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ABSTRACT

Intonation is the process of choosing an appropriate pitch
for a given note in a musical performance. Particularly
in polyphonic singing, where all musicians can continu-
ously adapt their pitch, this leads to complex interactions.
To achieve an overall balanced sound, the musicians dy-
namically adjust their intonation considering musical, per-
ceptual, and acoustical aspects. When adapting the into-
nation in a recorded performance, a sound engineer may
have to individually fine-tune the pitches of all voices to
account for these aspects in a similar way. In this paper,
we formulate intonation adaptation as a cost minimization
problem. As our main contribution, we introduce a differ-
entiable cost measure by adapting and combining existing
principles for measuring intonation. In particular, our mea-
sure consists of two terms, representing a tonal aspect (the
proximity to a tonal grid) and a harmonic aspect (the per-
ceptual dissonance between salient frequencies). We show
that, combining these two aspects, our measure can be used
to flexibly account for different artistic intents while al-
lowing for robust and joint processing of multiple voices
in real-time. In an experiment, we demonstrate the poten-
tial of our approach for the task of intonation adaptation
of amateur choral music using recordings from a publicly
available multitrack dataset.

1. INTRODUCTION

The widely-used 12-tone equal temperament (12-TET)
tuning system divides the octave in twelve equal semitones
of the ratio 2'/12 ~ 1.0595. This allows instruments with
fixed pitch to play in any key at the cost of most inter-
vals being slightly out of tune in comparison to the natural
overtone spectrum of harmonic sounds. Just Intonation (JI)
scales, on the other hand, are constructed from intervals
with small integer ratios to a root note. As a result, the har-
monic overtones of two tones in a JI scale are more congru-
ent than those in 12-TET. However, the absolute pitches in
the JI scale change for different root notes, so that the grid
must be adapted to different keys and musical contexts.
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Figure 1: Joint adaptation of the voices in an example ca-
dence. (a) Sheet music. (b) Fundamental frequencies of
the original synthesized voices measured with pYIN [1]
(orange: soprano, red: alto, green: tenor, blue: bass). (c)
Overall intonation cost C' between all voices with w =
0.33. (d) Pitch shift curve for all voices obtained from
joint gradient descent on C with w = 0.33 and p = 350.

Many instruments can produce any pitch in between the
12-TET or JI grid or have considerable variance in tun-
ing. This allows performers to dynamically change the
sounding scale or chord, both intentionally and acciden-
tally. This flexible intonation is particularly relevant in a
cappella choral singing. While 12-TET if often used as
an approximation for the distribution of chosen pitches by
singers [2, 3], their intonation is influenced by a multitude
of aspects. For example, choir singers tend to aim for JI
in harmonies [4], whereas other influences may prevail in
melodic or solistic phrases [5]. At the same time, singers
continuously have to account for the intonation of their fel-
low musicians [6,7], while pitch changes also occur during
the sounding tone [8]. Depending on the singers’ ability to
control their voices, this complex setting often results in
defects like poor local intonation or intonation drift [9, 10].

Different aspects of intonation are illustrated in the syn-
thesized example cadence shown in Figure 1: The pitches
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(where “pitch” is used as a technical term synonymously
with fundamental frequency here and in the following) in
chord I correspond to a JI scale with root F, while chord IT
is tuned to 12-TET. Continuous deviations are illustrated
in chords IIT and IV, where the soprano in III and all voices
in IV are detuned randomly between —25 and +25 cents
around the 12-TET grid. Even with these large pitch fluc-
tuations, the chords can still be clearly recognized ' .

When post-processing multitrack recordings, pitch-
shifting the individual audio signals may mitigate some
unintended intonation deviations in a performance. How-
ever, this requires a known target pitch, and similarly to
intonation in a live performance, the desired target can be
influenced by many aspects. Instead of quantizing to a
fixed set of pitches like 12-TET or manually tweaking indi-
vidual notes, we formulate intonation adaptation as a cost
minimization problem. A good cost measure for this task
should have a local minimum at the target pitch for each
individual note.

As our main contribution, we propose a differentiable
cost measure, where the local minima can be adjusted ac-
cording to artistic intent. In particular, we employ two ex-
isting models to account for different aspects of intonation:
The first model represents a fonal aspect, that most music
is composed from a set of discrete pitches approximated by
equal divisions of the octave [11]. The second model con-
siders a harmonic aspect and uses perceptual dissonance to
capture the tendency for JI in multi-part harmonies [12].

