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ABSTRACT 

This paper presents a Hardanger fiddle dataset “HF1” with 

polyphonic performances spanning five different emo-

tional expressions: normal, angry, sad, happy, and tender. 

The performances thus cover the four quadrants of the ac-

tivity/valence-space. The onsets and offsets, together with 

an associated pitch, were human-annotated for each note 

in each performance by the fiddle players themselves. 

First, they annotated the normal version. These annota-

tions were then transferred to the expressive performances 

using music alignment and finally human-verified. Two 

separate music alignment methods based on image regis-

tration were developed for this purpose; a B-spline imple-

mentation that produces a continuous temporal transfor-

mation curve and a Demons algorithm that produces dis-

placement matrices for time and pitch that also account for 

local timing variations across the pitch range. Both meth-

ods start from an “Onsetgram” of onset salience across 

pitch and time and perform the alignment task accurately. 

Various settings of the Demons algorithm were further 

evaluated in an ablation study. The final dataset is around 

43 minutes long and consists of 19 734 notes of Hardanger 

fiddle music, recorded in stereo. The dataset and source 

code are available online. The dataset will be used in MIR 

research for tasks involving polyphonic transcription, 

score alignment, beat tracking, downbeat tracking, tempo 

estimation, and classification of emotional expressions. 

1. INTRODUCTION 

1.1 Hardanger Fiddle Music 

The Hardanger fiddle is a traditional stringed solo instru-

ment played in the southern parts of Norway. It features 

resonance strings producing a characteristic resonating 

sound. The flat fingerboard and bridge enable the per-

former to play several strings simultaneously and the po-

lyphony level of the music is generally 2. Fast trills are 

frequently used as ornaments. Lack of annotated audio ex-

cerpts makes data-driven research on Hardanger fiddle 

music hard and this study is an attempt to remedy the situ-

ation. Our vision is to create a dataset with annotated 

pitched onsets and offsets so that accurate polyphonic tran-

scription systems can be trained in future studies, enabling 

researchers to transcribe vast existing libraries of historical 

audio recordings.   

1.2 Transcription Datasets in MIR  

Researchers have used many different techniques to create 

annotated datasets for polyphonic transcription in the past. 

One method is to record individual voices in isolation to 

facilitate easier annotation. Examples include the four-

voiced Bach10 dataset [1], the TRIOS dataset [2] consist-

ing of musical trios, a five-voiced woodwind recording [3], 

the audio-visual URMP dataset [4], and the MedleyDB 

multitracks dataset [5]. For polyphonic instruments, the 

annotation of many simultaneous notes can be cumber-

some and time-consuming. Another method for those 

kinds of instruments has therefore been to generate the 

sounds and annotations directly from MIDI. The technique 

has been used for piano datasets [6-8], but has also been 

applied across the full range of the general MIDI instru-

ment specification [9]. To increase the variability and the 

size of the dataset, researchers can use data augmentation, 

varying tempo, pitch, dynamics, and timbre during synthe-

tization [9]. 

Although the MIDI generation strategy is appealing be-

cause of its efficiency, synthesized MIDI often lacks the 

full range of variation and complexities found in real per-

formances. Researchers can in this case instead create da-

tasets by synchronizing sheet music with an associated re-

cording. This approach was adopted by Thickstun, et al. 

[10] who used dynamic time warping (DTW) applied to 

log-frequency spectrograms focused on lower frequencies.  

1.3 Mood Datasets in MIR  

Datasets spanning different moods/emotions are devel-

oped to enable researchers to train and test music emotion 

recognition (MER) systems. Many MER datasets use the 

valence-arousal model [11], with the valence and arousal 

variables annotated by human listeners. Examples include 

the MoodSwings [12], Emotion in Music [13], AMG1608 

[14], DEAM [15], and PMEmo [16] datasets.  

