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Abstract : Tuberculosis is a deadly infectious disease caused by Mycobacterium tuberculosis. Sterol 14-demethylase cy-
tochrome P450 51(CYP51) is a key target for antibiotic therapy. Azoles are used to disturb functional activity of CYP51
and thus promising antifungal agents. Sulfonamides, anti-microbial drug, also act as antifungal candidate. In this work
high-throughput screening approach is used to find sulfonamides for lead candidate as CYP51 inhibitor. A library of
402 sulfonamides from various databases against M. tuberculosis CYP51 (CYP51Mt) are screened and has been examined
the top binding hits for their inhibitory effects. Docking results show that binding affinity of newly searched ligands is
higher than known tuberculosis drugs. Lipinski’s rule of five protocols is followed to screen drug likeness and ADMET
filtration is also used to value toxicity. DFT computation of optimized geometry and molecular orbitals have been used
to correlate with the drug likeness. Pharmacophore generation is reported to recognize the binding patterns of inhibitors
in the receptor active site. (2R)-2-(2,1,3-Benzothiadiazol-4-ylsulfonylamino)-N -[(1S,2R)-2-methylcyclohexyl]-2-
phenylacetamide shows best theoretical efficiency. The compounds also bind to Adenine-Thymine region of tuberculosis
Deoxyribonucleic acid (DNA). To observe the stability and flexibility of inhibitors the molecular dynamics simulation
(MD) has been carried out.

Keywords : Sterol 14-demethylase, structure based drug design, molecular docking, ADMET, pharmacophore, MD
simulation.

Introduction

A major population in the second decade of 21st Cen-
tury is still infected with Mycobacterium tuberculosis
(MTB)1. Present treatment protocol and use of drugs need
thorough improvement. Therefore, progress for new drug
design strategies are urgently needed to fight against tu-
berculosis (TB) and especially to the multidrug resistant
TB (MDR-TB)2. Recent studies have shown that genome
of MTB has a large number of open reading frame (ORF)
those are related to known sterol biosynthetic enzymes3.
Sterol 14-demethylase (Fig. 1), a fungal enzyme, is in-
hibited by azole compounds4. Several azoles have been
documented against M. smegmatis, M. tuberculosis H37Ra
and Streptomyces coelicotar5. These drugs act on mul-
tiple targets in mycobacteria and recent studies have dem-
onstrated that azole drugs inhibit the biosynthesis of gly-
col peptide lipids (GPLs), which in turn are responsible
for maintaining the integrity of the mycobacterial cell
envelope6,7.

Fig. 1. Structure of lanosterol 14-demethylase (CYP51).

Azoles are currently the most widely used and studied
class of antifungals8. These azole compounds bind as the
sixth ligand to the heme group in CYP51, thereby altering
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the structure of the active site and acting as noncompeti-
tive inhibitors9. However, persistent use of azoles as anti-
fungal drug has resulted in the emergence of drug resis-
tance among certain fungal strains10. On the otherhand
sulfonamides, anti-microbial drugs, shows activity against
MTB11,12. Since the best docked sulfonamide binds to the
heme group in CYP51 of M. tuberculosis and surround-
ing amino acids are almost same as azole drugs, it can be
assumed that sulfonamides can be used in place of azole
drugs8.

In this work, sulfonamides are docked with protein
CYP51 (MTB), obtained from Protein Data Bank (PDB
id : 2CIB) and searched to predict potential drugs against
M. tuberculosis. So far, 504 similar compounds are traced
and 402 of them are passed Lipinski’s filter. Amongst the
402 compounds, (2R)-2-(2,1,3-benzothiadiazol-4-
ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-
phenylacetamide (Ligand) shows best docking efficiency.
It is also passed the ADMET filter for reviewing its tox-
icity. Six best docked compounds are taken into consider-
ation. Quantum chemistry calculation, pharmacophore
generation, molecular dynamics simulation and Quantita-
tive structure-activity relationship (QSAR) have been car-
ried out to observe stability, persistence properties of best
docked molecule.