We show that our cost-based approach has several ad-
vantageous properties over existing methods for intonation
processing:

e A variable weight between the terms allows for flex-
ibly setting the local minimum anywhere between
12-TET and JI.

e In contrast to purely dissonance-based adaptation,
our cost measure has a local minimum also for mu-
sically unstable voices of a chord.

e Using gradient descent, intonation can be adapted in
real-time, dynamically reacting to changing inputs.

For example, the overall cost shown in Figure 1c is high
when voices deviate strongly from the desired pitches. At
the same time, musically dissonant chords like the dimin-
ished seventh chord in III have a higher inherent percep-
tual dissonance. Therefore, an adaptation should not aim
to achieve zero cost, but to find the nearest local minimum.

Figure 1d shows the pitch shift curves for the voices in
our example that locally minimize the cost measure. The
curves were obtained using joint gradient descent, where
all voices are processed at the same time and influence each
other. The resulting “optimal” pitches after applying the
shift lie in between 12-TET and JI, as can be seen e. g. in
the major third of chord I. Its initial pitch in the present
example is —14 cents w.r.t. 12-TET and it is pitched up by
10 cents to minimize the cost with the given parameters.
Furthermore, the algorithm finds meaningful solutions in

! Audio examples are available online:
https://www.audiolabs—erlangen.de/resources/MIR/
2021-ISMIR-IntonationCostMeasure.

the more complex situations occuring in chords IIT and I'V.

The remainder of this article is structured as follows.
In Section 2, we review existing approaches to intonation
adaptation and adaptive tuning, in Section 3 we introduce
the cost measure, and in Section 4, we demonstrate the
applicability to local intonation adaptation in a multitrack
choral music recording with amateur singers.

2. RELATED WORK

A common intonation adaptation strategy implemented in
many commercial products like Melodyne [13] or Auto-
Tune [14] is to measure the fundamental frequency (F0) in
a monophonic recording and to pitch-shift the signal such
that the FO approaches a fixed target value. The target can
be chosen manually by the user or determined automati-
cally from a predefined grid or score.

Several approaches have been proposed to dynamically
choose a target pitch based on musical assumptions. Rule-
based algorithms like Groven.Max [15] or Hermode Tun-
ing [16] choose pitches for all voices of a synthesizer by
analyzing the musical structure of a chord. Aiming for JI,
they implement fixed rules to compromise in chords where
just intervals between all pairs of notes are not possible.
This problem can also be addressed by solving a quadratic
program [17]. This way, the deviation from J1 is distributed
evenly across the pitches and all intervals are as close as
possible to a small integer ratio. Additional constraints can
enable temporal continuity.

Deep learning is used in [18] to infer “good” intona-
tion from curated training examples of monophonic vocal
recordings over a backing track. The model then outputs a
pitch shift curve that can match the intonation in an input
recording with the characteristics of the training examples.

Sethares [19] relates the chosen scale to the timbre of
the sound. Summing the perceptual dissonance [20] of all
individual salient frequency pairs between two sounds, he
obtains a dissonance landscape, in which local minima ex-
ist for small integer ratio intervals if the timbre is harmonic.
This principle is also used for adaptive tuning using gra-
dient descent [12], which achieves a tuning similar to JI
without requiring explicit musical analysis of the chords.
In [21], the idea was further enhanced to be stable in more
complex settings by adding a proximity constraint. This
limits the deviation from 12-TET to a few cents and re-
quires the input to be in the same range.

3. INTONATION COST MEASURE

Our cost measure is based on the assumption that proper
intonation in a polyphonic context is a balance between
the proximity to pitches in an equal temperament tuning
system most suitable for the composition and the mini-
mization of perceptual dissonance. Mathematically, this
can be expressed as the sum of a tonal cost Ci, indicating
the distance to the pitches in an equal temperament tuning
system, and a harmonic cost C},, measuring the perceptual
dissonance in the overall sound:

C=w-Ci+ (1—w)-  Ch. €))
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Figure 2: Conceptual overview of our cost measure. (a)
C} is higher when salient frequencies are far from the equal
temperament grid. (b) C}, is higher when salient frequen-
cies of a tone (blue) are similar but not equal to salient
frequencies of a concurrent reference tone (red). (¢) Shift-
ing the tone shown in blue by x cents changes the overall
cost C. A higher relative weight w of C to Cy, results in
local minima closer to the 12-TET grid.

