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Abstract: The capacity to anticipate transfusions during a hospital stay may allow for more 

efficient blood supply management, as well as increased patient safety by assuring a 

sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the 

accuracy of four machine learning–based prediction algorithms for predicting transfusion, 

large transfusion, and the number of transfusions in hospitalized patients. Between January 

2008 and June 2017, researchers conducted a retrospective observational study at three adult 

tertiary care institutions in Western Australia. The area under the curve for the receiver 

operating characteristics curve, the F1 score, and the average precision of the four machine 

learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random 

forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the 

classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly 

using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, 

and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were 

less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for 

ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the 

total number of packed RBCs transfused was likewise very inaccurately predicted. This study 

shows that the need for intra-hospital transfusion can be predicted with reasonable 

accuracy, but the number of RBC units transfused throughout a hospital stay is more 

difficult to predict. 

 

Keywords: Transfusions, Artificial neural networks (ANNs), logistic regression (LR), 
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1. INTRODUCTION 

 

Transfusions have decreased in most developed nations as a result of the deployment of patient 

blood management (Shander et al., 2016; Ellingson et al., 2017) in recent years. Although most, 

if not all, patients benefit from PBM (Leahy et al., 2017) it is possible that particular patient 

populations benefit more from using PBM concepts. Patients who are most likely to require 

transfusions during their hospital stay are likely to benefit the most from a PBM program 

(Hofmann et al., 2012). These are people who have experienced bleeding or anemia as a result 

of their hospitalization. If the trinity of anemia, bleeding, and transfusion could be prevented 

or handled properly, many of them may have a better outcome (Leahy et al., 2017). 

Transfusion can thus be seen as a result of the combination of anemia and blood loss in many 

circumstances, and can thus be used retrospectively as an indicator to identify those patients 

who have the greatest need to focus on bleeding, anemia, and transfusion in order to avoid each 

of these (Shander and Goodnough, 2010). It is feasible to use PBM for a specific purpose, and 
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more attention can be given to this patient group in order to avoid the trio of anemia, bleeding, 

and transfusion.  

Moreover, accurate identification of patients who require RBC transfusions may aid blood 

providers in improving the hospital's blood supply (OʼDonnell et al., 2018). Both too much and 

too little blood are either costly and unneeded, or risky for the patient's safety. As a result, 

anticipating transfusion needs could aid in the cost-cutting of the blood supply chain (Shih and 

Rajendran, 2019). 

 

2. OBJECTIVES OF THE STUDY 

 

Several publications (Gombotz et al., 2007; Meier et al., 2016; Vincent and Jaschinski, 2018; 

Bynagari, 2019) detail the parameters that influence perioperative transfusion, but only a few 

modest studies (Hayn et al., 2017; Donepudi, 2020b; Behrendt et al., 2020; Bynagari, 2020; 

Klein et al., 2017) have evaluated a multimodal, machine learning–based prediction model in 

a large jurisdictional cohort. As a result, the goal of this research is to evaluate a machine 

learning–based prediction model based on a large cohort and to cross-validate it. We believe 

that modern machine learning technologies can accurately forecast the need for transfusions 

and hence aid in identifying which patients would benefit the most from a PBM program. 

 

3. LITERATURE REVIEW 

 

Logistic Regression 

Logistic regression, invented by David Cox in 1958, is a prominent method for solving binary 

and multivariate classification issues. It's called after the logistic function, as the name implies 

(Mahadevan et al., 2019). 

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 

The sigmoid function accepts any real-valued number and returns a numeric value between 0 

and 1 as its output. A TRUE value is returned if the value exceeds a specified numeric threshold 

(often 0.5 for probability calculations). A FALSE value is displayed if it is below the threshold. 