Experimental methodology

Sequence alignment analysis :

The procedure of detecting the functional resemblance
between two or more sequences of amino acids by con-
currently aligning the sequences was called multiple se-
quence alignment (MSA) and is important for finding the
functionality of proteins and evolution history of the spe-
cies13. Sterol 14-demethylase (CYP51) enzymes have
also found in human body but their functions are different
from that of Mtbs; the mammalian cell is not sensitive to
sterol 14-demethylase14. Using target validation proto-
col these molecules have been validated as potential drug
and not harmful to human health15. To identify the ho-
mology and relationship between human sterol 14-
demethylase and Mtb sterol 14-demethylase, sequence
comparison was performed using multiple sequence align-
ment in Clustal omega16.

High throughput virtual screening (HTVS) :

From large number of sulfonamides, lead molecules

may be selected by High Throughput Screening (HTS) by
performing individual biochemical assays but to save huge
cost and time incorporation of economical and effective
computational methodology namely virtual High Through-
put Screening (vHTS) is done in in silico drug design.
HTS is a computational screening method which is widely
applied to screen from libraries of in silico drug like com-
pounds to check the binding affinity of the target receptor
with the library compounds17. HTS is done by docking
which is accomplished by using various scoring function
which computes the binding affinity of the target receptor
with the compounds. HTS and vHTS are complementary
methods and vHTS has been shown to reduce false posi-
tives in HTS18,19.

Docking of 402 compounds have been done by
Autodockvina on windows platform on 8 G.B, R.A.M
computer with Intel I 5 processor20. The crystallographic
co-ordinates for sterol 14-demethylase was retrieved from
the Protein Data Bank (PDB id : 2CIB). Before docking
procedure, protein structures were prepared by using Dis-
covery Studio 4 software’s protein preparation wizard.
Following which, loops were built, protonation were done
and hydrogen atoms were added to the crystal structures.
Active site of the protein was within the grid dimensions
of 30×30×30 Å3. Amongst the docked conformations,
one which bound with high affinity at the active site was
visualized (Fig. 2) for detailed ligand-protein interactions
in Discover Studio Visualizer 4.0.

Drug likeness :

The drug likeness perception is a useful guideline for
early stage drug discovery21. Investigation of the observed
distribution of some key physicochemical attributes of
approved drugs, including molecular weight, hydropho-
bicity and polarity, reveals that the drugs favorably oc-
cupy a range those are described as “druglike”21.  Calcu-
lation of drug likeness is most commonly manifested as
rules, the original and most well-known of which is
Lipinski’s Rule of Five 5(Ro5) and Ghose’s rule22,23. The
Lipinski’s rule states that a compound is more likely to
exhibit druglike physicochemical attributes if the criteria
are fulfilled : Molecular weight of less than 500 Dalton
and the number of hydrogen bond donors is less than 5,
the number of hydrogen bond acceptors is less than 10
and log P values each less than 522. The Ghose rule states
that, log P should be in –0.4 to +5.6 range, molar refrac-
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tivity should be from 40 to 130, molecular weight should
be from 180 to 500, number of atoms should be from 20
to 70, polar surface area no greater than 140 Å23. Drug
likeness was completed by Discovery Studio 4 on win-
dows platform on 8 G.B, R.A.M computer with Intel I 5
processor.

ADMET properties :

Nowadays evaluation of drug metabolism, pharmaco-
kinetics and toxicity were done much earlier stage of drug
design24. In the era of virtual screening demand of data
dramatically increased, so have the demands for large
quantities of early statistics on absorption, distribution,
metabolism, excretion (ADME) and toxicity data
(ADMET)25.