For a few datasets, performers have been asked to play 

the same piece of music with different emotional expres-

sions. Li, et al. [17] asked violinists to perform classical 

compositions according to different expressive musical 

terms (e.g., tranquillo) and used the resulting dataset for 

modeling. Gabrielsson and Juslin [18] asked performers to 

play with the emotional expressions “happy”, “sad”, 
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“angry”, “fearful”, “tender”, “solemn”, and “no expres-

sion”, analyzing the recordings both quantitatively and 

through listening tests. Performers control the musical ex-

pression by varying, e.g., phrasing, tempo, timing, articu-

lation, and dynamics [19-24] and the perceptual aspect of 

such features has also been modeled extensively [25-27]. 

Note that these types of features are among those varied 

for data augmentation applied to MIDI (or audio files), but 

when they are introduced by real musicians, they will be 

richer in scope and better capture the variability that can 

be expected in other real performances. It is therefore ap-

pealing to create a dataset where each song is performed 

with several musical expressions, using music alignment 

to transfer annotations between the different perfor-

mances. Not only will this bootstrap the annotation effort 

while retaining variation in the annotated notes, it will also 

introduce a new dataset for emotional expression, where 

researchers can, in extension to analyzing the audio files, 

utilize the annotations as a symbolic representation for 

MER. This strategy is therefore explored in this study. 

1.4 Score Alignment 

The task of aligning a musical score with an associated au-

dio file has been fairly widely studied, with researchers of-

ten opting for various flavors of DTW. Implementations 

differ regarding how they compute a similarity metric/fea-

ture space for alignment. Researchers can either synthesize 

or add harmonics to the score [10, 28-30], convert both 

score and audio to a chroma-space [31], or alternatively 

learn the feature space for alignment [32-35], casting the 

task as an optimization problem. 

The aforementioned strategies are aligning across full 

note lengths, but it is mainly the onsets that provide infor-

mation about timing [36]. It has therefore been suggested 

that they can be improved by detecting onsets in the audio 

[30]. One strategy in this direction is to apply DTW to a 

half-wave rectified spectral flux (SF) [36]. Ewert, et al. 

[37] instead start from a chroma before computing the flux. 

Kwon, et al. [38] used a polyphonic pitch tracker to com-

pute the feature space and found that the best results were 

achieved when including pitched onsets across the full 88-

note range. This strategy concerning the feature space is 

the closest to our implementation, but we decided to forego 

DTW. Our motivation for, and implementation of, image 

registration techniques for music alignment are described 

in Section 3. 

2. OVERVIEW AND MOTIVATION 

Our primary objective with this study was to create a da-

taset of Hardanger fiddle music with annotated onsets and 

offsets. In particular, our focus was on the annotated on-

sets. Annotating Hardanger fiddle music is non-trivial. It 

is polyphonic and contains ornaments with very fast tone 

sequences. In our preliminary studies, we learned that it is 

rather time-consuming for Hardanger fiddle musicians to 

produce annotations for tunes that they are unfamiliar with, 

and accuracy may sometimes be lacking. Furthermore, our 

overarching project also strives to collect additional data 

on expressive Hardanger fiddle performances. These cir-

cumstances led to the following design: 

1. Hardanger fiddle performers are tasked to record five 

versions of songs they are familiar with, using the ex-

pressions: normal, sad, angry, happy, and tender. 

2. They annotate notes in the normal recording from 

scratch, using computer assistance tools as aid. 

3. The normal recording is aligned with the expressive 

recordings using music alignment, so that the normal 

annotations can be automatically transferred to them. 

4. Performers go through the aligned annotations and 

make adjustments to ensure that they are correct. 

The strategy gives us a few advantages: 

• Does not introduce bias concerning timing. Since the 

normal recording is annotated from scratch, and the 

score alignment only used for aligning the two audio 

recordings, we do not impose priors regarding the ex-

act location of, e.g., onsets in the music, which would 

have been the case if an algorithm produces the initial 

annotations.  

• Ensures that annotators annotate songs they are fa-

miliar with. It is easier to be accurate and efficient 

when annotating a song that you are familiar with, and 

note sheets are not exhaustive since they do not cover 

the rich ornamentation in Hardanger fiddle music. 

• Provides five times the training and testing data for 

polyphonic transcription. With real performances of 

bowed instruments, the sound characteristics will vary 

each time a phrase is played. Thus, repeated se-

quences, particularly of ornaments, still provide train-

ing and testing data with high “entropy”.  

