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ABSTRACT

Previous research in music emotion recognition (MER) has
tackled the inherent problem of subjectivity through the
use of personalized models – models which predict the
emotions that a particular user would perceive from music.
Personalized models are trained in a supervised manner,
and are tested exclusively with the annotations provided by
a specific user. While past research has focused on model
adaptation or reducing the amount of annotations required
from a given user, we propose a methodology based on
uncertainty sampling and query-by-committee, adopting
prior knowledge from the agreement of human annotations
as an oracle for active learning (AL). We assume that our
disagreements define our personal opinions and should be
considered for personalization. We use the DEAM dataset,
the current benchmark dataset for MER, to pre-train our
models. We then use the AMG1608 dataset, the largest
MER dataset containing multiple annotations per musical
excerpt, to re-train diverse machine learning models using
AL and evaluate personalization. Our results suggest that
our methodology can be beneficial to produce personalized
classification models that exhibit different results depend-
ing on the algorithms’ complexity.

1. INTRODUCTION

Historically, the field of MER has mainly focused on ex-
tracting meaningful acoustic features from audio and as-
sociating them to possible emotions that music can con-
vey [1]. Machine learning algorithms are trained with
these features and then linked with the emotional judge-
ments that annotators report to perceive or feel when lis-
tening to the music [2] – ultimately presented as "ground
truth" to the algorithms. One of the key issues to MER
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is the difference between perceived and induced emotions:
perceived emotions are the listeners’ judgements with re-
spect to musical properties (e.g., key, tempo, timbre), while
induced (or felt) emotions are those that the music may
arouse within the listener. Despite the effort from the field
of music cognition to better understand the psychological
differences between these emotions [3–6], their contrast
poses a fundamental obstacle to the field of MER. Namely,
the construction of the needed "ground truth" results ques-
tionable: (1) listeners are commonly confused between
perceived and induced emotions when reporting their emo-
tional judgements, (2) the inherent subjectivity from the
annotation task is typically addressed by averaging the sev-
eral annotations into a common "ground truth", and (3) the
annotation procedure is a highly demanding task resulting
in small datasets with few annotations per music excerpt.
Nonetheless, researchers from the field of MER have tack-
led this problem by: (1) identifying whether the listener’s
response is based on the judgement of perceived or induced
emotions [7] and attempting to train listeners [8], (2) using
exclusively the emotion reports from a particular listener
or group of listeners to produce personalized and group-
based models [9], and (3) introducing AL methods to re-
duce the amount of annotations required to train such algo-
rithms (see Section 2). Given the importance the construc-
tion of a "ground truth" for MER, we address two research
questions in this paper:

RQ1 - Can we exploit human agreement in music emo-
tion annotations as input for AL methodologies to produce
personalized models?

RQ2 - What is the impact of the choice of classification
algorithm on personalization of MER systems?

The rest of this paper is structured as follows: Sec-
tion 2 reviews basic definitions and previous work, in Sec-
tion 3 we detail the methodology of our study, including
the proposed consensus entropy methods and classification
schemes. Section 4 provides results of our study which are
later discussed in Section 5.

2. RELATED WORK

Individual differences of listeners have a significant im-
pact on the performance of a MER algorithm. To this
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extent researchers have proposed two distinct solutions to
tackle the subjectivity issue [1,9]: group-based and person-
alized MER models. Group-based MER assembles anno-
tators according to individual factors (e.g., sex, age, music
experience) and create a common "ground truth" for this
group. Personalized MER uses the annotations from a spe-
cific user to train a machine learning model. Yang et al. [9]
tested both approaches for the regression task and found
that: (1) group-based methods do not outperform general
models (i.e., models which are trained with the common
"ground truth" from the complete set of users), and (2) per-
sonalized algorithms largely outperform general models.
However, Gómez-Cañón et al. [10] studied the influence of
native language and self-reported lyrics comprehension on
the agreement of annotations and their impact on group-
based MER classification. The authors found substan-
tial differences in the annotations of users with different
mother tongues (consistent with findings from [11, 12]),
and a direct impact of individual differences (i.e., famil-
iarity, preference, and lyrics comprehension) on the agree-
ment of these annotations. The authors also reported that
group-based MER algorithms trained on the annotations of
users that reported understanding the lyrics, consistently
outperformed general models for a small dataset with a
large amount of annotations per excerpt, contradicting re-
sults by Yang et al. [9]. More research is needed on the
topic of group-based MER, hence in this paper we focus
on the need of personalization strategies.