Qualitative classification models were applied for
ADMET prediction, which were established using sup-
port vector machine classification algorithm and in house
substructure pattern recognition method26. By using sup-
port vector machine regression algorithm, some quantita-
tive regression models were also constructed and imple-
mented. The strength of model was validated based on
cross validation, and the predictability of several models
was validated using available external validation sets27.
ADMET properties of best docked molecule were done
by Discovery Studio 4 and support vector machine re-
gression algorithm on windows platform on 8 G.B, R.A.M
computers with Intel I 5 processor.

Quantum chemistry calculation :

Electronic structure (molecular orbital) and the effect
of substituent of druglike molecules has major role in the
drug proficiency28. A molecular orbital (MO) defines the
wavelike conduct of an electron in a molecule its function
can be used to calculate chemical and physical attributes
such as the probability of finding an electron in any defi-
nite area29. The highest occupied molecular orbital and
lowest unoccupied molecular orbital are often referred to
as the HOMO and LUMO, respectively. The difference
of the energies of the HOMO and LUMO, termed the
band gap, may use to calculate the molecular reactivity,
strength and stability of the complexes30.

DFT (Density functional theory) computation was done
by Gaussian 09W on windows platform on 8 G.B, R.A.M
computer with Intel I 5 processor for HOMO-LUMO band
gap31. Gaussian calculation has been done in Gaussian 09

panel using Becke’s three-parameter exchange potential
and Lee-Yang-Parr correlation functional (B3LYP) theory
with basis set 6-31G32–34. After that, surfaces (molecular
orbital, density, potential) and electrostatics potential
charges (EPS) were used to analyze the highest occupied
molecular orbital (HOMO) and lowest unoccupied mo-
lecular orbital (LUMO).

Drug-DNA interaction :

Deoxyribonucleic acid (DNA) and druglike molecular
interaction has become an active research area at the in-
terface between chemistry, molecular biology and medi-
cine35. Most of the drugs are groove binders for a tight fit
to the drug36. A group of heterocyclic or aromatic hydro-
carbon rings act as minor groove binding molecules which
allows the displacement of water and the molecule fits
into the minor groove37. Through hydrophobic interac-
tions and hydrogen bonding, drugs interact with adenine
thymine (AT) rich regions of DNA in the minor groove38.
The terminal adenine group of DNA is basic in nature and
attracts the druglike molecule to the negatively charged
DNA phosphodiester backbone36. To find the binding
pattern ligand (best docked molecule) with Mtb DNA (PDB
id : 3pvv) docking method was used. Transcription and
replication which are vital jobs of DNA, vital to cell sur-
vival and production, were affected by the interaction of
exogenous agents and the DNA function could be artifi-
cially modulated38. Drug DNA docking was done by
AutoDockvina on windows platform on 8 G.B, R.A.M
computer with Intel I 5 processor.

Quantitative structure-activity relationship (QSAR) :
(MLR) :

QSAR is used for quantitative correlation of physico-
chemical attributes of ligands. It is widely used tool, omi-
nously contributing to the drug discovery process39. Mul-
tiple Linear Regression (MLR) is used as a chemo-metric
QSAR technique for variable selection and statistical fit
in and uses a group of random variables and tries to find
a mathematical association among them40. We observed
MLR of 7 molecules (structure analogues –10.7 to –10.6).
We took drug likeness properties (Molecular weight, hy-
drogen acceptor, hydrogen donor and log P) of these mol-
ecules serve as independent variable and docking score is
dependent variable for MLR. The MLR calculation was
carried out by windows platform on 8 G.B, R.A.M com-
puter with Intel I 5 processor41.
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Pharmacophore generation :

Interactions between the druglike molecules and their
target proteins are retrieved by docking results. Receptor
ligand interactions determined by chemical structure and
functionalities, bonds, and their location flexibility towards
each other42. Pharmacophore model describes chemical
attributes that make a druglike molecule active towards
its target. In these models, chemical attributes are repre-
sented as called pharmacophore features, they are acquired
either from a set of active compounds or directly from the
observed protein ligand interactions42. In the present work
pharmacophore generation executed by receptor ligand
pharmacophore generation with Discovery Studio 4 for
study the interactions between protein and ligand on win-
dows platform on 8 G.B, R.A.M computer with Intel I 5
processor.