• Creates a dataset that can be used for additional tasks 

in future studies. Our experimental design provides us 

with both audio and symbolic data of performances 

with varying emotional expressions. This data can be 

used to study how mood is expressed on the Hardan-

ger fiddle and to develop music alignment systems.  

• Enables us to scale future annotation tasks within the 

same framework. The method will connect each note 

in the expressive performances with the notes in the 

normal performance. Thus, if we assign higher-level 

features to these notes, such as their metrical position, 

we can automatically transfer that information to the 

expressive performances. 

3. MUSIC ALIGNMENT ALGORITHMS 

Tempo variations in music are often observed and modeled 

as gradual changes developing over several successive 

notes. Friberg [39] fitted ”phrase arches” to piano perfor-

mances, with accelerando in the start and ritardando in the 

end of the phrases. Other researchers fit their observations 

using spline-shaped profiles [40] or fit the final ritardando 

using a quadratic polynomial [41]. 

The DTW algorithm is “local” in scope and will not 

model differences in tempo and gradual tempo variations 

observed across longer sections. This means that it can, 

e.g., fail to accurately stretch matched notes of different 

lengths or, when the feature space is focused on onsets, fail 

to produce convincing tempo curves for sections where the 

feature space is empty. The resulting warping path can 
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therefore become rather irregular and is also discrete, not 

fitting to a finer scale than the time frame hop length. Var-

ious remedies have been proposed to alleviate these issues, 

for example introducing special silence frames to “stretch 

out” pauses between notes [28] or trying to smooth the 

warping path in post-processing [29]. This study explores 

if techniques developed for image registration can be use-

ful as an alternative approach. Through a free form defor-

mation with a B-spline grid [42] (Section 3.2), we optimize 

across multiple frames, utilizing a smoothness penalty to 

constrain neighboring grid points from moving inde-

pendently while achieving sub-frame resolution. By adopt-

ing the Demons algorithm to music alignment (Section 

3.3), we instead also test a 2-dimensional alignment ap-

proach, where individual pitch bins are allowed to diverge 

somewhat from the warping path in order to account for 

natural variations in timing between concurrent notes. 

3.1 Onsetgram and Preprocessing 

The temporal alignment is performed on a 2-dimensional 

“Onsetgram,” consisting of onset activations distributed 

across pitch and time. The onset activations are first com-

puted using the polyphonic transcription system developed 

by Elowsson [9], trained on a wide variety of music. In that 

system, an initial network detects framewise f0 activations, 

which are used to identify the contours of the music. An 

additional network then operates across each detected con-

tour, computing an onset activation at each time frame of 

the contour. The smoothed thresholded onset activation 

function was used (cf. [Eqs. A8-A11, 9]). The onset acti-

vations were inserted at the corresponding pitch bin and 

time frame of the Onsetgram, which had a pitch resolution 

of 1 cent/bin. A Hann window of width 151 bins (cents) 

was then used to smooth the Onsetgram across pitch. Fig-

ure 1 shows the smoothed Onsetgram in green overlaying 

the f0 activations in blue. 

The pitch range of the Onsetgram was set to 2 semitones 

below the lowest annotated pitch to 2 semitones above the 

highest annotated pitch. The pitch resolution was also 

scaled down to 4 bins/semitone. To speed up processing, 

the hop size was set to 23.2 ms by keeping only every 

fourth time frame of the original Onsetgram.   

Figure 1. The Onsetgram used for music alignment in 

green overlaying f0 activations in blue across which the on-

set activations were computed. The excerpt is from the 

song Haslebuskane, also featured in Figures 2 and 3. 

Before applying the image registration algorithms, a 

start- and endpoint was computed for both audio files by 

finding the first and last time frame with a signal level 

within 10 dB of the average signal level of the audio file, 

as described by Elowsson and Friberg [43]. The normal 

Onsetgram was then re-scaled to have the same length as 

the Onsetgram of the emotional expression using linear in-

terpolation. The annotations were also re-scaled using the 

same transformation. 