Su and Fung [13] proposed using AL (i.e., uncertainty
sampling) in order to achieve personalization – which is
the focus of this paper. The aim of AL is to minimize
the annotation cost by cleverly choosing unlabeled data
instances, such that machine learning algorithms perform
better with less training [14]. Sarasúa et al. [15] used it to
reduce the amount of training instances and achieve better
classification performance for MER. Uncertainty sampling
uses the posterior probability from a classification model to
assess the most difficult/uncertain unlabeled data instances
(e.g., consider an output probability of 0.5 for binary clas-
sification). 1 Su and Fung [13] used two sampling methods
to select training instances: (1) using the most informative
instances – with highest uncertainty, and (2) using the most
representative instances – with least uncertainty. Their re-
sults suggested that AL can reduce the annotation task up
to 80% without decreasing performance of classification.
However, the performance of AL as a personalization strat-
egy appears to be hindered by low quality annotations – a
problem known as the "noisy oracle" issue: low reliabil-
ity in annotations results in poor training instances, in turn
resulting in poor classification performance. In this direc-
tion, multi-oracle AL [17,20–23] has been proposed to ex-
ploit multiple annotators by estimating the importance of
both unlabeled instances and the expertise of each anno-
tator – ultimately improving label quality. More recently,
Chen et al. [24, 25] proposed model adaptation to achieve
personalization. Their approach relied on developing a

1 We refer the reader to [14, 16–19] for a comprehensive overview of
AL methods.

general MER regression model (namely, Gaussian Mixture
Models) and progressively tying the Gaussian components
to adapt the models based on the maximum a posteriori
(MAP) linear regression. Results evidence that only 10-20
personal annotations are necessary to obtain the same level
of accuracy as a baseline model (50 annotations). How-
ever, they found no statistically significant difference be-
tween the proposed tying methods. Overall, we find two
limitations in the MER personalization literature: (1) the
evaluation of different AL strategies and (2) the definition
of best algorithms for effective personalization.

3. METHODOLOGY

The main contribution of our work is to address open ques-
tions by proposing query strategies that involve collective
judgement for personalization and evaluating diverse algo-
rithms, later introduced in Section 3.3. We use a different
query strategy to build upon the work by Su and Fung [13],
and propose a novel method to account for the collective
judgement – differing from traditional instance selection
for AL. Our work is also motivated by the multi-oracle
AL paradigm [20–22] in order to exploit this judgement.
However, instead of picking an expert/confident annotator,
we select instances which are ambiguous to the crowd –
different to those ambiguous to the algorithms. We intro-
duce consensus entropy [26] to AL for MER with a three-
fold perspective: (1) analyzing the agreement achieved by
a committee of pre-trained models (machine consensus -
MC), (2) analyzing the agreement from a committee of
annotators (human consensus - HC), and (3) taking into
account both committees (hybrid consensus - MIX). Our
work differs from [25] since we obtain personalization by
sampling informative instances and re-training the algo-
rithms, instead of progressively adapting model parame-
ters. Our main assumption is that prior knowledge about
the uncertainty of an excerpt with respect to the collective
judgement (i.e., human consensus), results in the partic-
ular instances which could be indicative of classification
boundaries across individual listeners. Music excerpts on
which we disagree upon define our personal opinions and
should be taken into account for personalization. Secondly,
we assume that the confusion between perceived and in-
duced emotions is mainly static and will not vary over
time (see [27] for a study on intra-rater agreement), hence
personalization could lead to models that can predict both
types of emotion and work must be done to determine the
type of emotion [7, 8]. To the best of our knowledge, the
use of the collective judgement as a personalization strat-
egy has never been explored in MER so far. 2

3.1 Data

Despite the complexity and difficulty of obtaining music
emotion annotations, researchers in MER have made great
efforts to create open datasets. 3 To pre-train our classi-
fiers, we used the DEAM dataset [28]. The benchmark

2 https://github.com/juansgomez87/
consensus-entropy

3 Data from the study in [13] is not openly available.
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dataset for MER, DEAM was constructed across several
MediaEval contests (2013–2015), and contains 1802 mu-
sic excerpts and dynamic arousal and valence annotations
(introduced by Russell [29]). We discretized annotations
into four quadrants for classification, following [30]: Q1
(positive valence and arousal, A+V+), Q2 (positive arousal
and negative valence, A+V-), Q3 (negative valence and
arousal, A-V-), Q4 (negative arousal and positive valence,
A-V+). 4 To test personalization, we used the AMG1608
dataset [35]. This dataset was previously used for person-
alization purposes [24,25], and is composed of 1608 music
excerpts rated with static arousal-valence annotations from
665 listeners (22 annotators from the campus of the Na-
tional Taiwan University and 643 from Amazon Mechani-
cal Turk). From the pool of annotators, we use the subset of
46 annotators that rated more than 150 songs (from which
10 belong to the campus subset).