The following is the cost function that was used to change the expected output value: - 

𝑐𝑜𝑠𝑡(𝑓(𝑥), 𝑦) =  {
−𝑙𝑜𝑛𝑔(𝑓(𝑥)),            𝑖𝑓 𝑦 = 1

− log(1 − 𝑓(𝑥)) ,       𝑖𝑓 𝑦 = 0
 

In the medical field, logistic regression is used to predict patient severity, illness risk depending 

on available factors, and fatality rate. Boyde CR, for instance, used this method to develop the 

TRISS (Trauma and Injury Severity Score). Predicting public voting trends, determining the 

probability of a product failing, and gambling on mortgage defaulters are just a few of the 

numerous applications for this method.  

 

Artificial Neural Networks 

Artificial neural networks are modeled after the way biological brains work, which are made 

up of a network of interconnected neurons (Bynagari & Fadziso, 2018). The input layer feeds 

the model's initial input, while the output layer provides the final result. One or more hidden 

layers could exist between those two. Every neuron on one level is linked to every other neuron 

on the next (Donepudi, 2020c). When a neuron receives an input, it applies an activation 

function to the signal, causing the model to become nonlinear. Backpropagation is used to train 

the network by modifying a weight matrix, which is applied to the input signals between layers. 
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The diagram shows how a typical artificial neural network works at its most basic level 

(Mahadevan et al., 2019). 

One of the most basic ANN implementations is the feedforward neural network (Neogy et al., 

2018). The input signal is sent from the input layer to the output layer in a single direction in 

this network. A different activation function would be employed depending on the type of 

network used (single or multi-layer perceptron). A single layer perceptron's activation function 

is usually the logistic or sigmoid function. 

 

Decision Trees 

Both classification and regression issues can be solved with Decision Trees (Ganapathy et al., 

2021a). It evaluates decisions and their consequences using a tree structure while taking utility 

costs into consideration. It's mostly utilized in decision-making challenges to find the most 

likely path to a positive result. It's usually depicted as a flowchart, with the goal of illustrating 

all of the potential implications of a given decision (Mahadevan et al., 2019). 

In decision trees, there are three sorts of nodes:  

i. Decision nodes – these are the nodes where the tree's flow is compared to a condition 

and branches are generated based on the answer. 

ii. Chance nodes – These are used to depict the various outcomes that can result from a 

decision node. It is used to track the various aspects involved in a decision rather than 

evaluating the flow of the tree with a condition. Ex. High and normal humidity levels 

are depicted in the diagram above. 

iii. End nodes – these are the tree's last terminating nodes, with no additional child nodes. 

They reflect the decision tree's final states. 

There are two types of decision trees:  

i. classification trees and  

ii. Decision trees with multiple levels of decision making. 

 

Trees of regression 

CHAID (Chi squared automatic interaction detector), C4.5, CART (Classification and 

Regression Tree), MARS, and ID3 are some of the most prominent algorithms for decision 

trees. The CART method, which was created by Brieman in 1984 and can be used to generate 

both classification and regression trees, is one of the most prominent decision tree algorithms. 

The Gini Index is used to pick the splitting attribute for the binomial splitting of a feature. Only 

binary splits are handled by this index (Mahadevan et al., 2019). 

Making and comprehending decision trees is simple. They aid in the provision of hard data-

based insight into circumstances. Trees provide an expert representation of a problem statement 

due to the probabilities, branches, and utility costs connected with them. However, they are 

exceedingly costly to produce, especially for datasets with a large number of outcomes and 

values that are uncertain (Bynagari & Amin, 2019). 

 

Support Vector Machines 

SVMs (Mahadevan et al., 2019) are a type of supervised learning technique that can be used to 

solve classification and regression issues. They are officially characterized by a hyperplane 

that divides all of the data points in an N-dimensional space. An SVM creates a non-

probabilistic binary linear classifier when it's trained using a set of instances. Multiple 

hyperplanes are viable alternatives for an SVM to split the data points in space (Khan et al., 

2021). By increasing the distance between the data points of both classes, the best hyperplane 

is determined (Ahmed et al., 2021). This is done to improve the accuracy of future data point 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 03, 2021 
 
 

2171 
 

mapping. The hyperplane's dimension depends on the number of features in the model 

(Ganapathy et al., 2021b). The output of logistic regression is squashed and limited to the range 

[0, 1] using the sigmoid function. The proper class label is assigned if the squashed value is 

less than or equal to a predetermined threshold. SVM, unlike logistic regression, tests if the 

output of a linear function is in the range [-1, 1]. This range serves as a buffer between data 

points that should be maximized. 