A lower cost C' corresponds to a “better” choice for the
pitch, where the parameter w € [0, 1] controls the relative
weight between the two aspects.

Figure 2 exemplifies the behavior of C' for two hypo-
thetical tones with five harmonic partials each (depicted in
blue and red). The graphs in Figure 2c show the change
in C' when the tone represented in blue is pitch-shifted by
—200 to 4200 cents. As the two tones form a major third,
a shift by +14 cents would result in a just interval. With a
larger w, the relative weight of C} increases, correspond-
ing to a preference for equal temperament, whereas with
decreasing w, the local minima move closer to JI intervals.

In the upcoming section, we develop differentiable ex-
pressions for Cy and C}, and illustrate their properties by
continuing our example from Figure 1. In Section 3.4, we
then show how the cost measure can be used to adapt the
intonation using gradient descent.

3.1 Prerequisites

For a given audio signal, we assume a stationary sound in
each analysis time frame n and represent it by a set

Pn] :=={(fm,am) |m e {1, ..., M}}, 2)

consisting of M salient frequencies f,, in Hz with ampli-
tude a,,,. The cost measure is defined for a signal w.r.t. to
a reference (or “background”) signal represented by a set
Pret[n]. In the following, we omit the frame index for P
and P, where the time-dependency is not relevant.

To obtain this representation from audio signals, we use
a short-time Fourier transform (STFT) with a frame and
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hop size of 0.1 sec and detect peaks in the magnitude spec-
trum of each time frame that constitute the salient frequen-
cies. Avoiding the misinterpretation of transient peaks in
the spectrum, we filter the STFT representation to remove
percussive components of the signal [22]. Then, we iden-
tify up to 16 peaks in the remaining spectrum of each time
frame by selecting the local maxima above a threshold.
To increase frequency resolution, we interpolate the ex-
act peak frequency and amplitude by fitting a parabola to
the magnitudes of neighboring bands [23]. For an inactive
voice or a purely percussive signal frame, we set P = ().

Note that, for harmonic sounds in a monophonic signal,
all salient frequencies in P are close to integer multiples
of the lowest frequency fj. This assumption does not hold
for inharmonic sounds and polyphonic recordings.

For the example in Figure 1, we synthesize the signals
using a sawtooth waveform with 16 harmonic partials and
amplitudes a; = 1/(im) using a reference frequency of
440 Hz for A4.

3.2 Tonal Cost

Equal divisions of the octave are a good approximation
for the distribution of pitches in many music theories [11].
Furthermore, measuring the distance to an equal tempera-
ment grid is an often used strategy to assess the intonation
in a performance [3,24].

We define the tonal distance d¥(f1, f2) between two
positive frequencies f; and fo in Hz on a K-TET grid as

df(fl,fg) = %(1 — cos (27TK10g2(f1/f2))), 3)

where the distance is small if the interval between f; and
f2 is close to a K-TET interval (i.e., f1/f2 ~ 2¥/K with
k € Z). By measuring the tonal distance of each frequency
in P to a given reference frequency f.r, we define the
tonal cost C} as

— E(f’G)G'F‘ a- dtK(f? fref)

Ct .
Z(f,a)epa

) “

where frequencies with higher amplitude contribute more
to Cy. The highest cost Cy = 1 is reached, when all salient
frequencies lie exactly in the middle between two frequen-
cies on the equal temperament grid defined by K and ff.
The parameters K and f..¢ can either be estimated from
Pret or fixed to known values. Note that, with fixed pa-
rameters, Cy does not depend on P,.¢. Furthermore, Fig-
ure 2a shows that for integer-multiple frequencies in P, not
all frequencies can align with the grid, so that CY is never
0 for such signals. However, the local minimum is reached
when the loudest partials are close to the grid.

For the example, let P include the salient frequencies
of the soprano voice while all other voices are contained
in Ppet. By setting K = 12 and fof = 440 Hz, we ob-
tain the cost heatmap shown in Figure 3. By pitch-shifting
the soprano signal by —200 to 200 cents and evaluating
the cost for each time frame, it shows for which shifts the
salient frequencies in the signal fit best on the 12-TET grid.
Tracking the nearest local minimum starting at a shift of 0
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Figure 3: Tonal cost heatmap for the soprano voice in the
example from Figure 1, pitch-shifted by —200 to 4200
cents. White line indicates local minimum closest to 0.

cents, the white line corresponds to the pitch shift required
to minimize the cost.