We used two feature sets depending on the classification
algorithm (see Section 3.3): (1) low-level, emotionally-
relevant features for classic machine learning algorithms,
and (2) mel-spectrograms for novel convolutional neural
network architectures. As to (1), the IS13 ComParE feature
set [36] has been widely used for sound, speech, and mu-
sic emotion recognition. We extracted 260 features (mean
and standard deviation of 65 low-level music descriptors
and their first order derivatives) from segments of 1 sec-
ond [28], with 50% overlap, and standardize across fea-
tures – using OpenSMILE [37]. In order to test our ap-
proach on novel deep learning architectures we extracted
mel-spectrograms, based on [38]: we downsampled au-
dio to 16kHz, performed a Short-Time Fourier Transform
(window size: 512 samples ∼ 23ms; hop size: 256 ∼
12ms), and extracted a mel-scale spectrogram with 128
mel-bands – using Librosa [39].

3.2 Consensus entropy

Consensus entropy is a combination of uncertainty sam-
pling and query-by-committee methods as follows [16,26]:
(1) a committee of classifiers predicts the output proba-
bilities of unlabeled data, (2) probabilities are averaged
across the committee of classifiers, (3) uncertainty is cal-
culated as Shannon’s entropy across classes for each in-
stance, (4) q instances with highest entropy are selected
to be annotated by the oracle, and (5) classifiers are re-
trained with the provided annotations. For example, full
disagreement from a committee of four classifiers results
when each one predicts a different quadrant with 100%
probability. This yields average probabilities per quadrant
pavg = {Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}
and high inter-class entropy/uncertainty of 1.386. We re-
fer to this approach as machine consensus (MC). Secondly,
studies have shown evidence of the impact of inter-rater
agreement on the performance of MER algorithms [10,12].
Hence, we propose human consensus (HC) as a variation
from classical consensus entropy: we calculate entropy on
the normalized annotation histogram per song. For exam-

4 We refer the reader to [10] for a concise explanation of music emo-
tion taxonomies. See also [31–34] for in-depth theory.

ple, given 6 annotators for song i, we obtain a relative fre-
quency fi = {Q1 : 1/6, Q2 : 2/6, Q3 : 3/6, Q4 : 0/6}.
Thirdly, we combine the strategies for a hybrid consensus
(MIX) by stacking the probabilities and relative frequen-
cies, and calculating the overall entropy.

The proposed method is summarized in Algorithm 1:
let L =

{
(xi, yi)

}m

i=1
represent the pre-training data

(DEAM) consisting ofm labeled instances (1802 excerpts)
and U =

{
(xi)

}n

i=m+1
represent the "unlabeled" data for

personalization (AGM1608). Since
{
(yi)

}n

i=m+1
for U are

already present in the dataset, we query q excerpts and
fine-tune with their annotations. We consider xi an in-
put feature (low-level feature vector or mel-spectrogram),
and yi ∈ C = {Q1, Q2, Q3, Q4} as the annotated quad-
rant. Finally, we split annotated data by each user uj =
{0 . . . 45} with more than 150 annotations: 85% for train-
ing and 15% for testing, with no overlapping music ex-
cerpts. We denote PL,Mk

(yi|xi) as the conditional prob-
ability of y given x according to a classifier Mk trained
on L. Notice that PL(yi|xi) is the probability averaged
across all models Mk. We performed 10 iterations and
queried q = 10 instances per iteration. 5 Following Chen
et al. [25], we used random selection as a baseline.

