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Abstract 

There has unarguably been an increase in how complex modern systems are when it comes to 

Chips (SoCs). This, coupled with the rising demand for a time-to-market provision lower than 

usual, automation assumes an ultimately essential component in designing hardware. As a matter 

of particular relevance, this comes in handy for tasks that are time-consuming or overly complex 

in nature. By optimizing the cost of design for any hardware component, automation becomes an 

effective reality. In fact, design cost can be reliant on a number of objectives, in semblance to the 

trade-off between the hardware and the software. Because this task can often be multiplexed, the 

designer in charge will have little to no means of delivering timely and efficient optimization for 

the even larger and more compound models. This paper initially demonstrates that the DRL is an 

ideal solution for the problem encountered in this process. Thereafter, using a Pointer Network, 

which is a system of neural elements painstakingly tailored to play a role in the application of 

combinatorial complexities, we measure a trio of DRL algorithms against a specified challenge. 

The outcomes realized in the many cases showcased the developments that have occurred by the 

said DRL algorithms in comparison to traditional models for optimization. Furthermore, through 

the use of reward re-dispensation suggested in the recently published RUDDER technique, the 

paper garners substantial betterments on the part of complex designs. Herein, the average 

optimization obtained is 15.18 percent area-wise. On the application size, the average is 8.25 

percent, while being 8.12 percent on the executive time. This happens with industrial hardware-

cum-software interface design data sets.  

Keywords: Cost Optimization, Deep Learning, DRL, Artificial Intelligence 

INTRODUCTION  

The rapid development of Artificial Intelligence (AI) has been brought on by the significant 

progress of computer networks as well as hardware. However, as Moore’s Law and Dennard 

scaling to an end, the glove is now experiencing a significant shift towards specifically tailored 

hardware in order to meet Artificial Intelligence’s exponentially increasing demand for computer 

systems. Be that as it may, the chip designs of today tend to take years to come up with. That 

brings us to the speculative task that is the optimization for machine learning models of the next 
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2 to 5 years. When the design of a chip has a substantially shortened cycle, it would be possible 

for the hardware to adapt more rapidly to the equally rapidly developing field of Artificial 

Intelligence.  

In this research, it is our belief that Artificial Intelligence, by itself, will provide the means 

through which the cycle of a chip design can be truncated. That puts the hardware and Artificial 

Intelligence in symbiotic relations with each other, thus turbocharging the advances on the latter. 

With this paper, we introduce a training-based method for placing chips, which happens to be 

one of the most complicated and time-consuming processes in designing chips. Placing a netlist 

macros graph like the SRAMs and standard cells—logic gates like NAND, XOR, and NOR—

onto the canvas of a chip in such a manner that the power, performance and area (PPA) will be 

optimized (Shahookar Mazumder, 1991). That will occur while obeying the ramifications that 

exist around the density of placement and routing congestion.  

It is quite important to improve on how optimizers off the shelf perform, mostly for the time-

challenges optimization drawbacks. Case in point, the LMA algorithm (Pollefeys et al., 1996) 

has become a popular choice for a good number of real-time computer vision challenges (. That 

includes tracking objects using video enablers—where only a small amount of time can be 

allocated to the optimizer on every emerging frame of video. In fact, time-limited optimization 

has become an increasingly critical problem when it comes to applications like machine 

perception, operations research and robotics.  

For these problems, the objective is to achieve the maximum solution in a specific time frame. 

Considering the unique attributes of time-constrained issues, there is a likelihood that the 

heuristic-dependent controllers employed in the off-shelf optimizers may not deliver particularly 

impressive results. In addition, touchstone nonlinear optimization methods such as LMA are not 

in the capacity to address challenges like the stop time for an unrewarding native search or the 

right time to visit a part of the parameter that was recently visited.  

What is Reinforcement Learning (RL)? It is a machine learning method which involves training 

optimal controllers using case studies. This learning method is, apparently, an ideal candidate 

when it comes to the improvement of the heuristic-dependent controllers put into use in the most 

widespread and most used algorithms for optimization. The upper hand RL models have over the 

other optimal control methods is not requiring initial knowledge of the subsisting dynamism in 

the system. Plus, the designer is at liberty to select the reward metrics that most complement the 

desiderata for the delivery of the controller. For instance, when optimizing under time 

constraints, an ideal reward can be achieving the lowest possible loss within a set period of time.  