3.3 Harmonic Cost

The perceptual dissonance between concurrent sounds can
be expressed in terms of the pure-tfone dissonance between
all combinations of salient frequencies present in each
sound [19]. While the perceived dissonance between two
pure tones was first determined experimentally [20], we
quantify the dissonance between two positive frequencies
f1 and f5 using the parametrized model from [11] (omit-
ting a global scaling factor):

1
dn(f1, f2) == exp ( —In? (W))v 4)
with w. := 6.7 - min(fy, f2)~°5® as the frequency-

dependent parameter that controls the interval of maximal
dissonance and the decay of the dissonance curve. To en-
sure differentiability, we define dy,(f1, f2) := 0 for f; =
fo.? As illustrated in Figure 5, dy,(f1, f2) approaches 0
from both sides when f; is close to fo. dp(f1,f2) = 1
is maximal when the logarithmic distance between the two
frequencies is | logs (f1/f2)| = we.

The sum of dy,(f1, f2) between all pairs of salient fre-
quencies in P and P,er weighted by the amplitude consti-
tutes the harmonic cost:

IOEEDY

min(a, a,) - dn(f, fr)
(f,a)EP (friar)EPrer

Ch = = (©)

(fia)eP

The normalization does not restrict C, to [0, 1], because
the total number of salient frequency pairings is |P|-|Pref|,
but when comparing harmonic signals, only a small frac-
tion of pairings have dy(f1, f2) > 0. By normalizing
by the sum of amplitudes in P, we achieve a comparable
range for Cy and C},, where C}, vanishes when the am-
plitudes in Po¢ are very small (i. e. no reference signal is
present for which a harmonic relation can be evaluated).
The concept of the harmonic cost is illustrated in Fig-
ure 2b, where only the pairings between sets (blue and red)
contribute to the cost. With the frequency-dependent w,,

2 Proof of differentiability can be found on the accompanying website.
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Figure 4: Harmonic cost heatmap for the soprano voice in
the example from Figure 1, pitch-shifted by —200 to +200
cents. White line indicates local minimum closest to 0.
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Figure 5: Pure-tone dissonance dy, (f1, f2) from [11] with
f1 =220 Hz and f; between 110 and 440 Hz.

the dissonance curve becomes more narrow towards higher
frequencies. Applied to the soprano in our example analo-
gous to Figure 3, this results in the heatmap in Figure 4.

3.4 Joint Intonation Adaptation

In a musical performance, the cost C' may vary between
time frames n and we denote the cost in each frame by
C'[n]. The goal of intonation adaptation is to obtain a pitch
shift function p : Z — R, where a pitch shift of p[n] cents
applied to the considered signal minimizes C|n).
When multiple voices can be adapted simultaneously in
a polyphonic multitrack setting, the cost for each individ-
ual voice depends on the salient frequencies in the other
voices. We denote the cost for each voice v with respect to
all other voices by C,,[n] and the current pitch shift for the
signal of v by p,[n]. Then the optimal shift can be found
by solving
min  Cy[n]. ™)

po(n]

As described in [12], gradient descent is an effective
method to find the local minimum. Pitch-shifting with
py[n] affects the salient frequencies in P[n| equally on a
logarithmic scale while the frequencies in Pyc¢[n] stay con-
stant. Thus, the shift p in cents can be moved out of the
logarithm in the tonal distance df<(f}, f») and the disso-
nance dy,(f1, f2), for which we introduce auxiliary func-

tionS 61:}((f17f2ap) and 5h(f1a f27p):

5K (f1, farp) == %(1 — cos (27K (logy (f1/ f2) +p/1200))>
In2 (| log,(f1/f2) —|—p/1200|))

We

5h(f17f2ap) = eXp ( -
(3)

In the following, we omit the arguments of the distance
and dissonance functions for brevity. Analogous to (5),
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Figure 6: Adaptation curves p, [n] resulting from joint gra-
dient descent with all four voices (orange: soprano, red:
alto, green: tenor, blue: bass, u = 350). (a) w = 1.0 (b)
w = 0.0 (¢) w=10.33

we define oy, := 0 for logy(f1/f2) = —p/1200 to re-
tain differentiability. Furthermore, we assume for ¢}, that
w, stays constant for small shifts p, so that its frequency-
dependency does not play a role in a single gradient de-
scent step. Replacing d¥ with 65 and d}, with &}, in (4)
and (6) allows calculating the derivative of C\,[n] directly
with respect to p, so that the update rule becomes

dCy[n]
dp ’