3.2 B-spline Algorithm 

The B-spline music alignment implementation uses low-

level MATLAB functions for B-spline image registration 

from Kroon [44, 45]. The particular non-rigid B-spline 

alignment method was first introduced by Rueckert, et al. 

[42]. It is a free-form deformation with a B-spline grid, 

typically performed at multiple image scales (pyramid 

levels). For a precise mathematical formalization of the 

process, cf. [41, p. 64-65]. A multi-scale approach can be 

beneficial for two reasons – iterations performed at a 

coarser scale will converge fast, and the risk of reaching 

local minima is reduced. Since music may contain closely 

spaced repetitions, it seems reasonable to first align the 

coarser overall structure, ensuring that repetitions are not 

misaligned, and to then adjust notes at finer scales.  

The temporal grid spacing for the first iteration was 256 

frames (5.9 seconds), and at each subsequent iteration, this 

spacing was halved, ending with a grid spacing of 4 frames 

(93 ms) at the finest level. To avoid a too local scope with 

abrupt changes in the tempo curve at the finest level, the 

smoothness penalty of the B-spline implementation was 

used [44, 45]. This smoothness penalty constrains neigh-

boring grid points from moving independently, simulating 

the bending energy of a thin plate of metal [42, 46]. We set 

the penalty to 0.3 at the finest pyramid level, halving it at 

each level such that it was 0.005 at the coarsest scale. 

The pitch spacing was set such that the whole pitch di-

mension of the image was contained between two grid 

points at all pyramid levels, and the pitch dimension of 

these grid points reset after optimizing at each level. 

After fitting the normal Onsetgram to the Onsetgram of 

the emotional expression, the resulting forward transfor-

mation field was applied to the annotations, changing their  

 

Figure 2. The forward transformation field at each pyra-

mid level for aligning the sad and normal recordings of the 

tune Haslebuskane.  
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timing using linear interpolation. The aligned annotations 

were finally “tuned” as described in Section 3.4. Figure 2 

shows the transformation field for all seven pyramid levels 

when aligning the sad and normal recording of the tune 

Haslebuskane. 

3.3 Accelerated “Demons” Algorithm 

The diffusion model known as the Demons algorithm for 

non-rigid image registration was introduced by Thirion 

[47]. It uses the gradient ∇⃗⃗ 𝑓 from the fixed image f to com-

pute a “demons” force for deforming a moving image m. 

Wang, et al. [48] modified the algorithm by also including 

the gradient of the moving image ∇⃗⃗ 𝑚, using bi-directional 

forces,  

�⃗� = (𝑚 − 𝑓) × (
∇⃗⃗ 𝑓

|∇⃗⃗ 𝑓|
2
+𝛼2(𝑓−𝑚)2

+
∇⃗⃗ 𝑚

|∇⃗⃗ 𝑚|
2
+𝛼2(𝑓−𝑚)2

).     (1) 

The normalization factor 𝛼 introduced by Cachier, et al. 

[49] allows the force strength to be adjusted adaptively in 

each iteration. The displacement field �⃗�  is computed for 

both time (�⃗� 𝑥) and pitch (�⃗� 𝑦) deformations in each itera-

tion and added to the corresponding overall displacement 

fields Tx (time) and Ty (pitch). We used this “accelerated 

Demons” algorithm, operating over 7 pyramid-levels with 

70 iterations at each level, setting 𝛼 to 0.4 as proposed by 

Wang, et al. [48], using the basic demon example code 

from Kroon and Slump [50] as a starting point but adapting 

the registration to the music alignment task. The Onset-

gram of the recording with an emotional expression was 

used as the moving image and the Onsetgram of the normal 

recording used as the fixed image. The computed displace-

ment field could then be used as a backward transfor-

mation to transfer the annotations to the recordings with 

emotional expressions. 

In its original formulation, the computed displacements 

�⃗� 𝑥  and �⃗� 𝑦  for each iteration is smoothed before being 

added to the overall displacement fields Tx and Ty. We in-

stead opted to smooth Tx and Ty directly in each iteration. 