Molecular dynamics simulation :

Molecular dynamics (MD) simulations approaches used
for structural flexibility of the overall drug protein model
system and to estimate of the thermodynamics and kinet-
ics associated with drug protein recognition and binding43.
It helps optimizing protein affinity and drug dwelling time
toward improved drug efficiency43. MD simulation was
calculated to further confirm the interaction strength and
stability of the receptor-ligand complex determined from
molecular docking by discovery studio’s standard dynam-
ics cascade wizard on windows platform on 8 G.B, R.A.M
computer with Intel I 5 processor.The same PDB file (2CIB)
which was modified for docking and best docked mol-
ecule were taken as protein-ligand complexes. Before per-
forming MD simulations, Charm force field was applied
to each of the protein-ligand complexes and solvation was
set to explicit periodic boundary44. The total production
time of 40 pico seconds (ps) simulations were performed
with default setting.

Results and discussion

Selection of lead drug :

Importance of functional group, size, number of H-
bond donors and acceptors in a compound are useful in
the study to dock in the active domain of CYP51 protein.
Azoles are promising antifungal agents and dock in the
cavity of CYP51. Sulfonamides are also analogously ac-
tive as antifungal candidate. So we have selected 402 sul-

fonamides from library through high-throughput screen-
ing approach to find lead candidate as CYP51 inhibitor.

Sequence alignment analysis :

Sequence alignment analysis result showed that there
is no significant match between human and M. tuberculo-
sis sterol 14-demethylase (CYP51). Similarity between
human and M. tuberculosis sterol 14-demethylase is less
than 33%, there is no functional similarities between them
(Table 1). PDB id 3LD6, 3JUV, 3JUS are human sterol
14-demethylase and other than PDB id  all are M. tuber-
culosis sterol 14-demethylase. By viewing the result sum-
mary of clustal omega, that 3LD6, 3JUV, 3JUS  showing
100% similarity, with  human sterol 14-demethylase the
similarities are less than 33% (Table 1).

High throughput virtual screening (HTVS) :

Ligands were docked in the active site of sterol 14-
demethylase M. tuberculosis. Among the ligands the best
docked molecule is (2R)-2-(2,1,3-benzothiadiazol-4-
ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-
phenylacetamide which forms 2 hydrogen bonds with amino
acids of the sterol 14-demethylase at 2.32883 Å and
2.55385 Å (Table 1, Fig. 2). The hydrogen bond forming
amino acids are histidine (HIS) 259 and alanine (ALA)
256. Ligand also forms two hydrophobic interactions with
amino acids of the sterol 14-demethylase at 3.75359 Å
and 3.82126 Å (Table 2, Fig. 2). The docking score (bind-
ing affinity) is –10.7 kcal/mol, better than approved TB
drugs like drugs-p-amino salicylic acid (PAS, binding af-
finity, –8.9 kcal/mol) and ethambutol (binding affinity,
–7.8 kcal/mol). The ligand has surrounding amino acids
those are almost same as azole drugs like Fluconazole
(Table 3).

Drug likeness and ADMET :

Six molecules along with best docked candidate are
passed Lipinski’s rule of five and Ghose’s rule (Supple-
mentary material). ADMET is used to determine perme-
ability for BBB (blood-brain barrier), HIA (human intes-
tinal absorption), P-glycoprotein Substrate Inhibitor, re-
nal organic cation transporter, etc. (Table 4). The result
shows that the ligand is positive (+) in Human Intestinal
Absorption, Blood-Brain Barrier which means the mol-
ecule is well absorbed in human body (Table 4) and would
not cross blood brain barrier27. Inhibition and initiation of
P-glycoprotein had been reported as the causes of drug-
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Table 1. Showing Clustal omega result

Sl. PDB ID Enzymes Similarities in percentage

no. and chain (%)

