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Abstract

This paper presents new formulae for the harmonic numbers of order k, Hy(n), and
for the partial sums of two Fourier series associated with them, denoted here by C}*(n)
and S}'(n). I believe this new formula for Hy(n) is an improvement over the digamma
function, v, because it’s simpler and it stems from Faulhaber’s formula, which provides
a closed-form for the sum of powers of the first n positive integers. We demonstrate how
to create an exact power series for the harmonic numbers, a new integral representation
for ((2k + 1) and a new generating function for {(2k + 1), among many other original
results. The approaches and formulae discussed here are entirely different from solutions
available in the literature.
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1 Introduction

Although formulae for the harmonic numbers have been known for some time, they’re not
very simple or useful. For example, a formula due to Euler expresses H(n) as fol(l +r+---+
2"~ 1) dx for integer n, but it’s frequently dismissed by scholars, who prefer the approximation
H(n) ~ log(n) + 7.

In this paper we figure how to obtain a more natural and elegant formula for the generalized

harmonic numbers:
n

Hin)=Y" =
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This new formula has the advantage of being easier to work with. For example, it can be
used to obtain the sum of H(n)/n? over the positive integers relatively easy.

We also show how to obtain the partial sums of two Fourier series, denoted here by Sy*(n)
and C}"(n), which cover some notable particular cases, such as the alternating harmonic num-



bers, CZ(n), and the odd alternating harmonic numbers, Si(n) (S3(n) converges to Catalan’s
constant). These two functions are given below (for all integer £ > 1 and complex m):

n
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C’,T(n)zZ—cos; and S)'(n) = Z,—sinﬂ

k
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We create general formulae for C}*(n) and Si*(n) and find out their limits as n approaches
infinity as a function of Riemann’s zeta function. (After looking up previous results in the
literature, I found that the limits of C3}(n) and S3;_,(n) are not new, they are a function of
the so-called Bernoulli polynomials’, though the limits of C3},,(n) and S%}(n) are possibly
new.)

So, to begin, let’s recall Faulhaber’s formula for the sum of the i-th powers of the first n

positive integers:
jZ[B nz+1 7
you -y
= +1=7)l!

where B; are the Bernoulli numbers?.

Since odd Bernoulli numbers are always 0, except for By, we can simplify the above formula
for even and odd powers as follows:

n ) i 22 |32 n2it1-2j
k= — 1
; + Z (20 + 1 — 2j)! (1)
n , 2i4+1 i 2i I\ B, n2i+2-2i
Zkzm _n (2i + 1)!By;n 2)
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2 Indicator Function Iy,

One key component of the method used to solve the generalized harmonic numbers is the
indicator function 1j,, defined as 1 if £ divides n, and 0 otherwise. This function and its
analog (that will appear in the next section) play a key role in the solution that is presented
here:

1o~ 2mnj
Ilk‘n:EZcos k

A closed-form for 1), can be obtained by means of the so-called Lagrange’s trigonometric
identities:

1 sin (27n + T2 1 1 2mn — 1
( W) = — sin2mncot L 4 SXEN T2 (3)
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We can also create a power series for 1, by expanding the cosine with Taylor series:

1 21nj 1SN (—1)F /2P S~
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Now, by replacing the sum of j* over j with Faulhaber’s formula, (1), we get:
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From (3) and (4), after re-scaling n to n/2, we conclude that:

) X . i B2'k,—2j 1 ™
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2.1 The Analog of Ly

Now, just as we created a power series for 1,, we have to create one for its analog, which

is the sum: i
1 27mj
. Z

Again, we can find a closed-form for the above sum using Lagrange’s trigonometric identi-
ties:

=

1 2mny 1 cos(2mn + T2 1 in 2 1
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2k sin % 2k k 2k k k

As previously, we can obtain a power series for the above by expanding the sine with Taylor
series and making use of (2):

i

k . 0o ;
1 27mj sin 27n - 9 Bok=2
2 —1)!(27n)% ! ] 7
kg o T2 (-Dem) ;0(2@+2—2j)!(2j)! ™)

=0

From (6) and (7), after re-scaling n to n/2, it follows that:
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3 Generalized Harmonic Numbers

3.1 Formula Rationale

The rationale to build a formula for Hy(n) is to use the Taylor series expansion of sin 7k,
and exploit the fact that it’s 0 for all integer k. We refer to the below as initial equation (note
the k in the sum is not the same k used as subscript on Hy(n)):

X (—1)i(rk)2iH
sintk =0= 7k = g ((Q?j—wl))'
1 !

i=1

(9)

If we divide both sides of (9) by mk? we end up with a power series for 1/k about 0 that
only holds for integer k (after all 1/k is not analytic at 0).

Besides, on the right-hand side of the resulting equation, the exponents of k are positive
integers, allowing us to apply Faulhaber’s formula mentioned in the introduction. By doing so
we end up with a convoluted power series that fortunately can be transformed into an integral
by means of the closed-form we derived for 1), (or its analog) using Lagrange’s identities.
That is a high level summary of the reasoning.

To not make this paper long, we only give two fully detailed demonstrations based on the
initial equation sin 7k = 0, and jump straight to the final formulae in a few other cases, before
we state a general formula. We also briefly show how the outcomes change with the choice of
different initial equations.

3.2 Harmonic Number
We start by dividing both sides of (9) by wk?:
z 21k2z 1 o (_1)iﬂ_2i+2k2i+1

Z 22+1 :; (2i 4 3)! (10)
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Below we take the sum of (10) over k and use equation (2), thus extending the domain of
Hi(n) (H(n) for short) to the real numbers, in an analytic continuation:
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The 1st sum is straightforward:

© z 2z+2 21+1 > 21+1 1
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The 2nd sum is an exact power series for H(n) — 1/(2n) and can be rewritten as:

Z _ -1 n .1 (_1)i7r2i+2n2i+22 . sz”_%j . (11)
—~\ 2i+3 242 j:0(2l—|—2—2j)!(2])!

The above sums are tricky, but they can be obtained from (8), one of the formulae derived
previously. In order to do that, let’s replace (n, k) by (x,n) and define a function f(x,n) such
that:

o] 7

Flan) = 3 (=1 (o)t Z : Byn ™ 1 7™ <Sin @)2 (12)

2i4+2-2)1(25)! n  2n

To build each piece of (11)) we start from the above f(x,n).