Algorithm 1: Consensus entropy for MER.
input : Labeled data L, unlabeled data U

Pre-train each model Mk on L;
for each iteration it = {0 . . . 9} do

for each user uj do
Calculate PL,Mk

(yi|xi) for each xi ∈ U;
if MC then

Average PL(yi|xi) across frames and
Mk models;

Select q excerpts with highest entropy;
else if HC then

Calculate relative frequency fi per
music excerpt;

Select q excerpts with highest entropy;
else if MIX then

Calculate and stack PL(yi|xi) and fi;
Select q excerpts with highest entropy;

else
Select q random excerpts;

Annotate q instances by uj ;
for each model Mk do

for each (xi, yi) ∈ q do
Re-train Mk on L ∪ (xi, yi);
Compute metrics on test data;
Update L← L ∪ (xi, yi) and
U← U \ (xi, yi);

end
end

end
end

5 Tests using q = 15 and q = 40 reduced the amount of available
users (i.e., each user annotated a different amount of excerpts). We chose
q = 10 to match the study in [25]: 46 users with over 150 annotations.
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Figure 1. Average results of weight-averaged F1-scores for each type of model, across 46 users and 5 classifiers (shaded
area corresponds to CI = 95%, n = 230). HC stands for Human Consensus, MC for machine consensus, MIX for hybrid
consensus and RAND for random selection.

3.3 Algorithms

Since the query strategy requires a committee of classifiers,
we pre-trained all the following models with the DEAM
dataset using 5-fold cross validation – each classifier is pre-
trained on general annotations while still resulting in di-
verse predictions, in order to analyze agreement amongst
classifiers. For each algorithm mk = {0 . . . 4}, we ob-
tained 5 classifiers for a total of 20 models per user. We
used four algorithms in this study – based on (1) com-
putational efficiency and low memory cost, and (2) well-
established and novel approaches in the state-of-the-art –
and introduce them as follows:

Gaussian Naive Bayes (GNB). These algorithms are
based on the "naive" assumption of independence between
pairs of features, given a class label [40]. Bayes’ theorem
relates the conditional probability of the output y and the
dependent feature vectors xi. The likelihood of the fea-
tures is assumed to be normal-distributed, hence the mod-
els are Gaussian. Priors are adjusted according to the data
and variance smoothing is set to 1e-9.

Extreme Gradient Boosting (XGB). This widely used
machine learning method is based on the idea of gradi-
ent tree boosting: an ensemble of weak learners (i.e., re-
gression trees) is optimized to minimize a given loss func-
tion [41]. In contrast to other gradient boosting algorithms,
XGB is well-established given its scalability and training
speed. We performed a minor change to allow re-fitting
the algorithm and set parameters empirically during pre-
training: the maximum depth of 5 for each decision tree.

Logistic Regression (SGD). We used a model that op-
timizes a log-loss function with L2 regularization to output

class probabilities – obtaining a Logistic Regression classi-
fier fitted using Stochastic Gradient Descent (SGD). SGD
is an optimization method to fit linear classifiers using con-
vex loss functions [42].

Short-chunk Convolutional Neural Network (CNN).
In the field of automatic audio tagging, Won et al. [38]
have recently proposed a 7-layer 2D convolutional neu-
ral network that processes chunks of 3.69s of audio and
(2× 2) max-pooling layers to summarize the chunk into a
single dimension. A mixture of scheduled Adam [43] and
SGD are used as optimization methods, following [44]. We
pre-trained models for 200 epochs and re-trained for 100
epochs – best models were selected when the validation
loss improved.

4. RESULTS

Figure 1 shows the weighted-average F1-scores on the test
data averaged across 46 users, averaging across each algo-
rithm for a total of 3680 trained classifiers (46 users × 4
algorithms × 5 models per pre-training split × 4 consen-
sus entropy methods). We report weighted average scores
since datasets are class-imbalanced.

4.1 Algorithms and consensus entropy methods

Firstly, we use pairwise, one-sided t-tests (d.f. = 229, sta-
tistical significance p < 0.05) in order to evaluate differ-
ences among consensus entropy methods (i.e., HC, MC,
MIX, and RAND) for each particular model after 100 an-
notations (at least 150 annotations are available per user),
as evaluated by Chen et al. [25]. We do not perform other
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statistical tests (i.e., McNemar’s Test or Wilcoxon signed-
rank test), as proposed by Demšar [45], since each user has
annotated different songs (i.e., the training and testing data
is not the same between users).

Gaussian Naive Bayes (GNB). These classifiers ap-
pear to diminish their performance with more annotations
which is expected of naive bayesian models (i.e., limited
generalization to new data) – MIX appears to outperform
the random baseline by ∼ 1 percent point. However, none
of the comparisons between methods is statistically signif-
icant (p > 0.147).