To understand why this improves performance, recall that 

the Onsetgram is sparse and that we must be able to accu-

rately move annotations between locations in the moving 

and fixed image that contain no salience information (e.g., 

offsets). By applying the smoothing operator directly to Tx 

and Ty, we iteratively “saturate” the displacement field 

with deformations also at locations where no gradients can 

be found in the Onsetgrams. This process also helps us 

smooth out irregular displacements resulting from errone-

ous transcriptions. The smoothing was done using Hann 

windows of length 33 across time and length 3 across pitch 

for Tx and length 17 and 3 for Ty. The reader is further re-

ferred to Cachier, et al. [49] for a discussion concerning 

the benefits of smoothing operations applied at various 

stages of the process. 

Restrictions were set on Tx and Ty to ensure that the de-

formations were not bigger than desirable from a music-

theoretical standpoint. For Tx, during each iteration before 

smoothing, we thresholded the displacement at each bin to 

not diverge more than 100 ms from the average displace-

ment in each time frame. This means that annotations at 

different pitches can be moved freely but not diverge rela-

tive to each other too much. Thus, an annotation of a bass 

note and a note in the treble where the bass note is played 

slightly before the treble note in the fixed image, but where 

circumstances are reversed in the moving image, can be 

transferred receiving correct timing, but never to such an 

extent that the interpretation of the score would be vastly 

different (>100 ms). For Ty, a fixed threshold of 70 cents 

was instead used, such that the pitch could not be displaced 

more than this. 

The displacements fields (backward transformations) 

were applied to the annotations, changing their timing us-

ing linear interpolation. Since the incorporation of a 

threshold on Tx could hinder the algorithm from displacing 

time globally, the mean displacement for �⃗� 𝑥  across all 

pitch bins is also added to Tx before thresholding and 

smoothing. Furthermore, since the Onsetgram only acti-

vates at onsets, Ty may not be particularly suitable for tun-

ing the annotations. As a default, the post-processing step 

for tuning (Section 3.4) was instead applied. However, ap-

plying Ty directly for tuning was tested in the ablation 

 

Figure 3. The Onsetgrams of both the normal and sad re-

cordings of the tune Haslebuskane (pane 1), the backward 

transformation (displacement) fields Tx and Ty (panes 2 

and 3), and the aligned Onsetgrams (pane 4). 
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study in Section 5.2. Figure 3 shows the Onsetgrams of 

both the normal and sad recordings of the tune Hasle-

buskane (pane 1), the displacement fields Tx and Ty (panes 

2 and 3), and the aligned Onsetgrams (pane 4). 

3.4 Tuning 

A method for adjusting the pitch of each note was added 

as a post-processing step, motivated by the fact that the 

fiddle does not have fixed frets and the pitch of individual 

notes can vary relatively much. For each annotation to be 

tuned, a rectangular area was first extracted from the f0 ac-

tivations (blue in Figure 1), bounded by the onset and off-

set and extending 100 cents in both pitch directions from 

the annotated pitch. The average across time was com-

puted and the resulting pitch vector smoothed with a Hann 

filter 41 cents wide. Only smoothed parts computed with-

out zero-padded edges were kept, making the length 80 

cents in both pitch directions. Peaks were detected and 

weighted based on how close they were to the annotated 

pitch as well as their pitch salience magnitude, opting to 

select the peak with the highest computed weight, and 

moving the annotation to its pitch. 

Performances may drift “locally” in pitch through into-

nation on the fingerboard, such that the pitch of notes in 

short phrases with no open strings all are a bit higher or 

lower than in another recording of the same song. The tun-

ing algorithm adapts to this by not allowing one note to be 

changed more than 45 cents in relation to the weighted av-

erage tuning change of other notes close in time and pitch. 

Due to space constraints, the reader is referred to the 

MATLAB implementation and its corresponding help text 

for precise details on all settings for the tuning algorithm. 

4. DATASET 

4.1 Recording and Annotation 

The recordings were done by two Hardanger fiddle musi-

cians, Henrik Nordtun Gjertsen (HNG) and Astrid Garmo 

(AG), who were students at the Norwegian Academy of 

Music. They recorded well-known Hardanger fiddle tunes 

in a relatively dry room in stereo using a Zoom H6 recorder. 