For the 1st sum, we multiply f(z,n) by —7-x/n and integrate with respect to z as below:

i
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For the 2nd sum, we multiply f(z,n) by 7 and integrate with respect to = as below:
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Now, by summing up the two resulting integrals, we get the below equivalence (which holds
for all real n, not just integers):

i itk ZZ: (QZ i 1)!B2.jn72.j = /n —w(n —2) cot — (sin Hy dx
= 21—}—3 = (20 +2 — 27)!(29)! 0 2 2

where we’ve used the transformation u = 1 — x/n.



Now, by adding up the simple part (disregarding sin7n and changing v for 1 — u), we
finally arrive at a formula for H(n):

S p =t [ 00— G 13)
]{] 2n 2 ; u cosTnu) co 5 Uu

This formula has a certain resemblance to Faulhaber’s formula, especially the term 1/(2n)
outside of the integral. If we compare this formula with the below, due to Euler,” based on
the digamma function, it seems to me that the former is more natural and tractable than the
latter. The two functions approach one another very quickly as n gets large.

1—
Z / " dx =+ ¢¥(n+ 1), where 7 is the Euler-Mascheroni constant.

3.3 Harmonic Number of Order 2
We divide both sides of (10) by k:

z 21+2 sz

; 2z+3

We sum the above over k, using equation (1) this time, noting that because equation (1)
doesn’t work exactly for i = 0, we need to make a little correction by adding up —1/2:
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The 1st sum, again, is straightforward:
17T2 1 o (_1)i7r2i+2n2i 22+1 1 (7.‘.”)3 .
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The 2nd sum can be rewritten as:

o0
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The above sums are tricky, but they can be derived from (5), another one of the formulae
derived previously. In order to do that, let’s replace (n,k) by (z,n) and define a function
g(x,n) such that:

o) 7

g(x,n) = Z(—l) (WZE)QZZ( ‘ Ban_.J — = iCot@smmv (14)
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To build each piece of (14) we start from g(x,n).

For the 1st sum, we multiply both sides of g(x, n) by 72/2-2%/n? and integrate with respect
to x as below:

sa Sy ([Maar) S5 P )
202 £ ; S RiF1-2)N) 207 s ’
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For the 2nd sum, we multiply both sides of g(z,n) by —7%-x/n and integrate with respect
to x as below:

i

1 — ey no Boin~2 _2 g
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For the 3rd sum, we multiply both sides of g(z,n) by 7%/2 and integrate with respect to x
as below:

1 & o no_ : Boon-2 L2
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Let’s summarize the convoluted part by summing up the three resulting integrals:
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where we've made a change of variables, u = 1 — x/n.

Now, by summing up the two parts, we get a formula for Hy(n):

Zk2:2n2_1_ —/ u sm7m(1—u)tan—du



where the identity cot (1 — u)/2 = tan mu/2 was used.
In section (3.7) we find out the general polynomial, poy(u), that goes under the integral
sign, and it’s convenient to move the constant —m2/12 under the integral sign (this also makes

the Hy(n) formula look more similar to H(n)).

First, we note that for all positive integer n:

1
/ sinmn(l — u) tan %u du = 1, which stems from the below equation:
0

n

11!
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From the above we conclude that Hy(n) = 0 for all positive integer n (this is not a usual
definition, but it will make sense when we reach section (3.7). Therefore our modified formula

is:
1 1 1 2
Zk2 :2_ 2/0 (—E—l—ljl)sinwn(l—u)tan%udu (15)

It can be proved that for all integer £ > 0:

1 1 1 2
lim [ w**sinan(l —u) tan% du=1= lim Hy(n) =n° (—— + > LI ¢(2)
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The above limits are justified by Theorem 1, section (6.1.1), and Theorem 3, section (8.1).
The latter assumes that the closed-form of ((2k) is known, as the limits of the above integrals
stem from the limits of Hox(n) and vice-versa.

3.4 Harmonic Number of Order 3
We divide both sides of (10) by k? and simplify:

2 1 z 24201 O (1)ig2itay2i+2 ¢ 2% + 1)1 Bosn 2
H3<n):—H1 ——Z _y B it iBon 2
2 2z+5 — (20 4 5)! (20 + 2 — 25)1(29)!

1= 1= 7=0

which gives us the below recurrence:

w2 1 m™m)® [ ™
Hs3(n) = §Hl( n) + Fy— (7m— ( 3!> —smwn) - E/o u® (1 — cos (1 —u))tan;dm

Performing all the necessary calculations, we get:
3l

Z el 12 (u — u3) (1 —cosmn(l — u))tan7 du (16)



Besides, due to the below identity, whose proof is given in section (8.2.1):
[

U
- (u — u3) tan - du = ((3), the previous equation can be rewritten as:

3

"1 1 ! 3 U
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And since the limit of H3(n) when n tends to infinity is {(3), it means that:
1

lim (u—u?) cosn(1l — u) tan ™ iu=0
n—oo J 2

3.5 Harmonic Number of Order 4
We divide both sides of (10) by k* and simplify:

2 17T 1 7, 242 s (_1)i7T2i+4n2i+1 i (Qi)!ngn_ZJ
52

Hyn) = =0 _ _
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which brings us to the below recurrence:

w2 1 mm)®  (mn)® . vl T
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Now, performing the calculations, we get the formula for Hy(n):
~ 1 1 Tt AT T U

—_ == — — — — ] si 1 —wu)tan —d

25 720+7r /0 51 " 18 sinn(l — u) tan 5 du

Moving the constant under the integral sign, as we did for Hs(n):

"1 1 2 [ 7 W Wt U
— = — ——— 4+ — — — | si 1 —u)tan —d 17
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Since each limit is 1, as mentioned in section (3.3), we conclude that the limit of Hy(n) is:

10



3.6 General Formula

As we've seen, lots of patterns emerge when we create formulae for Hy(n), Ha(n), and so
on. We now assume that these patterns always repeat and see if we can figure out what the
general rule is for each k.

Because in each case the term that goes outside of the integral sign is easy to deduce
(1/(2n2%) or 1/(2n%*1)), we can focus on the polynomials in u that go under the integral sign,
por(u) and pogyq(u), and see if we can find out their generating function, g(x).

Note that since for each recursive equation the coefficients 7% (or w21 cancel out, we
can ignore them for simplification purposes.