Pu,new [TL} = Pov [TL} - )

where p is a step size parameter and the derivative of C,, [n]
(with the unit “cost change per cent shifted”) is a weighted

sum of djg and %‘:
B _rK sin (2K (logy(f1/f2) + p/1200))  (10)
dp 1200 82\/1/J2) TP
déy, In( |logs (f1/f2)+p/1200] )
dp — 600(logy(f1/f2) + p/1200) (1
1 12
exp(_1n2(| ng(fl/f2)+p/ 00|))
We
with % = 0 for logz(%) — 2. By setting p,[n] to

an initial value (e. g. 0) and repeatedly evaluating (9), we
can now iteratively find the local minimum of C,[n] for
each time frame. However, for short frame sizes, correla-
tion between salient frequencies in successive time frames
can be expected. Therefore, instead of finding the closest
local minimum for each frame independently, we can use
the pitch shift from the previous frame as the initial value
for p,[n]. Furthermore, to retain natural short-term pitch
variations in the signal (e. g. vibrato), we require a certain
temporal smoothness of p,[n]. This can be achieved by
updating p,[n] with only a single gradient descent step in
each time frame, which yields

dCy[n]
dp

po[n] =pon —1] — p (12)

for n > 0 and p,[0] = 0. Together with the frame size,
the step size p controls the rate at which pitch changes in
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the signals influence p,[n]. This can be observed in Fig-
ure 6, which shows the resulting p, [n] from joint gradient
descent with (12) for a varying weight w between Cy and
Cy, in the example cadence. For example, the pitch shift
for the soprano voice visibly approaches a minimum in the
first few frames of chords I and II. Moreover, it can be
seen that the harmonic cost alone (Figure 6b) is not robust
in musically dissonant chords like chord III, whereas with
w = 0.33 (Figure 6¢), the obtained pitch shift tends to-
wards JI without ending up in a local minimum far away
from equal temperament (cf. tenor in chords III and IV).

4. APPLICATION: INTONATION ADAPTATION
IN CHORAL MUSIC

In the previous section, we introduced a method to obtain
pitch shift curves by minimizing a cost measure that quan-
tifies two aspects of intonation: the distance of a pitch to
an equal temperament grid and the perceptual dissonance
with regard to a harmonic reference. As a tool, this allows
sound engineers to flexibly adapt the intonation in audio
recordings between equal temperament and JI using the
two parameters w and p. With w, the relative weight be-
tween both aspects can be adjusted depending on artistic
intent and musical context. p controls the temporal behav-
ior of the adaptation, where a larger y corresponds to a
stronger reaction to short-term pitch fluctuations.

A subjective evaluation of preferred intonation in dif-
ferent musical contexts and the resulting suitable choices
for the parameters of our cost measure is beyond the scope
of this paper. Many additional aspects, including timbre,
acoustics, and performative choices (vibrato, portamento,
etc.) [25], as well as listener taste and experience [26],
influence intonation perception. Instead, we demonstrate
the utility of the cost-based adaptation tool with an exam-
ple from amateur performances of a cappella choral music.
In this application with particularly volatile intonation, we
show that the approach is robust on real-world signals and
can blindly achieve results that are comparable to score-
informed intonation adaptation.

For this, we apply the presented method to recordings
from the Dagstuhl ChoirSet (DCS) [27]. The intonation
adaptation of individual voices in a vocal recording re-
quires separate signals for each voice and the dataset con-
tains headset microphone signals for each singer. In this
section, we consider the last four bars (45 to 48) from a
performance of the motet Locus Iste (WAB 23, 1869) by
Anton Bruckner (Quartet B, Take 3 in the dataset). The
four-part a cappella composition is performed by a quartet
of soprano (S), alto (A), tenor (T) and bass (B).