The following loss function is used to optimize the margin between data points and the: 

- c(x, y, f(x)) = ( 1 y f(x)) + 

To balance the margin maximization and loss, a regularization parameter is used. The loss 

function is given with regularization parameter:-  

𝒎𝒊𝒏𝝎 𝝀 ‖𝝎‖^2 +∑ (𝟏 − 𝒚𝟏 (𝒙𝟏, 𝝎)) +𝒏
𝒊=𝟏  

 

4. METHODS 

 

There is only one cohort in this multicentric retrospective investigation. The PBM data system 

in Western Australia was used to collect the data used in this investigation. This system 

combines information from five key hospital information systems: patient administration, 

laboratory, transfusion medicine, theater management, and emergency department. The 

specifics of the linkage have been made public (Leahy et al., 2017). Between January 2008 and 

June 2017, all emergency and elective multiday stay inpatients aged 18 and older were admitted 

to Western Australia's three adult tertiary care facilities. Hematology, tracheostomy, general 

surgery, gastroenterology, orthopedics, cardiothoracic surgery, trauma, vascular surgery, 

urology, and cardiology were among the top ten specializations in the study, which included 

73 distinct specialties. 

Table 1 provides an overview of the most essential demographic and preoperative data 

provided. The mean values for numerical features are displayed in this table, along with 

standard deviations in parentheses. The data included 233,576 hospital stays from 144,419 

different patients.  

The following is how the data was preprocessed and cleaned: 

1. Patients whose hemoglobin (Hb) levels were low at the time of admission were excluded. 

Patients of unknown sex and those with strange admission dates were also eliminated from 

the study. We now have 206, 270 stays from 131, 040 different patients. 

2. Because we sought to create a predictive model at the time of admission to the hospital, 

we excluded variables that contained information obtained after admission. 

Additionally, any variables containing free text were deleted because they were difficult 

to employ in our forecast. As a result, the following 21 characteristics remained: age at 

admission, sex, elective/non-elective, primary diagnosis code, secondary diagnosis code, 

diagnosis-related group (DRG) code, Charlson Comorbidity Index (CCI), admission Hb 

level (g/L), had any transfusion (RBCs, fresh frozen), Charlson Comorbidity Index (CCI), 

Charlson Comorbidity Index (CCI), Charlson Comorbidity Index (CCI), Charlson 

Comorbidity Index total number of cryoprecipitate units transfused, total number of 

plasma units transfused, total number of platelet units transfused, total number of RBC 

units transfused, in hospital mortality, total number of cryoprecipitate units transfused, 

total number of plasma units transfused, total number of platelet units transfused, total 

number of RBC units transfused. 

3. As transfusion consumption decreased with time, we encoded the year of admission as an 

extra number characteristic. 
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4. All numerical variables (e.g., age at admission, admission Hb, etc.) were standard 

normalized. 

5. The primary diagnosis code, which was supplied as an International Classification of 

Diseases, Revision 10 code, was broken into two parts, with just the first half being utilized 

as an added feature. 

6. The primary or secondary diagnosis code was assigned to category “minor” if it appeared 

in less than 0.1 percent of the records (fewer than 205 occurrences in the data set). 

7. All categorical features were then one-hot encoded after that. One-hot encoding is a 

popular encoding method. It works by making a column for each category in the feature 

and assigning a 1 or 0 to indicate whether the category is present in the data. The total 

number of columns in the final data collection was 1357. 