3.7 Harmonic Numbers of Order 2k

Let f(u,n) be the below function (not to be confused with the same function from previous

sections):
f(u,n) =sinmn(l — u) tan %u

As we’ve seen in previous sections, calculating the 2k-th harmonic number involves a re-
currence with prior ones:

k—1 k ]7r2k 27 (—1)k7r2k 1
H Ho . _ 2k
) = n%z 2j+1 ;0 2k;+1—2j 401 = 5 0m) /0 uf (u,m) du

That is, the harmonic numbers of even orders obey the below recursive equations:

u? ut ub
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But the product on the left-hand side gives us:
1 9 1 1 1 1 1 p
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11

1
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772 7T4 7T3n3 m™n 71'4 1 ’LL4
Hy(n) = % Hy(n) — Z Ho(n) + 52 (ﬂ'Tl— T Z!5> — 5 Jo G f(u,n)du
w2 i i 1 w3n3 75nb w7n” R
Hg(n) = 5y Hy(n) — 5 Hy(n) + T Ho(n) + 577 <7m e ) + % J, % f(u,n)d
\
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where the coefficient of each x2* is the recurrence that produces the polynomials poj, that we’re
interested in. The generating function for pog(u) is therefore given by:

() T CoS TU 14 1+u2 2 7 +u2 ut 4y 31 +7U2 ut N ub 6y
g sin 6 2 360 24 15120 ' 720 144 ' 720

To obtain the power series of the function g(x), we need to obtain the power series of each
of its components individually: *

S B2z 2_221) 2i (=D,
o ; x, and —COSZ‘U_—; 2] x

Therefore, the 2k-th term of the power series of g(z) is pax(u), which is given by the below
expression:
(—1)kit1q 262

(2k — 27)!

k JB 2 92
p2k Z 2 )

J=0

Now, putting it all together, we get that for all integer k > 1:

1 2k
Hop(n) = o2k +7 par(w) f(u,n) du =
0
1 ( k 2k 1k B2 (2 22]) 2k—2j ) Tu
Hop(n) = S / Z k= 2] sinn(l — u) taanu

Jj=

Note that this formula applies to Hy(n) as well, but remember that per this definition
Hy(n) is such that Hy(n) = 0 for all positive integer n.

We can rewrite Hoy(n) by means of Bernoulli polynomials, which are given by:'

-5 (o

Jj=0

In doing so we get an expression that resembles, but is not exactly, an Euler polynomial:'

i) = g~ gy | (P =27 (5))

3.7.1 Generating Function of Hy(n)

A generating function for Hoy(n) can be obtained by means of the generating function g(x),
that we previously found for pax(u), as follows:

n? T

00 1
: T
Z Hop(n)a? = SE— a7  Zsinrz /0 cos mrusin mn(l — u) tan o du

12



Note the convergence radius of the power series on the left-hand side is the open interval
(—1, 1), but the domain of the function on the right-hand side is R\Z. This generating function
is probably an analytic continuation of the power series to the left.

5x2 17z* 6525 2578
A le, if n =2 th f —_—
s an example, 1if n the above function is 1 + 16 + o + 956

Notice it doesn’t have the independent term, which is a result of Hy(n) = 0 for all positive
integer n.
3.7.2 Limit of the Generating Function of Hy(n)

The limit of the generating function we just found as n goes to infinity is:

n? T

e 1
h(z) = lim Z Hyp(n)z?* = lim - / cosmrusinmn(l — u) tan ™ =

n—oo 2(n? —2?)  2sinmx

> 1 r7wxcosmx
= Uk = = - ———
> (2R =2 :

2sinmx
k=1
Note h(z) also doesn’t have the independent term, due to Hy(n) = 0.

Proof The proof of the above is simple:

1 1 o k 2%k
u -1 U U
lim cos mrusinmn(l — u) tan ™ du = lim g (=1) (wau) sin7n(l — u) tan ™ du =
n—oo Jg 2 n—00 2
)2 . U
li i 1 —wu)tan —du =
Jim E /0 u™sinmn(l — u) tan 5 du = cosm,

as the limits of the above integrals are always 1, per the two different proofs that are provided
in sections (6.1.1), Theorem 1, and (8.1), Theorem 3. [J

3.8 Harmonic Numbers of Order 2k + 1
Let f(u,n) be the below function:

v
f(u,n) = (1 —cosmn(l — u))tan7

Calculating the odd harmonic numbers involves a recurrence with prior ones:

k— 1 k —j p2k—2j (_1)k7.r2k:+1 1
A = 2k+1 d
2k+1 g 2 () ) /0 w f ) du

Hapy1(n n2k+1 Z 2] + 1

“M

13



The reasoning employed to figure out the generating function of pojy1(u) is entirely anal-

ogous to what we’ve done previously, and g(z) is given by:

() T sin xu (v u? 3 T u? N u® 54 3lu Tu? N u® u’
T) = = ur ——— )z — — —+— |z - —
g sin T 6 6 360 36 120 15120 2160 = 720 5040
The (2k + 1)-th term of the power series of g(x) is therefore:
k .
22]) 2k+1-2j
)b
Por+1(u Jz: 2k+1—2j)
Now, putting it all together, we get that for all integer £ > 0:
1 2K+
H2k+1 (n) = YT + 9 /0 p2k+1(U)f(U, n) du =
1 1 )hp2kl BQJ 2 ) g2k 12 U
Hopyq(n) = 2n2k+1 / Z 2k 1= 2] (1 —cosmn(l —u)) tan 5 du

Because of Theorem 8, section 8.2.1, we can also rewrite Hagi1(n) as:

1 _Dkg2ktl el B opo (9 925 ¢ 2k 412
H2k+1(n):W+C(2k+1)_H/O j )

2 (25)1(2k + 1 — 2j)!

Finally, with the aforementioned Bernoulli polynomials, we can also rewrite Hogy1(n) as:

1 (_1)k7r2k+1 ok U
H = B —-2°"B = d
2k+1(n) on2k+1 + 2k + 1)! /0 < 2k+1(w) 2k+1 <2>> f(u,n)du

3.8.1 Generating Function of Hy (n)

cosmn(l — u) tan % du

A generating function for Ho11(n) can be obtained from the function g(z) that we found for

pok+1(u) previously, as follows:

00 1
ZH2k+1(n)$2k+1 = 2(n2nf o + QS?nxmc /0 sinzu (1 — cosmn(l — u)) tan %u du

3z 9z% 332° 12927
F le, if n = 2, th f —_—t——
or example, if n the above function becomes > + 3 + 3 + 198 +

3.8.2 Limit of the Generating Function of Hy1(n)

Before we can take the limit of this generating function as n approaches infinity, we need to
exclude term Hi(n)z, since H(n) is unbounded. Hence, using the expression for H(n) from section

(3.2), the limit of the generating function as n increases is:

sin rx

00 1 .
ZH2k+1(n)a:2k+1 == T, (smwxu - u) (1 —cosmn(l —u))tan % du =
0

2(n?—22) 2n 2

14
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] 1 .
_ ok 4 1 2k+1:m/ smrru L T
) ZC( +1)x 2 Jy Usinra u | tan —- du

k=1

Proof To prove that the generating function converges to the above limit, we need to show that the
below integral goes to 0 as n approaches infinity. But,

( 1)k(7rm)2k+1 (u2k+1 _ u)
(2k +1)!