First, we obtain the salient frequencies for each voice
from the four individual headset microphone signals, us-
ing the method described in Section 3.1. For the STFT, we
keep the hop size of 0.1 sec (2205 samples in the DCS au-
dio signals) and use a window size of 4096 samples for
an improved frequency resolution. Due to varying lev-
els and timbre of the singing voice and background noise,
the number of salient frequencies in P[n] fluctuates. On
average, |P[n]| is 6.6 (S: 5.6, A: 6.8, T: 4.4, B: 9.6) in
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the voiced frames (i.e., where |P[n]| > 0). To assess
the robustness of the detected salient frequencies against
crosstalk and noise, we calculate the average deviation
of each frequency from being an integer multiple of the
lowest frequency in this frame (corresponding to the “har-
monicity” of the signal). In the excerpt, the detected fre-
quencies deviate from the harmonic overtones by a factor
of 1.01 on average (S: 1.007, A: 1.012, T: 1.006, B: 1.016).

We now compute a pitch shift pSB[n] for each voice
with the cost-based (CB) method as described in Sec-
tion 3.4, using a single gradient descent step for each frame
(see (12)). For the present example, we set w = 0.2
and © = 350 and used fixed parameters K = 12 and
frot = 440 Hz for the tonal cost. The pitch shifts pSB[n]
are applied to each signal with a time-variant pitch shift
algorithm based on resampling and time-scale modifica-
tion [28]. In a cappella performances, one often observes
(downward) intonation drifts [10], causing p$B[n] to drift
in the opposite direction to counteract this effect. For in-
stance, the mean pitch shift across all voices in bar 48 of
our example is 21 cents. Note that, to counteract a global
drift of all voices in a similar direction, even [pSB[n]| >
50 cents may be intended. In this case, additional regu-
larization can be added in the cost minimization to avoid
individual voices ending up in local minima that do not
reflect the relative intonation in the performance.

For the comparison of our method with a score-
informed baseline (BL) approach, we estimate the F0 tra-
jectories for each voice with pYIN [1] and assign the mea-
surements to individual notes from the aligned score an-
notation provided in DCS. Then, for each time frame of
0.1 sec duration, we choose a pitch shift pBL[n] that shifts
the median FO in the current frame onto the 12-TET pitch
of the corresponding note in the score. To counteract larger
fluctuations that result from the relatively small frame size
for this method, we additionally smooth pB%[n] using a
moving average with a window size of 3 frames. The shift
is applied to the signals in the same way as p$B[n).

The pitch shift curves for the excerpt, calculated with
the blind CB approach (colored) and the score-informed
BL (black), are plotted for all voices in Figure 7a, c, e,
and g. Furthermore, subfigures b, d, f, and h show the
FO trajectories of the original (black) and adapted (CB:
colored, BL: grey) signals. The difference between the
two pitch shift curves is small in most frames, particularly
when compared to the magnitude of overall pitch fluctua-
tions in the singing voices. Larger differences between the
curves can be observed at the onset of some notes. This can
be attributed to the strong influence of short-term fluctua-
tions in the measured FO trajectories on the BL approach.

In addition, the harmonic cost term C}, has a recogniz-
able effect on the local minimum where JI intervals differ
from 12-TET. This can be prominently observed in the so-
prano voice in bar 48 (c.f. the zoomed detail in Figure 7),
where the sung note E is the major third of the final C
major chord of the piece and therefore has a JI pitch 14
cents lower than 12-TET. This shows that our real-time ca-
pable method for cost-based intonation adaptation is able
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Figure 7: Joint adaptation of bars 45-48 of A. Bruckner
“Locus Iste” (DCS, Quartet B, Take 3). The FO trajectory
plots (b,d,f,h) show the FO of the original signal (black),
the baseline (BL, grey) and the cost-based (CB, colored,
w = 0.2, p = 350) pitch-shifted signals. (a, b) Soprano
(c, d) Alto (e, f) Tenor (g, h) Bass

to approach JI tuning in vocal recordings without explicit
knowledge about scales and keys.

S. CONCLUSION

In this paper, we introduced a differentiable cost measure
for intonation processing in polyphonic music recordings,
which accounts for a tonal and a harmonic aspect in a user-
specified proportion. Our method can be used as a flexible
tool for intonation adaptation in multitrack choral music
recordings. In future work, we will investigate the percep-
tual implications of our intonation adaptation in real-world
signals. Furthermore, we want to apply this principle to
more intonation processing tasks such as adaptive tuning
of synthesizers and explore ways to incorporate additional
aspects of intonation in the cost measure.
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