 

Table 1: Demographic data 

Variable 

All 

patients 

N = 

206,270 

(100%) 

Had no 

RBC 

transfusion 

n = 180,614 

(87.6%) 

Had RBC 

transfusion 

n = 25,655 

(12.4%) 

Had 

transfusion 

but 

not mass 

transfusion 

n = 24,686 

(12.0%) 

Had 

massive 

transfusion 

n = 967 

(0.4%) 

Patients, n (%) 

Hospital 1 

60, 245 

(29.1) 

53, 084 

(29.3) 7, 160 (2.7) 6, 942 (28.0) 217 (22.4) 

Hospital 2 

29, 831 

(14.4) 

25, 985 

(14.3) 3,845 90.4) 3, 751 (15.1) 93 (9.6) 

Hospital 3 

116,192 

(55.3) 

101, 543 

(56.1) 14,648 (5.6) 13, 992 (56.6 656 (67.7) 

Specialty, n (%) 

General 

surgery 

47, 470 

(22.9) 

43, 410 

(24.1) 4,060 (15.8) 3,736 (15.0) 322 (33.3) 

General 

medicine 

37, 509 

(18.1) 

32, 285 

(17.8) 5, 223 (20.3) 5, 108 (20.6) 114 (11.8) 

Orthopedics 

29, 448 

(14.2) 

25, 347 

(13.9) 4, 100 (15.9) 4, 053 (16.3) 46 (4.8) 

Cardiology 

27, 698 

(13.3) 

26, 158 

(14.4) 1,539 (5.9) 1,444 (5.8) 94 (9.7) 

Other 

64, 141 

(31.0) 

53, 410 

(29.5) 

10, 730 

(41.7) 

10, 342 

(41.9) 387 (40.0) 

Age, y, median 

(range) 64 (47-77) 69 (55-80) 64 (46-77) 70 (55-80) 59 (75-42) 

Sex, n (%) 

Female 

90, 213 

(43.6) 

78, 624 

(43.4) 

11,316 

(45.1) 

11,587 

(45.1) 270 (28.9) 

Male 

116, 057 

(55.2) 

101, 989 

(56.4) 

14, 067 

(54.7) 

13, 370 

(54.1) 696 (71.9) 

Charlson 

comorbidity 0 (0/1) 0 (0/1) 1 (0/3) 1 (0/3) 

 

1 (0/3) 
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index 

Length of stay, 

d, median 

(range) 4 (3-7) 

 

 

4 (2-6) 9 (2-18) 9 (5-18) 19 (9-34) 

Length of stay 

ICU, h, 

median (range) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 90 (24-215) 

Anemia at admission 

None 120, 424 116, 192 4, 231 3, 962 268 

Mild 39, 870 36, 065 3,804 3,597 338 

Severe 7, 353 861 6, 491 6,338 152 

Hemoglobin 

concentration 

admission, 

g/dL, 

median (range) 

12.8 (11.1-

14.2) 

13.2 (11.6-

14.4) 

9.4 (7.8-

11.4) 

9.3 (7.8-

11.4) 

10.9 (8.8-

12.7) 

RBC 

transfusion, 

median (range) 0 (0-0) 0 (0-0) 2 (2-3) 2 (2-3) 11 (4-16) 

Cryo 

transfusion, 

median (range) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 4 (0-9) 

FFP 

transfusion, 

median (range) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 6 (2-10) 

Platelet 

transfusion, 

median (range) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 1 (0-3) 

Complications 

Postprocedural 14.352 9, 219 5, 132 4, 654 477 

Infections 2, 203 1, 277 1, 425 1, 317 107 

Cardiovascular 7, 814 9, 219 4, 871 4, 506 364 

Respiratory 7, 357 4, 563 4, 563 2, 555 237 

Gastrointestinal 7, 814 7, 814 2, 793 2, 483 173 

Genitourinary 7, 276 5, 156 2, 657 2, 373 190 

Hematological 4, 349 865 3, 483 3, 252 230 

Mortality (%) 2.2 1.5 6.3 5.8 18.0 

 

Note: Demographic parameters of patients included. 