1
u
/ (sinTxu — usinwz) cosTn(l — u) tan — du = / cosmn(l — u) tan % du
0 k=

0

X (_1)k 2k-+1
it follows that lim Z %

1
2k+1 _ _ o
3 2 ok + 1) /0 (u u) cosn(1l — u) tan 5 du =0,

as the limits of the integrals are 0, per Corollary 1 of section (6.2.1). OJ

The above representation of the generating function of ((2k + 1) is different from the one found
in the literature, which employs the digamma function, though they must be equivalent:

=3 ¢k + D2 = oy - g(@m + o)+ (1 — )

3.9 Initial Equation sin 27k = 0

In this section we set the initial equation to sin 27k = 0. To avoid redundancy, we omit the step
by step demonstrations and present only the final formulae.

Using this initial equation, we get slightly different formulae for H(n) and Hy(n):

—~1 1 !

Zkzz—i—ﬂ/ (1 —u) (1 = cos2mnu) cot Tudu
k=1 " 0
n

1 1 2 1

14:2:22—7;—79/ u? sin 27n(1 — u) cot Tu du
k=1 " 0

3.9.1 General Formula

We conclude that not much really changes in the system of recurrence equations, except for the
introduction of a coefficient 2 on w. Therefore, the polynomial solution is the same as before, only
the multiplier of the integral and the integrand change.

3.9.2 Harmonic Numbers of Order 2k

The recurrence equation changes slightly:

k— 1

J(27n)% 1)k=J(27)2k=2 (—1)F(2m)%k 1 ok .
Hoy,(n QanZ 2J+1 Z 214:—}—1—2]) HQj(n)+2(2k:)!/0 u“¥sin 27rn(1 — u) cot mu du

Jj=

For all integer k > 0:

1 _1)k(9r)2k [l kB, (9 — 925 2k—2i
o) = o + LB 15 B ()
2n 2k 2 0 = (2)!1(2k — 25)!

sin 27n(1 — u) cot mu du,

15



3.9.3 Harmonic Numbers of Order 2k + 1

The recurrence equation also changes slightly:

; k— l
Hapia(n n2k+1 Z (2j fqn = 2/:;12ir )22k) ()
- (_21()2152:)12;“ /01 w1 (1 — cos 2mn(1 — u)) cot mu du
For all integer k£ > 0:
Hop1(n) = 2n21k:+1 _ (_1)k(§7r)2k+1 /01 j; B?;]()Q'(;;j)luik;;] (1 —cos2mn(1 — u)) cot mudu
Here the integral sign has changed due to cot 7(1 — u) = — cot 7u.

3.10 Imitial Equation cos27k =1

When we switch to cosine-based harmonic numbers, the degree of the polynomials pg(u) go up
by one. Below are two examples for H(n) and Hy(n):

1
Zk 2”_71-/0 u? (1 — cos 2mn(1 — u)) cot Tu du

n
1 72 272 3

= ——— — in2mn(1 — tmud
k2 2n2 5 5, u” sin 27 (1 — u) cot Tu du

3.10.1 General Formula

Using this initial equation, we add more entropy to the formula. Here we only show a detailed
demonstration for the odd case, and the even case is just stated.

3.10.2 Harmonic Numbers of Order 2k

Hsp(n) is given by the below recurrence equation:

k—1

k . .
27m) (—1)F=7 (27) k=2 (=Dk@m)?* o
H. oo 2 Hayj(n)+-—sy— e 27n(1 — ) cot mud

The polynomial pgj(u) can be obtained using a similar approach to pog+1(u) (see the next section
for a detailed demonstration), which results in the formula below:

sin 2mn(1 — u) cot Tu du

1 k 2k: / B2JB22 2] (2 _ 22]) (2 _ 22i—2j) (2u)2k’+1—2i

H =
2k(n) = 5oart 2)01(2i — 25)!(2k + 1 — 2i)!

zOJO
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3.10.3 Harmonic Numbers of Order 2k + 1
Let f(u,n) be the below function:

f(u,n) = (1 —cos2mn(l — u)) cot mu
Hopy1(n) is given by the below recurrence equation
27rn) (_l)kf] (27r)2k72g (—l)k(27r)2k+1
H -2 Hy; —
2k+1 2k+1 ZO 2] + 2 Z (2]{ + 2 _ 2])' 2]+1(n)

That is, the harmonic numbers of odd orders obey the below recursive equations (notice we're
ignoring cos 2mn — 1):

Hi(n) = zn_ fo u? f(u,n) du
™ 7Tn2
(n)—2(24,) Hl(n)—k%(%—@m) ) , fo utf(u,n) du
Y 7T4 ™ 7rn4 7T5
Hs(n) =2 (47" Ha(n) — E5-Hi(m)) + % (% R B ) — E fy () d
71'2 7T4 71'6 7TTL4 7TTL4 Tl"l’l6 7T7
Ho(n) =2 (3 Ha(n) = G5 Ha(m) + B Ham)) + 3 (3 = O + O - 050 ) + G5 0w
\
Let p(z) be the generating function that we’re interested in. We have
1 (21.) 0 (_1)k22k+1u2k+2 b1
p(x) —p( )sz <COS2$—1+ 5 > :—k_o ok 1 2) :—x(COSQU:n—l):>
_n s (2P 5, (_ P 2P3 D5 e
p1x+< 3 +p) +<45 3 +p>$ +< 315 45 3 +p>x *
4 6 8
_ W 205 W
ulx + 3 T 15 + 31537 +

The generating function for pop41(u) is therefore given by

T \2cos2uzx —1 9 u? ut\ u? ST
g($)2<. ) = —vlrt(—— 4+ = | 22+
sinx 2z

3 3

cos2uxr — 1 cos2zxu — 1 cos2ux — 1
= —X =
cos 2z — 1 + (296) 92 cos2x — 1 2sin? z

To obtain the power series of g(x), we need to obtain the power series of each function individually

(sma:) Z Z BZ]BzZ = (2 — 22]) (2 - 22i_2j)

where we’ve used the transformation: — x

, Y —1 S (—1)i(2u)% .
5 5 1},2@) and M — Z ()2('u) 2i—1
i=0 j=0 )( [ ])' x P ( z).