1. 3LD6_A Human lanosterol 14alpha-demethylase_A 100 100 100 100 100

2. 3LD6_B Human lanosterol 14alpha-demethylase_B 100 100 100 100 100

3. 3JUV_A Hum lanosterol 14alpha-demethylase _A 100 100 100 100 100

4. 3JUS_A Hum lanosterol 14alpha-demethylase _A 100 100 100 100 100

5. 3JUS_B Hum lanosterol 14alpha-demethylase _B 100 100 100 100 100

6. 1H5Z_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

7. 1EA1_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

8. 1E9X_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

9. 1U13_A MTB  lanosterol 14alpha-demethylase _A 31.92 31.92 31.92 31.92 31.92

10. 2W09_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

11. 2W0B_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

12. 2VKU_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

13. 2CIB_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

14. 2CI0_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

15. 2BZ9_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

16. 2BZ9_B MTB  lanosterol 14alpha-demethylase _B 32.14 32.14 32.14 32.14 32.14

17. 1X8V_A MTB  lanosterol 14alpha-demethylase _A 32.14 32.14 32.14 32.14 32.14

18. 2W0A_A MTB  lanosterol 14alpha-demethylase _A 31.92 31.92 31.92 31.92 31.92

drug interaction45. The best docked molecule was P-gly-

coprotein non-inhibitor, in the result, that implies that the

best docked molecule won’t interact with other drugs.

Organic cation transporters are responsible for drug ab-

sorption and disposition in the kidney, liver, and intes-

tine46. ADMET result of best docked molecule shows

that it was non-inhibitor of renal organic cation trans-

porter. The human cytochromes P450 (CYPs), particu-

larly isoforms 1A2, 2C9, 2D6, and 3A4, are responsible

for about 90% oxidative metabolic reactions. Inhibition

of CYP enzymes will lead to inductive or inhibitory fail-

ure of drug metabolism47,48 and the best docked molecule

is non-inhibitor/substrate, so it would not a barrier in drug

metabolism.

The Ames test is a widely employed method that uses

bacteria to test whether a given chemical can cause can-

cer49. ADMET result shows two best docked molecules

were non-Ames toxic and non-carcinogenic.

Human Ether-à-go-go-Related Gene (hERG) is a gene

sensitive to drug binding50. ADMET result shows best

docked molecule was weak inhibitor and non-inhibitor of

hERG inhibition (predictor I and II) which means best

docked molecule will be well bind well with receptor50.

Quantum chemistry calculation :

The plots of HOMO and LUMO show the positive

electron density in red color and negative electron density

in green (Fig. 3A and 3B).  The selected drug candidates
showed minimal HOMO-LUMO gap with the energy dif-

ference of –0.13638 eV, signifying molecular reactivity.

Fig. 3A and 3B show that HOMO and LUMO of ligand.

Plots of highest occupied molecular orbital (HOMO) and

lowest unoccupied molecular orbital (LUMO) of ligand.
The positive electron density has been shown in pink color

while negative have been shown in green.

Drug-DNA interaction :

The best docked molecule is docked in to the adenine-
thymine (AT) rich sequences minor groove of tuberculo-

sis DNA by hydrogen bonding (Fig. 4). Its formation of

hydrogen bonds to DNA bases like to ‘O’ of thymine and

also its specificity towards adenine-thymine (AT) rich

sequences was like other groove binder drugs35. The ligand

was bound to minor groove of Mtbs DNA. Ligand was
bound DNA by hydrogen bonds ranging from 2.60861 Å

to 5.62963 Å (Table 5).