The annotations were done by the same musicians using 

the software Annotemus1  developed in MATLAB. An-

notemus has a graphical user interface and provides func-

tionality for creating annotations on top of a graphical rep-

resentation of the audio file. We used the f0 activations 

shown in blue in Figure 1 for this purpose. The aligned 

annotations were all initially created using the B-spline 

method which was being developed in conjunction with 

the annotation process.  

The performers could use various key commands as an 

aid during annotation. This includes audio playback of the 

current window, playback between the start and end of one 

or several selected notes, playback that starts prior to a se-

lected annotated note and ends at the annotated onset posi-

tion, playback with a click at each annotated onset position, 

and playback with a synthesized version of the annotated 

score played in one of the stereo channels. The performers 

were instructed to first try the playback that ends at the 

 
1 https://www.uio.no/ritmo/english/projects/mirage/software/ 
2 https://www.uio.no/ritmo/english/projects/mirage/databases/ 

annotated onset position for locating the exact onset times 

for the normal recording and the click and synthesized 

functionality for verifying annotations, but were free to use 

whichever method they felt most comfortable with. 

All playback functionality is offered with the option of 

slowing it down to an arbitrary speed selected by the an-

notator. Since Hardanger fiddle music contains frequent 

sequences of very fast note successions, the slowdown 

functionality was used extensively during the annotation 

process. The onset timing evaluation condition for poly-

phonic transcription is usually set to 50 ms. This means 

that we can only allow a very narrow margin of error for 

the annotations to ensure that they can be reliably used for 

evaluation. We encouraged performers to be very careful 

regarding onsets, and try to keep errors within 20 ms. Lis-

teners notice time-displacements of just 10 ms on average 

[51], but since fiddle music has rather undefined transients 

at onsets, a narrower margin than 20 ms is very hard to 

achieve. For both annotators, their first annotations were 

rejected, and they were encouraged to improve the quality 

regarding aspects that did not meet our high standards.  

4.2 Dataset Overview 

The final dataset consists of 19 734 annotated notes across 

40 stereo recordings of 8 tunes. The audio recordings and 

annotations are available online,2  as well as MATLAB 

source code.3 The dataset is summarized in Table 1.  

Title Notes Length ID 

Haslebuskane 2 828 4:35 HNG 

Havbrusen 4 114 8:50 HNG 

Ivar Jorde 1 665 3:52 AG 

Låtten som bed om noko 1 819 4:51 AG 

Signe Uladalen 2 177 4:30 AG 

Silkjegulen 2 906 5:38 HNG 

Valdresspringar 1 692 3:49 AG 

Vossarull 2 533 6:34 HNG 

Total 19 734 42:38  

Table 1. The eight tunes of the dataset, each performed 

with five different emotional expressions. The number of 

notes and the length of the recordings are computed as the 

total across the five variations. The ID identifies the musi-

cian. The last row provides totals across the dataset. 

5. MUSIC ALIGNMENT EVALUATION 

5.1 Main Results 

The performance of the two methods was evaluated by 

matching onsets aligned from the normal version with the 

human-verified onset of the expressive version and meas-

uring their distance. The two aligned recordings frequently 

vary, e.g., in ornaments, which means that many notes will 

not have a counterpart in the other recording. To account 

for this, we used weighted bipartite matching to first 

3 https://github.com/aelowsson/music-alignment 
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connect onsets of the two recordings, where the weight for 

how well a pair matches falls using a half Hann window 

up to a distance of 5 seconds and 70 cents respectively. 

Regular unweighted bipartite matching is not ideal in this 

circumstance since it can create incorrectly matched pairs 

containing ornaments with no counterparts, whenever two 

such ornaments, one in each recording, are within 5 sec-

onds of a real correct pair of onsets with a similar pitch. 

The F-measure ℱ  was measured for the matched onset 

pairs only, leaving out the around 3 % of onsets with no 

counterpart that were unmatched.  