Therefore, the (2k + 1)—th term of the power series of g(x) is given by
Z Z BQJBQZ 0j (2—2%) (2 2%7%)  (—1)kt1-i(9q)2k+2-2i
Pl i=0 1=0 (2))1(2i = 25)! Qk+2—2i)

which goes into the final formula:

1 1
Hopy1(n) = By oY + 7r2k+1/ pok+1(u) (1 — cos2mn(l — u)) cot mu du
0

17

159 45 189 45 135

f(u,

ud

315

! 2k+2

n)du

) x7+. .



4 Alternating Harmonic Numbers: C?(n)

Setting the initial equation to cos Tk = (—1)¥ drastically changes the picture. It no longer enables
us to calculate Hy(n), but the alternating harmonic numbers instead, CZ(n).

Below are a couple of examples of formulae for the alternating harmonic numbers:

"L (—1)k 1 1
C%(n)zz( k) :Hl(n)—kzn(—l—i—coswn)—;r/o (1—cos7m(1—u))tan%du

n -1 k 1 2 2 1
C3(n) = Z (=1 = Hs(n) + — (—1—1— (W;) +Cos7m> - 7;/0 usinmn(1 —u)tan%du

4.1 General Formula: C?(n)

The recurrence equations for the generalized alternating harmonic numbers are:

(_1)] 1 (_1) k j7.‘.2]€ 27
Cgk(n):Z]T:W coswn—z(i +Z 2k—2 Ha;(n)
Jj=1 J=0 J=0
(_1)k7r2k ! 2k—1 - ™
A 1— el
+2(2k—1)! ; u sinmn(l — u) tan 5 du
) Sy (1) (x = (-1 S
CARITID ol z(* 3 e
J=1 J=0 j=
I Gt D

ko 2k+1 2 U
(1 —cosmn(l — u))tan — du
202k J, 2

5 Odd Alternating Harmonic Numbers: S} (n)

If we set the initial equation to sin wk/2, we are able to obtain formulae for the odd alternating
harmonic numbers, Si(n).

Two examples of formulae for the odd alternating harmonic numbers are below:

- 1
1 ko1 1_
Stm) =Y 7sins = o (= +sin T + 7 /0 Smm<2u> (sec 22+ tan ™)

1 k 1 2 1 1_
S3(n) =" g sin - = ZHi(n)+5 <_?+sin?>_g/o ! (1 _Cosm(zu)) (sec - + tan T) du

18



5.1 General Formula: S}(n)

The recurrence equations for the generalized odd alternating harmonic numbers are:

n . 2j+1 k— 1 2k—1-2j
1o 1 1) () ~i(5)1
Sin)=Y ——sin—2 =_—— o Z Z o,
2+(1) R ok (2 +1)! par Zk Ty Hun()
(—1)k ()% 21 (1l — u) ™ U
2 1 —cos -~ ( G 7)
+ 22k — 1)! /0 U Cos 5 sec 5 + tan 2 du
1 ™m (—1)7(Zr)2+ R (—1)k- i (T)2k+1=2
g4 : _ AR I Ho.
2k41(n Z 2k+1 = gp2kt | ;:0: 2j + 1)! +§ : 2k+ 1—2))! 25(n)
1)k (m)2k+1
+ (;(;12‘3;/0 u?* sin (2 u) (sec - + tan o> > du

6 General Formula: C}'(n) and S}*(n)

There’s a striking similarity between the formulae derived from initial equation cosmk = 1 and
the ones derived with sin7k/2. Based on this similarity, we are able to generalize the pattern.

6.1 C3(n) and S5} (n)

We’ve grouped these two under the same section because they share an integral and they both
have Hyj(n) in their recursions.

For all complex m, C3}(n) and S5}, (n) are given by:

K /(21m)25 k 1)k=i (2m)2k-2
E : 1 2mn (—1)7 (=) ]( ) j
C2k Qk m - m Cosim —Jgo(]' +jz 2]{,‘—2 ) HQJ(TL)
(‘Uk(ﬁ)% ! ok—1 . 27TNu ™ )
T \m) _ 2mnu N
+ 2(2k — 1)! /0 (I —wu) sin —— cot P du, V integer k > 1
k 21 \2j+1 k )3 (22 )2k +1-2]
§ . 1 21 (1) ()% —3(2m) j
S — | si — m Ho
o1 (n p 2k+1 = o2k (S jgo @ +1) +]Z % 1-2)) 25(n)
(_1)k(2ﬁﬂ)2k+1 ok . 2TNu U )
—me— [ (1- T S
T 2(2k)! /0 (1 —u)™sin = cot = du, V integer k > 0

Notice that in order for these equations to hold, we need to have Hy(n) = 0 for all positive integer
n, as mentioned before.
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6.1.1 Limits of CJ}(n) and S3;_,(n)

At infinity, C3;(n) and S3}_ ;(n) become Fourier series, denoted here by C3; and S5}, whose
closed-forms are given by Bernoulli polynomials, per Abramowitz and Stegun:'

—(—1)k(2m)2 (—1)k(2m)2k+1

oo o0

1 . Z I .
E ]ﬁ COS 27['.'1:] = WBQk(ZE) and W S 271'1:] = WB%+1($)
=1 =1

The above result implies the following theorem, which holds for all integer k > 0 and real m > 1:

Theorem 1 lim (1 —u)*sin cot — du =
n—oo [q m m

1 2Tnu U {1, ifk=0and m=1

%, otherwise

Therefore, with the exception of S} = 0, the limits of C3}(n) and S5}, (n), for real m > 1, are
given by:

o 1 Qi 1)k (2 2k—2j 1)k 9 2k
Chi =, 1j%cosg -y )(%—(%’))! )+ 1Ty <r:> Vk21)
]:

k—j (2%)2]&4-1—2]'

k 2k-+1
(—1) . —1)fm [2m\ T
Sok41 = Z 2k+1 m ;:0: 2k +1—2j)! ¢(24) + (4(22)! <m> (Vk>0)

These are just rewrites of the expressions for C3; and Sy, | from reference [1], with z = 1/m.