REVIEW OF RELATED LITERATURE 

The concept involving the use of RL in optimization is not a novel one (Ganapathy, 2021a; 

Zhang, 1998; Gambardella and Dorigo, 1995; Boyan and Moore, 1998; Moll et al., 2000). 
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Nonetheless, the previous approaches have shed more light on using RL models in the 

development of problem-focused optimizers for NP-holistic issues. In this research, we have a 

focus on leveraging the RL techniques to modify the controllers that are implicit in the most 

prevalent and most used algorithms for optimization. Our particular goal is to make sure the 

considered algorithms become more efficient to carry out optimization on problems that are on a 

time budget.  

As will soon be demonstrated, a basic RL method can culminate in substantial developments in 

the performance of these well-known packages for optimization. There is also existing research 

on the LMA approaches’ empirical evaluations as against other nonlinear optimization models in 

the computer vision ecosystem (Paruchuri, 2021; Cristinacce and Cootes, 2006). In a study 

(Lourakis and Argyros, 2005), the LMA approach is compared with Powell’s dog-leg technique 

based on the bundle adjustment issue.  

Global placement is no new challenge when it comes to chip design. It requires optimization 

with a multiplicity of objectives. Since the turn of the 1960s, a multitude of models have been 

introduced. So far, they all have fallen into a trio of classes, the first of which is the partitioning-

based application. The second and third categories are the stochastic or hill climbing method and 

the analytic solvers, respectively. From the 1960s, it has been the partitioning-based approach to 

the general placement issues (Ganapathy, (2021) that has been practiced by academic and 

industrial laboratories. That proposes (Khan et al., 2021; Kernighan, 1985; Fiduccia & 

Mattheyses, 1982) the resistive network-dependent applications (Bynagari, 2018). These 

approaches are defined by a divide-and-conquer method wherein the netlist as well as the canvas 

on the chip is partitioned in a recursive fashion until problems that are small enough emerge.  

At this point, the subsisting netlists are deposited in the sub environments with the aid of optimal 

problem solvers. Such methods are incredibly fast to implement, while being able to habitually 

scale to more sizable netlists due to their hierarchical natures (Vadlamudi, 2021). Be that as it 

may, when each of the sub-issues are optimized, the partition-based applications give up the 

quality of the general solution—particularly when it comes to routing congestion. Additionally, a 

poor-performing early partition can culminate in end placement (Kirkpatrick et al., 1983) that 

cannot be salvaged.  

TRAINING MODERATION POLICIES FOR OPTIMIZATION ALGORITHMS 

The tractability of learning for a controller is of utmost importance. To ensure this, it remains 

critical to compress the whole history of locations that were visited when optimization was 

ongoing to a handful of enough measurements referred to as the state. For this paper’s purpose, 

we opted to maintain a restriction in the state of space to a few numbers that accurately 

symbolize the most recent time limitations and the current changes evident in the optimization 

process. The space wherein the action takes place is restricted through observing that the 

ongoing approaches to nonlinear optimization make for salient propositions for the next location 
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to reach (Ganapathy, 2020a). By this means, the action space in our research is able to encode 

every fixed set data of optimization sub processes for the following iteration. That goes along 

with the actions that govern all the heuristic parameters in each sub-routine optimization.  

Case in point, schedules meant to update η in terms of gradient descent as well as the heuristics 

factored into the modification of the value of λ in the LMA environment (Vadlamudi, 2020). 

Also, to better define the optimality of a controller, our research defines an outcome function that 

is indicative of the demand for the solution created while optimizing. Contextually, optimizing 

with quasi-rigid time restrictions and an adequate rewarding system creates a balance in the 

reduction of loss on the part of the objective controls. This is done with some steps that are 

needed to realize the said reduction. In the optimization that involved a fixed budget, the more 

natural choice could be the general decrease in the loss function inside the allotted cut of 

function-facing evaluations. In cases of particular application, with semblance to the spirit work 

of Boyan (Boyan, 1998), the reward system can be amended to cater to features of transitional 

solves most likely to be indicative of the desiredness of the ongoing location.  

With the state space, reward function and action space for a particular optimization task, 

reinforcement training approaches make for an ideal set of methods for training the controller of 

an optimization system. There may be countless algorithms for reinforcement learning that are 

just about suitable for the formulation of our problem, we favor the Least-Squares Policy 

Iteration (Bynagari, 2017). LSPI is quite the attractive deep learning algorithm because it is 

capable of handling continual state spaces. What’s more, the algorithm is effective when it 

comes to the amount of interaction it can have with the network in order to learn suitable 

controllers. It’s also the ideal select given that it has no dependency on the subsisting model of 

the procedure’s metamorphosis. LSPI can also learn models that can be modified based on 

interpretations.  