Extreme Gradient Boosting (XGB). These classifiers
display an expected behavior: random selection results in
limited variation throughout 100 annotations, while other
methods (MC, HC, and MIX) suffer a significant fall with
the initial re-training data and increasingly improve with
the amount of annotations. In this case, HC is significantly
better than MC (p = 0.0001) and than MIX (p = 0.0017),
but does not outperform RAND.

Logistic Regression (SGD). These classifiers exhibit
increasing performance with more data – the HC method
outperforms the random baseline by ∼ 1 percent points.
Again, none of the pairwise comparisons show significant
differences across cross entropy methods (p > 0.125).

Short-chunk Convolutional Neural Network (CNN).
Classifiers exhibit a significant increase with initial re-
training data – the HC method again outperforms the ran-
dom baseline by ∼ 2 percent points. Interestingly, these
classifiers display the best performance across all mod-
els with cases of high f1-scores (approximately 0.7-0.8 for
particular users – see Figure 2). HC is significantly better
than RAND (p = 0.00811) and than MIX (p = 0.044),
while MC is better than RAND (p = 0.0291). Similar to
results reported by Chen et al. [25], these classifiers appear
to improve after 20-30 annotations and plateau.
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Figure 2. F1-scores of five CNN classifiers from user 410
using the HC consensus entropy method. Each point rep-
resents the F1-score for each classifier on the user’s test
data.

4.2 Campus subset

Given the impact of agreement on classification perfor-
mance, Chen et al. [25] split the users into two groups:

the general pool of 46 annotators and subset of 10 anno-
tators from campus (as mentioned in Section 3.1). We
perform the same analysis for this subset of annotators
(d.f. = 49, statistical significance p < 0.05). With re-
spect to the subset of campus annotators, the general ten-
dencies mentioned in Section 4.1 appear to hold, yet the
difference of performance between the proposed methods
and the random baseline appears to narrow. 6 For the XGB
model, HC significantly outperforms MIX (p = 0.0149).
For the CNN model, HC significantly outperforms RAND
(p = 0.0254) and MIX (p = 0.0152).

4.3 Effective personalization

Although the proposed methods marginally outperform the
random selection baseline in the general behavior across all
users, we observe diverse behaviors when analyzing each
user: (1) XGB and SGD classifiers exhibit less variation
across each algorithm than GNB and CNN – XGB and
SGD classifiers appear to be more stable with respect to
each re-training iteration, and (2) models do not necessar-
ily improve with more annotations – it is likely that the
annotations of a particular user are not producing person-
alization. 7 Thus, we tested evaluating each user’s algo-
rithms as seen in Figure 2 and fitted a linear regression
(using Ordinary Least Squares) to estimate if the average
metrics from the ensemble of classifiers indeed improved
as more personal annotations are presented. Namely, when
the slope of the lineal regressor is positive, we assume that
"effective" personalization has been achieved – as more
personal annotations are presented, the algorithm improves
performance on the test data. Figure 3 summarizes the re-
sults of the amount of personalized models following this
assumption: (1) GNB classifiers are rarely producing per-
sonalized models, (2) SGD classifiers appear to produce
the same number of personalized models regardless the
consensus entropy method (slightly more personalization
is achieved with HC), and (3) for both XGB and CNN clas-
sifiers all proposed consensus entropy methods appear to
produce more personalized models than RAND.
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Figure 3. Number of users with effective personalization
per algorithm from a total of 46 users.

5. DISCUSSION AND CONCLUSIONS

5.1 Discussion

Our study is inspired by the work from Su and Fung [13],
in which AL was used to progressively re-train MER mod-

6 Refer to Figure 1 from supplementary material.
7 Refer to Figures 2-4 from supplementary material.
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els with informative and representative data instances to
produce such personalized models. We also are encour-
aged by studies from Bullard et al. [46] in which the tra-
ditional approach of AL is challenged in favor of "real-
istic human interaction": instead of providing the algo-
rithms an optimal query strategy [14], we attempt to put the
human-in-the-loop by grounding emotion concepts based
on community judgements and simple inter-rater agree-
ment. We aimed at using the collective judgement of the
pool of annotators as prior knowledge for AL – our main
assumption is that highly uncertain instances in the col-
lective judgement reflect individual boundaries of classi-
fication that should be used to personalize MER models.
Thus, we propose two consensus entropy methods for AL
based on the classical uncertainty sampling and query-by-
committee strategies: (1) human consensus (HC) that uses
the pool of annotators as the committee to obtain informa-
tive samples, and (2) hybrid consensus (MIX) that consid-
ers possible complementary advantages from HC and MC.