6.2 Cyi,,(n) and Szi(n)

For all complex m, O3} | (n) and S (n) are given by:

(_1)j 27m 2j k k ](27r)2k 2j

k
1 2mn
Cofya1(n Z 2k+1 . opkel | G980 T Z (7 +Z 2kz — o)) Hyji1(n)
7=0

_q)k(2m\2k+1 g1 9
— ()(m)/ (1 —u)?* (1 — cos ﬂnu) cot =2 du, V integer k > 0
: 0 m m

sin — — T » 2 = . %) Haj11(n)

"1 2mj 1 ( orn  F2L (—1)7 (Zmn)2j+1 ol (Cqyki(2m)2k-1-2)
Y

j
_1)k(2m\2k 1 9
+ ()(m)/ (1—u)*t <1 — cos 7mu> cot 2 du, ¥V integer k > 1
: 0 m

6.2.1 Limits of C3;,,(n) and S5} (n)

Before taking the limit of C3}_ (n) and S3j(n) as n tends to infinity, we need to remove H(n)
from the second sum (since it explodes to infinity), and recombine it with the integral.
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In order to do that, we need to use one of the three formulae we created for H(n) in sections
(3.2), (3.9) and (3.10). Since the last two are almost identical, let’s consider only the first two:

1 T

1 1
H(n)—:/ (l—u)(l—coswnu)cotmdu:ﬂ/ (1 —u) (1 — cos2mnu) cot mu du
2n 2 0 2 0

By using either one of these formulae, we can carve out two integrals, one that doesn’t depend
on n and one that does, as in the below example:

k i 27rn k k 27\ 2k—2j k(2m\2k+1
- 1 2mn (—1)i (2 ()22 (—1)* (%)
Copr1(n) = op2kel | COS =~ Z 7~ +Z Qk» 2j)! H2j“(n)_w

1 1

2

(_m +/ (1 —u)?* cot ™ m(1 — u) cot mu du — / (1 —u)? cos T o T8 m(1 — u) cos 2mnu cot Tu du>
2mn 0 m 0 m m

Therefore, to know the limit of C3} ;(n), we need to know the limit of the integral to the right
as n grows. This limit is given in the following theorem, which holds for all integer k£ > 0 and real
m > 1 (except k =0 and m = 1), and for which we don’t provide a proof:

1

2 1

Theorem 2 lim [ (1 —u)"cos T ot % m(1 — u) cos 2wnu cot Tu du = m log(m)
n—oo 0 m m T

This limit apparently doesn’t exist in the literature. Theorem 2 allows us to deduce the following
corollary:

1
Corollary 1 lim (uk - u) cosmn(l — u) tan % du =0V integer k > 0
0

n—oo

Proof 1 This result stems from Theorem 2 and the fact we can write C3;_,(n) or Sy} (n) using
different formulae for H(n), which leads to an equation:

m m m

1 1
2
/ (1—u)* cos Y cotﬂ—%(l w) coswnucot%du / (l—u)kcotﬂ—%(l—u) cot%du
0 0

1 1

2

= / (1—u)* cos Y ot ﬂ—m(l u) cos 2mnu cot Tu du— / (1—u)* cot H—m(l—u) cot mu du =
0 m m 0 m

1 1
2 2
/ (1—u)* cos T ot ﬂ—@(1 u) cos TN cot ™y = / (1—u)* cos Y ot H—m(l —u) cos 2mnu cot mu du
0 m m 2 2 0 m m

1
+/ m(1 —u) cot mu — %(1 —u)cot%du
0

Now, by making m = 2 and using Theorem 2, it follows from the above relation that:

1
2log(2
lim (uk - u) cosmn(l — u) tan L 2log(2)
n—oo Jq 2 s

L U
+/ 2(1—u)cotwu—(l—u)cotTdu:O. O
0
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Now that we have Theorem 2, we can figure out the limits of C3;_ | (n) and S5} (n) which, except
for C{ = oo, are given by:

00 . k k—i (2m\2k—2j k 2\ 2k
m 1 2} (—D)*7 (35) . (=1)*log(m) (37)
=2 JERHT O T T P S A (2k)!
j=1 j=1
_1)k(2m)2k+1 1
()(m)/ (1—u)%cotﬂ—m(l—u)cotwudu
o0 , k—1 k—j (2m\2k—1-2] K 97y 2k—1
1 .27 (=D)"7 (%) , (=1)*log(m) (%)
Sg}g:zﬁsm—:fz e C(25+1) — e
= m = (2k —1—2j)! (2k — 1)!
(DG 2k—1 ¢ U
+ 32k — 1), /0 (1 —wu) cotﬁ—m(l—u)co‘cwudu

Note that H(n) diverges because fol cot mu — (1 — u) cot mu du diverges.

7 Example: Infinite Sum of H(n)/n?

In this section, we derive expressions for sums of the type Hy(n)/n", over the positive integers
n, with k£ odd and r even, and vice-versa. We will not try to get the result for k and r both even or
odd, because these cases lead to integrals that are very hard to evaluate.

Hence, let’s start with an example. We want to obtain the sum of H(n)/n? over the positive
integers using the formula for H(n) from section (3.9):

1 1
H(n):2—|—7r/ u (1l —cos2mn(l —u))cotw(1l —u)du =
n 0
~H(n) 1 (1 1
2.2\ 9, 1 —u)(1—cos2 trudy ) =
; n2 ;nQ <2n+7r/0( u) (1 — cos 2mnu) cot mu u)

1 3 11 2 | 2 tmud
2C()+7r/0( —u) C()—nz::ancos mnu | cot mu du

The Fourier series can be simplified using the results from section (6.1.1), giving us:

i Hngn) = %C(S) + 73 /01 u(1 — u)? cot mu du = 2¢(3)

7.1 General Formula: Sum of Hy;(n)/n? 1

Here we use the formula for Hog(n) from section (3.9.2), with a slight transformation only valid

for integer n:

oe] o0 1 k 9 ke
Hoy(n) 1 1 (=1)k(2m)* By (2 —2%) u=2
nz:l n2r+l nZ:l n2r+1 | 92k 9 ) Z 2))1(2k — 2j)! sin 2mnu cot Tu du
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>\ Hy(n) _C@2k+2r+1) )2k BQJ (2- 223) k=21 (X sin 2mnu J
Z n2r+l 9 1(2k — 2j)! Z el cot mu du
n=1 n=1