JICS-2
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(a) (b)

(c) (d)

Fig. 2. Comprehensive perception of sterol 14-demethylase and (2R)-2-(2,1,3-benzothiadiazol-4-ylsulfonylamino)-N-[(1S,2R)-2-
methylcyclohexyl]-2-phenylacetamide interaction after docking. (a) Shows that (2R)-2-(2,1,3-benzothiadiazol-4-ylsulfonylamino)-
N-[(1S,2R)-2-methylcyclohexyl]-2-phenylacetamide is docked in active site of sterol 14-demethylase. Secondary structure of
sterol 14-demethylase represented by and ribbon and (2R)-2-(2,1,3-benzothiadiazol-4-ylsulfonylamino)-N-[(1S,2R)-2-
methylcyclohexyl]-2-phenylacetamide is represented by stick model. (b) Shows that surface model of the same picture where
structure of sterol 14-demethylase represented by and surface. (c) (2R)-2-(2,1,3-Benzothiadiazol-4-ylsulfonylamino)-N-[(1S,2R)-
2-methylcyclohexyl]-2-phenylacetamide surrounding amino acids were shown in the picture. Interactions of ligand with 14-
demethylase amino acids, ligand surrounding amino acids are in three letters code represented in dark blue. (d) Same picture
represented in 2D format.
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Table 2. Bonds between ligand and sterol 14-demethylase

Bond name Distance (Å) Bond category Bond type

A:HIS259:HE2 - :LIGAND:O 2.32883 Hydrogen bond Conventional hydrogen bond

LIGAND:H9 - A:ALA256:O 2.55385 Hydrogen bond Carbon hydrogen bond

A:HEM1449 - :LIGAND 3.75359 Hydrophobic Pi-Pi Stacked

A:HEM1449:CMD - :LIGAND:C 3.82126 Hydrophobic Alkyl

Table 3. Surrounding amino acids of the ligands

PDB Azole drug Best docked

ligand (Fluconazole) compound

TYR76 TYR76 TYR76

PHE78 PHE78 PHE78

PHE83 ARG96 PHE83

ALA256 ALA256 ALA256

LEU321 THR260 HIS259

LEU321 LEU321

Table 4. ADMET properties of ligand

ADMET Predicted Profile Result Probability

Classification model

Blood-Brain barrier BBB+ 0.6153

Human intestinal absorption HIA+ 0.9938

P-Glycoprotein inhibitor Non-inhibitor 0.7958

Non-inhibitor 0.7580

Renal organic cation Non-inhibitor 0.8561

Transporter

Metabolism

CYP450 2C9 substrate Non-substrate 0.5000

CYP450 2D6 substrate Non-substrate 0.8265

CYP450 3A4 substrate Non-substrate 0.5703

CYP450 1A2 inhibitor Non-inhibitor 0.7883

CYP450 2C9 inhibitor Non-inhibitor 0.5316

CYP450 2D6 inhibitor Non-inhibitor 0.8793

Toxicity

Human Ether-à-go-go-Related Weak inhibitor 0.9599

Gene inhibition Non-inhibitor 0.7486

AMES toxicity Non-AMES toxic 0.7287

Carcinogens Non-carcinogens 0.8439

Quantitative structure-activity relationship (QSAR) and
pharmacophore generation :

The MLR result has shown that R value is 0.826 and
R2 is 0.682. The values of R and R2 are close to +1, and
so implies positive and good correlation between drug
likeness and docking score40. 68.2% of the change can be
explained by the change in the 4 independent variables.

We could assume that docking score is changing along
with drug likeness properties.

The generated pharmacophore models based on recep-

tor-ligand interactions by docking have confirmed all major
interactions in the drug-receptor interaction modes (Fig.

5). The number of features, feature set, and selectivity
score from pharmacophore generation were observed from
the best  docked molecule. Fig. 5 showed the

pharmacophore map of (2R)-2-(2,1,3-benzothiadiazol-4-
ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-

phenylacetamide.

