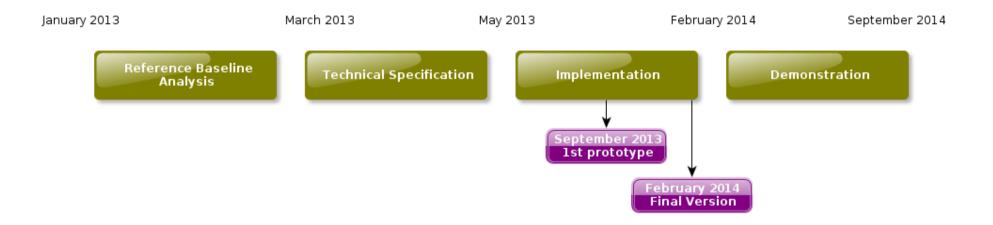
felyx How different from HR-DDS?

• Network of *felyx* instances

Mixing datasets hosted and processed at various places

Intercomparisons of various paramaters (e.g. SST with Ocean Colour)

Felyx will be open-source


- Objectives :
 - It shall be easy for users to build their own applications querying from existing
 Felyx instances through **RESTful web services** => documented query API
 - It shall be easy for users to deploy their own instance => configure it on their local datasets
 - It shall be possible and easy to tailor the system to each user need : parameter, datasets, metrics, front-end,
- Therefore : Felyx shall be free and open source, fully documented, for uptake by the user community
- Felyx will be available with (likely) GPL v3 licensing
 - Users can modify source code
 - Users can make commercial usage of the system
 - Providing source code modifications is not mandatory (but encouraged)
- Felyx will be written in **python** and javascript, using third party components compatible with above licensing

Roadmap

Two instances of Felyx will be operated from February 2014 for a 6-month demonstration :

- => IFREMER : Sea surface temperature and Ocean Waves
- => **PML** : Ocean colour

Requirements baseline, technical specification, interfaces and initial are datasets available on felyx web site.

Sea surface temperature demo

Dataset	Provider	Temporal coverage	Level
L2P MODIS on AQUA	PODAAC	2006-Present	L2P
L2P METOP	O&SI SAF	2007-Present	L2P
L2P METOP	Navoceano	ТВС	L2P
L2P AATSR	ESA	2002-2010	L2P
L2P AMSRE	REMSS	2002-2010	L2P
L2P AMSRE	JAXA	2002-2010	L2P
L2P TMI	REMSS	1998-Present	L2P
L2P AVHRR LAC NOAA-17,18,19	Navoceano	2006-Present	L2P
L2P AVHRR GAC NOAA-17,18,19	Navoceano	2006-Present	L2P
L3P SEVIRI	O&SI SAF	2004-Present	L3
L3P GOES13	O&SI SAF	2001-Present	L3
L3P METOP GLOB	O&SI SAF	2007-Present	L3
L3P NAR19, NAR18, NAR17, NAR16, METOP	O&SI SAF	2005-Present	L3
L3P GOES-11	OSDPD	2006-Present	L3
L3P GOES-12	OSDPD	2006-Present	L3
L3P MTSAT-1	OSDPD	2009-2010	L3
L3P MTSAT-2	OSDPD	2011-Present	L3
AVHRR Pathfinder v5.2	NODC	1981-2010	L3
L4 OSTIA	UKMet	2007-Present	L4
L4 ODYSSEA Global and Regional	Ifremer/ Medspiration	2006-Present	L4
L4 MyOcean Arctic,Baltic,North-Western Shelves, Mediterranean Sea	MyOcean	2009-Present	L4
Reynolds NCDC 1°	NCDC	ТВС	L4
Reynolds AVHRR 0.25°	NCDC	ТВС	L4
Reynolds AVHRR/AMSRE 0.25°	NCDC	ТВС	L4
Envisat AATSR L1	ESA	2002-2011	L1
ERS-1/ERS2 ATSR L1	ESA	1991-2010	L1
ESA CCI Reprocessed archive (Envisat, ERS-1,ERS-2)	ESA CCI Project	1991-2011	L1

Plymouth Marine

Contact

- http://www.felyx.org
- Contact me : jfpiolle@ifremer.fr

- Following the progress :
 - Technical documentation and blog area, open to review, criticisms and comments
 - Providing recommendations, e.g. colocation and MMDB rules
 - Can be involved in early testing and use cases
 - Registration to email list to keep informed