Now, the closed-form of the Fourier series above, after a change of variables, u = 1/m, is given
by:

> sin 27nu _ r (_1)r—ig(21')(2ﬂ-u)27’+1—2i (_1)r(2ﬂ_)2r+1u2r B (_1)T(27T)2T+1
nz:l 2l ; (2r +1 —2i)! + 4(2r)! == 22r + 1)! Boyy1(u)

Therefore, we can express the sum as function of Bernoulli polynomials, and it’s finite for all
integer r > 1:

~ 5 OO+ 1) (1) (25 2k 2+
> nﬁ’iﬁ? - ¢ o ! 222k)!((27;)+ 1) /0 (Bar(e) = 2% B (3)) Bara () cot mudu

If K = 0 the sum is always zero (since Hyp(n) = 0), which enables us to deduce another integral
representation for ¢(2r + 1), which happens to coincide with the one in Abramowitz and Stegun '
(_1)r(271.)2r+1

2(2r + 1)!

n=1

1
C2r+1)=- / By 41 (u) cot mu du
0

7.2 General Formula: Sum of Hy,1(n)/n*

Here we use the formula for Hoy11(n) from section (3.9.3), though we could’ve used the two others
as well (notice we made a transformation only valid for integer n):

H + k 27 2k+1-2j5
2k+1(n ( 1)k(27r)2k 1 /1 By (2 -2 3) U J
E 1-— 21 tTud
Z n2r Z n2r 2n2k+1 9 0 = (2]-)!(2]{ 1 2]-)! ( COS nu) COt Tu au

n=1 n=1

B (25)!(2k + 1 — 25)! n2r

ngk_H(n) L C@R4142r)  (—1)k(2m)2 /1 R Boj (2 — 2%) w2k 1% (21— cos 2mnu
n2r 2 2 0 ‘

) cot mu du

n=1

Now, the closed-form of the Fourier series featured in the above equation is given in section (6.1.1),
and it can also be expressed as Bernoulli polynomials. That is, after a change of variables, u = 1/m,
we get:

i cos2mnu i (—1)"=%¢(2i) (2mu)?r—2 n (=1 @m)?u®t (=17 (2m)*

_ Ba,
Lo £ (2r — 2i)! A(2r — 1)! 2@ Per()

In a way, the closed-form from section (6.1.1) is more general than the Bernoulli polynomial. For
instance, when the denominator here is n?" ! instead of n?", we can use its analogous form from
section (6.2.1), which is no longer a Bernoulli polynomial.

That said, for integer k£ > 0 and r > 1, we can write:

i Hopp1(n) _ ¢(2k +1+2r)
— n27" 2

_ W /01 (sz+1(U) — 22" Bop 11 (g)) (C(2r) + WBW(U)) cot Tu du
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Or, although we lose the validity of the formula for k = 0, we can rewrite the sum as:

i Hopi1(n)  C(2k+1+2r)

n=1

(71)k+7"(2ﬂ.)2k+1+2r
2(2k + 1)1(2r)!

/01 (ng—i—l( )_2 B2k+1 (2>>Bzr( ) cot 7 du

8 Limits of the Integrals

8.1 Limits of the Integrals on the Hy;(n) Recursions

In this section we present proofs for the limits of the integrals that appear on the recursions
of Hok(n) from sections (3.7), (3.9.2) and (3.10.2). This approach requires prior knowledge of the
closed-forms of ((2k), as mentioned in sections (3.3) and (3.5).

Looking back at the set of recurrence equations from the aforementioned sections, it’s evident
that we can express each integral as a function of Hy;(n):

1 k k—j - 2k—2j
2k
/0 smﬂ'n(l—u)tan 5 du—— E o oy Hai(n) QanZ 2]+1

2k
T = (2k+1—2j)!
1 1)k( k 1)k- 2k—2;
2(—1 J (27) J 27m
2k —
/0 u“" sin 2mn (1 — w) cot Tu du = 27r % ;—1 2k—|—1—2]) Haj( n% 2: 234_
1 k k k—j 2k—2j
) 2(—=1)%(2k + 1)! (—=1)*7(2m) J I (27mn)?
2k+1 _ _
/0 u sin 27n(1 — u) cot Tu du = (2m)2F ]El 2k +2—=2)) Ha;( ngk Z 2] +2)!

We can deduce the limits of these integrals based on the closed-forms of ((2k). Conversely,
knowing these limits allows us to deduce the closed-forms of ((2k).

1
Theorem 3 lim u?* sinn(1 — u) tan % du =1V integer k > 0

n—o0 0

Proof 3 This integral appears with initial equation sin7k = 0 and per Theorem 1, section (6.1.1),
its limit is m/2 = 1, which we shall confirm now. By taking the limit of the integral as n approaches
infinity, we have:

! —2(=1)k(2k)! k(L q)k—ig2k—2) _1)kg2k
lim u% Sinﬂ'n(l — u) ta,nﬂ du = ( ) ( ) ( ) s ( ) ™

n—00 Jq 2 w2k = (2k—2j+1)'C( j)_ 2(2k+1)'

k jﬂ_Zk 27

k k
2k 9% By
¢(25) = (2k)!
]Z 2k—2j+ (2) ]Z (2k — 25 + 1)1(2j)!
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(Note that Hy(n) = 0, but ¢(0) = —1/2.) Now, to complete the proof, let’s show that the above
sum equals 1 for all integer k& > 0. For that, let g(z) be the product of the two below functions:

2% By: . _ 1
veothy =z ¢ — 02 12 andsinhz = — = Ziiﬂ?ﬁlé
et —er L~ (2))! 2 ~ (25 + 1)
j=0 =0
2 332 1 .
= g cothzx sinhz = J 2. p2k=2+1
" R
2 ]B2j 2%k+1 61‘ + e xT 1 _—
) kz—o ;0 2k —2j+ D)) | © T TSR kz_o et

which implies the theorem. [

1

-1, ifk=0
Theorem 4 lim u sin 270 (1 — ) cot Tu du = { !

—1  if integer k > 1

n—oo 0 2

Proof 4 This integral appears with initial equations sin 27k = 0 and cos 2wk = 1. Here we only prove
the case sin 2k = 0, though case cos 2k = 1 should follow a similar reasoning and be straightforward.