 

Figure 1: LSPI procedure with two steps of feature embedding and value functions. 

The LSPI procedure is not only quite iterative but also can repeatedly apply these two steps until 

it reaches a point of convergence. The first step involves the approximation of the action-value 

function in terms of a linear blend of non-modifiable set of basis controls. The second step is the 
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greedy improvement of the ongoing policy over the estimated value function (Figure 1). Bases 

represent the functions of the state while the action can assume nonlinear forms. This application 

comes in handy for the amount of interactions needed with the system of dynamics. Plus, it can 

reuse a set of examples for the evaluation of countless policies. That is a critical feature, given 

the need to ascertain the difference between the LSPI and the preceding applications such as the 

LSTD. The LPSI procedure’s output is a weight vector that interprets the action-cum-value 

function of the optimized policy as a linear amalgamation of the rudimentary vectors.  

Our approach for training the controller of an optimization system comprises two stages. In the 

first stage, we collect samples via interactions between a randomly selected optimization 

controller and a problem that needs to be optimized in a series of optimization sessions with non-

adjustable durations. The samples come in tuples form (s, a, r, s0) where s0 stands for the state 

that is realized during action execution, beginning from the states until when the reward function 

finally kicks in. In the second stage for learning the optimization controller, our algorithm puts 

the LSPI into use to train an action-value system. It also implicitly trains an optimal policy which 

is often provided by the greedy maximization of the said function over the actions that occur for 

a particular state in the optimization process.  

OPTIMIZING NONLINEAR LEAST-SQUARES FUNCTIONS USING A FIXED 

BUDGET 

This paper showcases the capacity of our deep learning method to not only achieve maximum 

delivery to nonlinear optimization approaches that are off the shelf, but also give insights into the 

individual policies as well as action-value controls. The classical nonlinear challenges and the 

superficial recognition assignment were both created with regards to optimization given a rigid 

budget of evaluation-facing functions. The requirement proposes an inherent reward function 

wherein L represents a loss function that we attempt to bring to a minimum. Here too, B 

represents the budget involved in function evaluations, while I stands for indication function. 

Then, Xopt is the location where there is the least amount of loss visited in the ongoing 

optimization session.  

For controllers, the reward function serves as an encouragement. It is for the controllers that 

realize huge decrements in the loss inside the station budget of the function evaluations 

(Ganapathy, 2020). Every optimization challenge assumes the making of a minimizer for the 

total squares of nonlinear controls. Thus, they are ideally suited to the Levenberg-Marquardt 

method of optimization. The space of action taken into consideration in our tests comprise 

modifications to the damping element applied in the LMA. It involves the decision of whether 

the final descent step should be discarded with a pair of actions that the LMA cannot avail. 

Included actions are moving onto a fresh random location in the objective function’s domain. It 

also included going back to the best location discovered in the process and delivering a single 

descent step with the LMA approach while employing the ongoing damping factor.  
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The amount of action performances that are availed in every step is 8. Only various 

amalgamations of modifications to λ and revisiting actions get 6. The space of state used in 

enabling the action decision comes with a window history of specific length that encodes 

whether or not a given previous step decreased or increased the remaining inaccuracy from the 

initial session. The window, in context, is adjusted to size 2 in the majority of our procedures. 

Nevertheless, our experiments considered evaluating the interpersonal development that occurs 

when the window size is set to 1 against 2. In our state space, we also included the number of 

function-focused assessments remaining in the set budget and a challenge-specific state attribute. 

Both the action space and state are mapped via a garner of rigid basis controls. The LSP 

algorithm then linearly combines to approximate the best possible action-value performance.  

To proceed, we select a basis that isn’t complicated and enables seamless interpretation of the 

weights that have been trained under the LSP algorithm. With this basis, we are able to 

independently address each action, thus building up a tuple of basis controls for every action in 

the space. The classical optimization challenge and outward sign categorization challenge both 

require the tuple of basis. It involves a two-step history window regarding if the loss witnessed 

an increase or saw a decrease in the past two modifications alongside the amount of phases left 

currently in the cost analysis. As for the task concerning recognizing facial expressions, the tuple 

adds a basis.  