As classification targets, we chose the incidence of RBC transfusion (binary result, 

classification) and the occurrence of large transfusion (binary outcome, classification). Massive 

transfusion was defined as receiving at least 10 RBCs in less than 24 hours while in the hospital. 

We used the model selection technique for four state-of-the-art machine learning methods in 

the two classification scenarios: logistic regression (LR), random forests (RFs) (Breiman, 

2001) artificial neural networks (NNs) (Hopfield, 1988) and gradient boosting (GB) (Ahmed 

& Ganapathy, 2021). In addition, the number of RBC transfusions (an integer outcome) was 

predicted. 
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The following model selection technique was used to see if machine learning could learn these 

outcomes: we took 10% of the data from the cohort (20,461 rows; 13,104 unique patients) and 

used it to tune the parameters (20,461 rows; 13,104 unique patients). The remaining 90% of 

the data was utilized to create a training and test set, with fivefold cross validation used to 

evaluate each method's ability to generalize to previously encountered cases. If a patient had 

multiple hospitalizations, the training or the test set were completely to blame. To prevent 

overestimating the model's ability to generalize to previously unseen data, this is necessary 

(Donepudi, 2020a). The operation took place. 

The models were assessed using the following criteria for the classification task: balanced 

accuracy, area under the receiver operating characteristics [ROC] curve (AUC), precision (also 

known as positive predictive value, recall, F1 score, and average precision (AP; the area under 

the precision recall curve), and average precision (AP; the area under the precision recall 

curve). The decision criterion was set at the harmonic mean of precision and recall that 

maximized the F1 score The F1 score was chosen because of its resistance to class imbalance 

(assigning all patients to the larger class would yield a high accuracy but a poor sensitivity). 

RFs, artificial NNs, Huber regression (Sun et al., 2018), and GB were also used to predict the 

number of RBC transfusions. For those patients who underwent at least one RBC transfusion, 

we forecasted the number of transfusions for each patient separately. A linear regression 

between the number of RBC transfusions predicted and the number of RBC transfusions 

actually administered was done to determine the quality of the techniques (Bynagari, 2018). 

The root mean squared error (RMSE) as well as the R2 score were determined. 

 

5. RESULTS AND DISCUSSION 

 

Results: 

The final data set of our 10-year study includes 206, 271 inpatient hospitalizations. Table 1 

presents a summary of demographic statistics. The median patient age was 65 years 

(interquartile range: 30 years), with women accounting for 43.7 percent of the total. At least 

one unit of RBCs was given to 12.4 percent of the patients admitted. RBCs, cryoprecipitate, 

FFP, and platelets totaled 93, 375 units, 24, 662 units, and 19, 384 units, respectively. The 

median number of RBCs transfused was two in the group of patients who received at least one 

unit of RBCs. All other components (cryoprecipitate, FFP, platelets) in this group had a median 

of 0, showing that in most cases (Ellingson et al., 2017), RBCs were given with the goal of 

increasing Hb concentration rather than treating severe bleeding with accompanying 

coagulopathy. Massive transfusions were performed on only 0.5 percent of all patients. A 

median of 11 RBC units, 4 cryoprecipitate units, 6 FFP units, and 1 platelet unit were transfused 

in these patients. 

At least 1 unit of RBC transfusion could be predicted rather reliably using our four predictive 

models. The AUCs were 0.966, 0.965, 0.963, and 0.966, respectively, while using NNs, LR, 

RFs, and GB. F1 scores were 0.749, 0.748, 0.743, and 0.755, with average precision values of 

0.828, 0.820, 0.821, and 0.835. (For details see Figure 1). Overall, the Hb at admission, the 

patient's age, and the CCI were the most important features for predicting transfusion of at least 

1 unit of RBCs. The CCI estimates a patient's one-year mortality based on a variety of comorbid 

illnesses. 
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Figure 1: Transfusion of at least 1 RBC unit. Transfusion of at least 1 RBC unit. A, ROC 

curves for the different methods. B, Precision-recall curve for the different methods 