Table 2 shows the results, with the F-measure for onsets 

within 80 ms (ℱ80) highlighted in bold. We note that the 

Demons algorithm was more accurate even though the B-

spline method was used as a starting point for the aligned 

expressive performances. Since this algorithm is also 

faster (the full dataset aligned in 2.5 minutes on an i7-

6700K processor), it was our focus in the ablation study. 

 𝓕𝟓𝟎 𝓕𝟖𝟎 𝓕𝟏𝟓𝟎 𝓕𝟑𝟎𝟎 Avg 

B-spline 91.1 95.9 98.2 99.2 28.9 ms 

Demons 95.4 98.3 99.1 99.5 23.0 ms 

Table 2. F-measures at different distance metrics as well 

as the average distance (Avg) between matched onsets for 

the B-spline and Demons music alignment methods. 

5.2 Ablation Study 

Various settings of the Demons algorithm were tested in 

an ablation study: 

• Tx Thresh: Instead of a 100 ms threshold we tested a 

strict zero threshold (0) or used no threshold (None). 

• Ty: Foregoing the use of Ty completely (No Ty), also 

skipping the tuning stage (No TT), applying Ty to the 

annotations instead of using the tuning algorithm (Ap-

ply), or using the default setting but without threshold-

ing (No Th). 

• Tx Mean: Testing to not add the mean displacement 

for �⃗�  to Tx before thresholding and smoothing (None). 

• �⃗⃗� 𝒙 : Smoothing �⃗� 𝑥  instead of smoothing Tx, tested 

across time (�⃗� 𝑥 Ti), time and pitch (�⃗� 𝑥 TP), or across 

pitch only (�⃗� 𝑥 Pi). 

• Tx Smooth: Smoothing Tx across time with shorter or 

longer Hann windows (15 or 45). 

Figure 4 shows the results of the ablation study as the dif-

ference in performance at ℱ80. The 95 % confidence inter-

vals (CIs) illustrated with black bars were derived from the 

difference in ℱ80 for individual tunes between the default 

setting and the tested setting. This difference was sampled 

with replacement from the tunes 8 × 4 = 32 times to com-

pute a single overall outcome, and the procedure repeated 

106 times to compute a distribution of possible outcomes, 

from which the 5th and 95th percentile could be extracted.  

6. CONCLUSIONS 

We have created an annotated Hardanger fiddle dataset 

with performances spanning five emotional expressions. 

 
Figure 4. The results of the ablation study for the Demons 

method, showing the change in F-measure relative to the 

default setting. Black bars indicate 95 % CIs. Note that the 

x-axis has been spliced to accommodate the lower result 

for the �⃗� 𝑥 TP setting.  

The process of creating accurate note annotations for real 

polyphonic instrument recordings can be cumbersome, 

and we hope that the developed techniques and source 

code can be useful to other researchers in the field. 

Two music alignment algorithms based on image regis-

tration were created and analyzed. The Demons algorithm 

is faster and easier to adapt to music and it also produces 

the best alignments. It can be noted that the alignment is 

evaluated using two separate annotations, so if a matched 

pair of notes have annotations that are 40 ms off each, they 

may just fail on the ℱ80 evaluation metric even if the align-

ment is performed perfectly. Furthermore, ornaments with 

no counterpart (see Section 5.1) may still be erroneously 

matched if they are within 5 seconds of each other. Thus, 

even with a few missed notes on the ℱ80 metric, we can 

still suspect that the alignment is very accurate overall. In-

formal closer analysis of the alignments also indicates that 

this is the case. 

The ablation study indicates that the proposed default 

settings for the Demons algorithm are well-adjusted. We 

note that smoothing across Tx instead of �⃗� 𝑥 is an important 

ingredient for successful Demons music alignment. The 

100 ms threshold for individual pitch bin displacements in 

Tx relative to the mean displacement is an important addi-

tion (Tx Thresh), and should be combined with adding the 

mean displacement for �⃗�  to Tx before thresholding and 

smoothing (Tx Mean). 

We intend to expand the annotations to also contain 

higher-level metrical information. Furthermore, we intend 

to develop models for polyphonic transcription and MER 

based on the dataset, something that we hope other re-

search groups will do as well. 
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