Molecular dynamics simulation :

The MD simulation study of best docked molecule,

(2R)-2-(2,1,3-benzothiadiazol-4-ylsulfonylamino)-N-[(1S,
2R)-2-methylcyclohexyl]-2-phenylacetamide with Mycobac-
terium tuberculosis sterol 14-demethylase were done for

40 ps and ten thousand steps. Same procedure done for
thirteen thousand steps and 40 ps. MD production run and

the trajectory of the various energy profiles was created
and analyzed. Bond energy and root-mean-square devia-

tion of atomic positions (R.M.S.D or simply root-mean-
square deviation) of (2R)-2-(2,1,3-benzothiadiazol-4-
ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-

phenylacetamide with sterol 14-demethylase shown in
Figs. 5, 6 respectively. Total energy after MD simulation

was –18,209.3 kcal/mol. As the graph showed that for the
best docked molecule the bond strength were increased
from initial protein. So it can was clearly predicted that

molecule formed stable conformation with Mycobacterium
tuberculosis sterol 14-demethylase. Superimposed struc-

tures of first, middle and last conformation of Mycobacte-
rium tuberculosis sterol 14-demethylase shows the de-

viation of end point of the dynamics from the initial point
of dynamics (Fig. 8), deviation of the middle and last
conformation from the starting conformation can be clearly
visible from the figure.
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Fig. 3A. HOMO, E (HOMO) = –0.24455 eV.

Table 5. Bonds between ligand and Mtbs DNA

Bond name Distance (Å) Bond category Bond type

LIGAND:H22 - C:DT104:O2 2.60861 Hydrogen bond Conventional hydrogen bond

C:DG105:N2 - :LIGAND 3.95208 Hydrogen bond Pi-Donor hydrogen bond

LIGAND:S - D:DA211 5.28209 Other Pi-Sulfur

LIGAND:S - D:DA210 5.62963 Other Pi-Sulfur

Fig. 3B. LUMO, E (LUMO) = –0.10817 eV.
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Fig. 4. Interaction between best docked molecule (Ligand) and Mtbs DNA. (a) Shows that best docked molecule docked (represented in
stick) in the minor groove of tuberculosis DNA (represented by surface model). (b) Shows that same picture where tuberculosis
DNA is represented in ladder model.

Fig. 5. Pharmacophore features of (2R)-2-(2,1,3-benzothiadiazol-4-ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-phenylacetamide
based on receptor-ligand pharmacophore generation. The hydrogen bond acceptor, hydrogen bond donor, positive ionizable feature
and negative ionizable features are shown as green, magenta, orange, and blue, respectively.
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Fig. 6. Shows bond energy graph of (2R)-2-(2,1,3-benzothiadiazol-
4-ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-
phenylacetamide. X axis showing bond energy and y axis
showing number of conformation that were visited during
the simulation.

Fig. 7. Shows R.M.S.D graph of (2R)-2-(2,1,3-benzothiadiazol-4-
ylsulfonylamino)-N-[(1S,2R)-2-methylcyclohexyl]-2-
phenylacetamide. X axis showing R.M.S.D and y axis show-
ing number of conformations. All RMSD values are calcu-
lated with respect to the starting conformation.

Fig. 8. Shows results of molecular dynamics, last conformation
(structure) superimposed (coloured in pink) with first con-
formation (coloured in brown) middle conformation
(coloured in blue) of Mycobacterium tuberculosis sterol 14-
demethylase.

Conclusion

Sulfonamides, anti-microbial agent, active against Mtbs

in vivo. The best docked compound, (2R)-2-(2,1,3-

benzothiadiazol-4-ylsulfonylamino)-N-[(1S,2R)-2-

methylcyclohexyl]-2-phenylacetamide, shows higher score

than approved TB drugs-p-amino salicylic acid (PAS) and

ethambutol. ADMET properties also approve easy cross-

ing of blood brain barrier section. Since the best docked

compound bind to the heme group in CYP51 of Mycobac-

terium tuberculosis and surrounding amino acids are al-

most same as azole drugs, it can be assumed that sulfona-

mides can be used in place of azole drugs. Most of the

sulfonamides have passed through ADMET and drug like

properties filtration successfully and quantum chemistry,

MD calculation shows best docked molecules interaction

pattern and stability, so sulfonamide derivatives have po-

tential of being a good drug.
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