 

The four techniques for forecasting big transfusions were shown to be less effective. Because 

of the asymmetric nature of this prediction job (Figure 2), the AUC values of the ROC analysis 

were relatively high (0.945, 0.949, 0.932, 0.947, respectively), but the AP values were quite 

low (0.162, 0.176, 0.174, 0.184, respectively). The most crucial features for transfusion 

prediction were no longer as evident. It's not surprise that the quantity of RBCs transfused 

prediction was disappointing, given that huge transfusion prediction isn't trustworthy with the 

features available. The R2 score for NNs was 0.152, 0.122 for Huber regression, 0.137 for 

ordinal regression, 0.135 for RFs, and 0.176 for GB, respectively, with RMSE of 16.549, 

17.140, 16.890, and 16.094 for each of these models, indicating that the actual number of 

transfusions cannot be predicted accurately with the features used. 

 
Figure 2: Massive transfusion. Prediction of massive transfusion. A, ROC curves for the 

different methods. B, Precision-recall curve for the different method 



International Journal of Aquatic Science  

ISSN: 2008-8019 

Vol 12, Issue 03, 2021 
 
 

2176 
 

Discussion 

Predicting the number of patients who will need blood transfusions during their stay in the 

hospital will be important for two reasons. First and foremost, it allows for reliable 

management of the allogeneic blood supply chain (OʼDonnell et al., 2018; Shih and Rajendran, 

2019); however, it also has the potential to help classify the risk profile of an individual patient 

requiring transfusion (Hayn et al., 2017), highlighting the need to implement PBM measures 

as thoroughly as possible in this specific patient. However, only a small number of 

characteristics are available at the time of hospital admission that could aid in predicting the 

need for transfusion later on. With a manageable number of variables provided upon hospital 

admission, we were able to predict which patients would require RBC transfusions using 

modern machine learning technologies. 

We did not limit prediction to one patient group, as some other studies have done (Jo et al., 

2020; Huang et al., 2018), but instead produced a model that may be utilized across a wide 

range of indications. However, despite the fact that this prediction has proven to be very reliable 

for the classification of “transfusion” vs. “no transfusion,” we discovered in our database that 

the total number of RBC transfusions per patient and the occurrence of massive transfusion in 

a specific patient cannot be reliably predicted, a phenomenon that has been described in liver 

transplantations by other groups (Cywinski et al., 2014). This is (a) primarily due to the task's 

severe asymmetry, and (b) most certainly due to the fact that the characteristics carrying the 

necessary information are unlikely to be included in our data set. It is possible that the grounds 

for huge transfusion do not materialize until after the treatment procedure has begun, making 

it impossible to foresee massive transfusion ahead of time. Furthermore, at the time of 

prediction, the influencing factors for the number of RBCs required may not be known. 

Modern machine learning algorithms have the potential to change prediction tasks in a variety 

of fields, including medicine (Rush et al., 2018). Whereas only LR models could be used to 

handle linear classification tasks a few years ago, numerous nonlinear relationships can now 

be accurately characterized using recent machine learning approaches such as decision trees or 

NNs. However, only when the underlying data cannot be characterized linearly can the 

accuracy of these modern methods greatly outperform the old approach (Couronne et al., 2018). 

The use of an LR model for the classification task of transfusion vs. no transfusion yielded 

remarkably good results in our data set. 

GB had the best prediction performance, as evidenced by its high AUC, high precision recall 

values, and best F1 score, depending on the outcome parameters. This makes GB an important 

tool in our clinical scenario, albeit it should be noted that the other ways were only marginally 

poorer and that there is no obvious winner when it comes to the other machines method of 

education. GB had the best prediction performance, as evidenced by its high AUC, high 

precision recall values, and best F1 score, depending on the outcome parameters. This makes 

GB an important tool in our clinical scenario, albeit it should be noted that the other ways were 

only marginally poorer and that there is no obvious winner when it comes to the other 

machines method of education. 