By taking the limit of the integral as n goes to infinity, we have:

1 2(—1 k 2k k -1 k—j 9 2k—2j5 -1 k 2 2k
lim u? sin 27n (1 — w) cot mu du = (=1 gkk) CDA .ﬂ) —6(24) - %
n—o0 Jq (271‘) = (2]{3 — 25+ 1). 2(2/6‘ + 1).
k k k —j 27T)2k 27 ' k
27r = ]Z 2k 2+ o ; 2k—2]+1 )(27)!

Now, to complete the proof, let’s show that the above sum equals —1 if £ =0, or —1/2 if £k > 1.
For that, let g(z) be the product of the two below functions, that also appeared in the proof of
Theorem 3, only now the cotangent is re-scaled:

o0
Z BQJ 2% andsinhz = Z #1:2”1
’ (

‘ !
0 = 2j +1)!
Therefore, we have:
g(z) = fcothf sinh x = ZZ B29 22 1 L 2k—25+1
=0 1= 0 (2k — 25+ 1)!
00 k o
By okl T e + e 7 1 ey
= = = 1 _— —

=2 §<2k—zj+1>!<2j>! SR G SPTR

which implies the theorem. [J
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8.1.1 Limit of Hy(n)

The limit of Hoi(n) as n approaches infinity is ((2k) for all integer k£ > 0, which is proved in the
two following theorems:

Theorem 5nlirrgo o2k 5

(_1)k7r2k /1 k By, (2 _ 22j) wu2k—2i
0

: v
2k = 2)) sinn(l — u) tan o> du = ((2k)
= ! !

Proof 5 First we note that due to Theorem 3, the above limit reduces to:

(—DFr% I By (2 - 2%)
« (27)!(2k — 2)!

Jj=

Now we can prove that the above expression equals ((2k), using the same approach from the
previous section:

(9] k 2] (9] —2j
By; (2 — 2%) (2 2%9) Byja™ g% z
§ 2k§ J _ § § v —

k=0 Jj=0 k=0 j=0
— 2% By, )i & (2-2%) (—1)*(2m)** Boy,
— thr = 2 T2k 2k = — = ((2k) O
x coth z kZ_D ) x ]Z: i 2]{:—2]) 2(2k)! C(2K)
1 2k B 2 _ 22] 2k72j
Theorem 6nh_>rgO 2n2k / 2] 2k _) 2] sin 27n(1 — u) cot mu du = ¢(2k)

Proof 6 : First we note that due to Theorem 4, the above limit reduces to:

(—1)k(2m)2%* [ Bop(2 — 2% ‘1 1~ By (2-2%)
2 (2k j 2] N(2k — 29)!

Now let’s prove that the above expression equals ((2k), using some of the previous results:

Bop(2—228) 152 Boj (2—2%)  1By,(2—2%) 1~ By (2—2%)
74@2 5 2 3ok — 37

(2Kk)! = (20)!(2k - 2))! T2 (2Kk) * = (20)!(2k - 2))!
o2k 2% \k 2%
_ 1Bw(2-27) | 1By2 By, _ _(=1)*(2m)™ B (2K O
2 (2k)! 2 (2k)! (2k) 2 (2k)!

8.2 Limits of the Integrals on the Hy; 1(n) Recursions
We can express each integral as a function of Hajy1(n) for all real n:
1 k Yh—id r2k=2
okl ] Tu  2(=1)F(2k+1)! k=2

/0 u? T (1 — cosn(1 — u)) tan -5 du = 2k +1 JZO 2k T1-2))! H2_7+1 2n2k+1 Z 2j _|_ 1

1 )h= 2k—2j
—2(=1)k(2k + 1)! J(2m)2k—2i J(2mn)?
2k+1 E
/0 u (1 —cos2mn(l —u)) cot mudu = 271- 2k+1 ( 2/<: =21 Hyjpi(n = 5ok 2] ol )

j=



27rn

1 k )h= 2k—2j
. —2(—=1)*(2k + 2)! J(2m)2k=2
/ w2 (1 — cos 27n(1 — u)) cot mu du = )2l (g ok r2-2)) Hyjpi(n 2n2k+1 E
0
Jj=0

From the above equations, we can infer that each one of the integrals tends to plus or minus
infinity as n increases (the reason is that each one contains H(n), which is unbounded).

One consequence of this fact is that the coefficients of poyt1(u) in the formulae of Hopi1(n) need
to sum up to 0 for all £ > 1, in order to cancel out those infinities, the exception being H(n). This
statement is translated in the next theorem.

L gy (2 2)

Theorem 7 pory1(1) = ~ ~ =0, Y integer k > 1
— (25)1(2k + 1 — 2j)!

J]=

Proof 7 In section (3.8), we've created a generating function for poy1(u), which allows us to deduce
the following equivalence (notice the second sum in the double-sum is poj11(u)):

. )kg2ht1 Z B2J (2-2%) ™ ™%  zsinzu
— N2k +1-25)!  sinx

k:O
Now, if u = 1, we conclude that the above sum equals x, which implies the theorem. [1

Similarly, the below also holds, though the proof is omitted:

Bngm 23 (2—2 J) (2 — 2%1-%) 92k +2-2

ZZ 1(2i — 2)1(2k + 2 — 20)! =0Vk=1

=0 5=0

8.2.1 Limit of H2k+1 (n)
The values of ((2k-+1) are given by the first part of the integral, as explained by the next theorem:

Theorem 8 ((2k + 1) =

(_1)l~cﬂ.2k+1 /1 k By, (2 _ 22]') y2k+1-2j
0

u
T du, V integer k > 1
2 (27)1(2k +1 —2j)1 g ¢ VIRER =

Proof 8 To prove this result, we need to show that:

. B2 2_22]) 2k+1-25 -
nan;O/Z @)k £ 1-2)! coswn(l—u)tan7du—0

Using the result from Theorem 2, section (6.2.1), we know that for large n we can write:

21og(2)

1
/ w172 cos mn(1 — ) tan % + 2ucos 2mn(1 — u) cot mu du ~
0 s

But per Theorem 7:

k k 24

210g Byj (2 —2%) /1 Byj (2—2%)u

=0 and ; — cos2m(l — u) cot mudu =0
]Z (25)Y 2k+1—2]) 0 ;(2])!(%:4-1—2])! ( )

27

2]+2

)



which implies the theorem. [

There’s a slightly different integral representation for ((2k + 1), which stems from the formula
derived in section (3.9):

C2k+1) =— cot mu du

(—1)k(2m)2k+1 /1 " By (2 - 2%) 2412
0

2 o (2))2k + 1 2))!
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