To verify the method, we apply the approach to a dataset of standard nonlinear optimization 

challenges (Bynagari, 2016). In this problem data set, there is a well-known optimization 

challenge that cuts across a long stretch of nonlinear performances. Cases in point, the 

Rosenbrock function, the Helical Valley and the Powell Singular function. When it is limited to a 

20-function-evaluation budget, our approach can learn a policy. That results in a 7 percent 

increase in gain compared to the LMA’s possible results. This performance is quantified as the 

summed decrease in losses from the point of origin.  

THE CLASSIFICATION OF FACIAL EXPRESSIONS 

Box-filter characteristics that were successful at detecting faces (Bynagari, 2015) also proved 

potential to detect facial expression when boosting methods are put into the combination. The 

reaction from the box-filter to an image patch is ascertained through weighting the total pixel 

brightness in several boxes. This is done via a coefficient which is defined by the said kernel that 

is the bix-filter. In the research, we regard the challenge of attribute selection as a procedure for 

optimization over an endless parameter space. The space defines an unending group of box-

filters that comprise several as those that have been proposed (14) as special scenarios. Every 

characteristic can be described in terms of a vector with six depicted dimensions. 

Then, we trained a detector to determine the absence or presence of a smile. We do this with the 

amount of pixel intensities that occur on the image patch comprising a new face. This is 

accomplished by employing the periodical retrogression process known as L.2-boost (Bynagari, 
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2014). With L.2-boost, we were able to create fervent categorizers by modifying the leftovers of 

the ongoing method above a group of weak trainees, which is, in this case, the features we have 

parameterized.  

L.2-boost chooses a box-filter during each iteration, mostly decreasing the disparity between the 

current forecasts of the approach and the accurate image labels. Once a feature good enough is 

discovered, it is added to the incumbent assembly. The L.2-boost trains a linear model to 

determine the label of the image patches given that every weak learner maintains linear filters on 

the value of the pixels. The L.2-boost combines the weak learners in a straight manner, after 

which the LSPI’s basic space is augmented for this assignment by adding a basis which specifies 

the amount of attributes pre-selected by the L.2-boost process.  

Afterwards, we put our preferred algorithm on the smile detecting assignment, giving it a subset 

of 1,000 images from the GENKI—a collection of 60,000 faces from the internet. Figure 2 

shows a sample optimization budget for the performance on smile detection. Alongside the data 

concerning the locality of the faces and their physical attributes, human labelers have considered 

each image to contain or not contain smiles. For these tests, our aim is forecasting a person’s 

smile with the help of the L.2-boost process we mentioned before.  

 

Figure 2: Optimization budget on the performance of smile detection 
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When every trial box filter is chosen with the L.2-boosting. Inside every round-off feature 

choosing, a sum of 20 attribute evolutions are availed in a single round. So, we implemented the 

default model of the LMA as a way to compare. After the samples have been garnered from 100 

chapters of the GENKI set of data, the LSPI method can train a policy that will realize 3.86 in 

greater fold decrease compared to the LMA method. Because LMA does not possess access to 

the capacity to mobilize a new indefinite aspect to a fresh state space, a fairer comparison is our 

approach with no access to the said action. In our experiment, the method employed is yet 

capable of reaching 83 percent in more significant reduction in general loss as opposed to the 

LMA.  

OBSERVATION AND CONCLUSION 

This experiment has proposed a newer method to the problem associated with the training 

optimization process when there is a fixed budget. Our study has been able to demonstrate that 

the method is able to realize a more substantial delivery rate compared to the conventional 

approach that comprises nonlinear squares. Our provisions also include an analysis of the cycles 

learned by our approach and the manner in which they make sense when it comes to carrying out 

problem optimization on a rigid spend plan. In addition, this paper has proposed extensions to 

the characteristics used in a study (Bynagari, 2014) that are inherently relevant.  

Perhaps, in the future, we will embark on an encompassing exploration of the framework we 

have outlined with this paper. In the current work, the specific application accorded to the said 

framework, while impeccably efficient, can also be improved on. Case in point, through the 

incorporation of domain-specific attributes into the space, policies of richer nature would be 

learned. We as well look forward to applying our model to other issues in the machine 

perception ecosystem. A subsequent endeavor along these lines will look to test the viability of 

the technique we proposed for finding the locations of feature points simultaneously exhibiting 

high chances as regarding looks and relative assembling of facial characteristics. The current 

limitations of this challenge have made it a specifically ideal target for the applications presented 

in this paper.  
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