This mathematical selectivity can be applied to a variety of clinical cases. Initial and foremost, 

using our GB model, the chance of a transfusion could be estimated for every hospital stay 

following the first blood sample. Patients are currently assigned to a PBM program mostly in 

the weeks leading up to a surgical operation, whereas medical patients are frequently 

overlooked (Franchini et al., 2019). This strategy, however, overlooks the possibility of 

identifying all patients who potentially benefit from PBM beginning (including those who 

aren't in the midst of a surgical operation). 
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Surprisingly, admission type (elective or non-elective) and DRG code do not play a major 

impact in our model, indicating that surgery is simply one factor that influences transfusion 

need. Although PBM should not be viewed as a measure implemented only in a specific group 

of (surgical) patients, but rather as a general paradigm to treat all patients, it appears prudent 

to identify patients at high risk for transfusion prior to their hospital stay in order to take the 

necessary precautions. The Hb at admission, the patient's age, and the CCI score were revealed 

to be the three most relevant features in our model. Although it is well recognized that these 

three characteristics can play a significant impact in the clinical prediction of transfusion 

(Gombotz and Knotzer, 2013), we were able to acquire the best classification results utilizing 

recent machine learning technologies. It's worth noting that all previous articles on transfusion 

prediction have focused on specific clinical scenarios, primarily total hip or complete knee 

replacement. Despite the fact that more particular features could be employed in these 

publications due to the uniform preparation of these specific patient groups, the classification 

quality of these models is often lower than our model. We also trained LR models using the 

most critical features (Hb at admission, age, and CCI) to see if adding more features helped or 

not.  

The large number of patients that might be used in the training procedure is one of our 

prediction model's strengths. To our knowledge, this is one of the largest data sets used in a 

general hospital population for such a task. We also used information from three additional 

sources. The majority of the other studies rely on smaller data sets from a single center in 

specific clinical scenarios. . As a result, our prediction model may be applied to a wide range 

of clinical circumstances without requiring adaptation to a new training set. Our training set is 

made up of hospitals in Western Australia that used PBM during the data collection period 

(Leahy et al., 2017). As a result, PBM measurements may have a limited role at the start of 

data collecting before becoming more important afterwards. As a result, we can't rule out the 

possibility of some time series effects over the data collection period from 2008 to 2017. 

Because every newly added patient will have a higher year of inclusion than all of the patients 

in the training set, we employed the year of admission as a feature (Donepudi, 2021). This 

statistic, however, most likely reflects current clinical practice, as practically all hospitals are 

in the midst of implementing PBM at the moment, and as a result, transfusion practices may 

alter over time. 

As a result, we cannot rule out the possibility that our model will perform worse in predicting 

transfusion needs in the three Australian centers in a few years when PBM is fully implemented 

in all of the hospitals. We only used a small range of features that are available at the time of 

admission to the hospital. Our model can be transferred to other hospitals using this strategy. 

The disadvantage of this technique is that our model's precision is limited due to several 

missing variables that could aid in the identification of patients at risk for transfusion. However, 

our findings do not indicate that any of the anticipated transfusions may be avoided with 

alternate treatment. As a result, clinical applicability is limited at this time, as the benefit of 

any extra attempts to lower the risk of bleeding, anemia, or transfusion is unknown. 

 

6. CONCLUSION 

 

For our research, we used four distinct prediction models. The “gold standard” of classification 

tasks was LR. The more current competitors, RFs, GBs, and ANNs, were selected since they 

also allow out-of-the-box nonlinear modeling. In the medical field, these instruments have been 

shown to be quite effective at predicting outcomes. Other methods, which were not included 

in our study and potentially outperform our results, are available. Transfusion can be 
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successfully predicted at the time of hospital admission using advanced machine learning 

methods. The ability to forecast the number of RBCs transfused or the likelihood of large 

transfusion was less successful. Knowing whether patients are at risk for anemia, bleeding, and 

transfusion after admission could assist improve their care and result in the future. 
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