Regarding RQ1 - Can we exploit human agreement in
music emotion annotations as input to AL methodologies
to produce personalized models? Our findings suggest that
our proposed methods appear to improve personalization
with respect to a baseline that presents random instances
for re-training. Particularly, the proposed HC method out-
performs the methods presented by Su and Fung [13],
which rely on using uncertainty sampling to compare most
informative (highest entropy - MC) data instances for per-
sonalization for 8 users. Their study reports average F1-
scores of µ = 0.35, σ = 0.30) after using AL. Our study
shows the following F1-scores from 46 users: CNN –
µ = 0.48, σ = 0.12, XGB – µ = 0.39, σ = 0.10, SGD
– µ = 0.457, σ = 0.10, GNB – µ = 0.238, σ = 0.08.
Additionally, the MIX method marginally outperforms the
random baseline, showing similar performance to the MC
method – the MIX method is likely querying similar in-
stances as the MC method for each iteration.

With respect to RQ2 - What is the impact of the choice
of classification algorithm on personalization of MER sys-
tems? We tested our method on four types of algorithms,
which display different behaviours: (1) Gaussian Naive
Bayes classifiers (GNB) appear not to generalize to new
data or work for personalization – Naive Bayes assumes
independence of predictors which is not likely the case for
overlapping emotionally-relevant features, (2) Logistic Re-
gression (SGD) appears to produce personalized models
but there is no significant difference across the consensus
entropy methods – the assumption of linearity between fea-
tures and annotations is not likely to capture more complex
relationships from features, (3) Extreme Gradient Boosting
classifiers (XGB) appear to produce the highest amount of
personalized models – however, results suggest that these
models require more annotations in order to eventually sur-
pass the performance metrics from the random selection
baseline, and (4) Short-chunk Convolutional Neural Net-
work (CNN) appears to produce the best classification per-
formance and the HC method appears to produce more per-
sonalized models – yet the "black box" nature of neural

networks might hinder the interpretability and explainabil-
ity of using these models.

In addition to the fact that our findings are limited by the
datasets and the methodologies used to build and annotate
them, we present three main limitations to be considered:

Inter-rater agreement. Previous studies [10,11,27,47]
have evaluated inter-rater agreement as defined by Krip-
pendorff’s coefficient α [48]. However, it is not possible to
use this coefficient to assess agreement for the HC method
since the annotations are categorical. Only one coefficient
can be calculated for arousal or valence over the complete
dataset (or dataset subset). Nonetheless, the relative fre-
quency (HC) can be interpreted as an empirical probability
that is informative with respect to simple agreement.

Interpretability of the MC method. The lack of agree-
ment between the classifiers might be due to other factors
different than the difficulty of the "ground truth". In this
sense, acoustic properties and the impact of the features
on predictions might produce confounding factors for the
classifiers and will be considered as future work.

Stasis of the HC method. HC is mainly static as op-
posed to MC approach: the method is restricted by the
amount of annotated songs and number of users. Thus, the
songs that result from each query will be the same for all
users, as opposed to the MC approach. In the case of MC,
every time a model is re-trained the classification bound-
aries are adjusted along with the uncertainty of new partic-
ular instances. Although the underlying principles of HC
and MC are quite different, the expectation of complemen-
tary advantages over each other was not met.

5.2 Conclusions

To the extent of our knowledge, the proposed methodology
has not been used for the MER task or other MIR use cases,
since the classic aim of AL is to make the data collection
less burdensome (i.e., reduce the workload of the annota-
tion procedure). In the context of producing user-centric
MIR [49], we argue that using knowledge about the col-
lective consensus could be beneficial for other tasks with
low inter-rater agreement: music auto-tagging [50], music
similarity [11, 27], automatic chord estimation [51], and
beat tracking [52]. Indeed, current streaming services and
social media constantly produce high amounts of diverse
responses in tagging environments – which could be bene-
ficial to test our methodology on other tasks. For the partic-
ular field of MER, building a collective "ground truth" by
merely averaging ratings across annotators might be over-
simplifying what has recently been questioned in neuro-
science research on emotions by Barrett [53]:

"One instance of [an emotion] need not look
or feel like another, nor will it be caused by
the same neurons [in the brain]. Variation is
the norm. Your range of [an emotion] is not
necessarily the same as mine, although if we
were raised in similar circumstances, we will
likely have some overlap."

For once, we could simply agree to disagree.
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