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Abstract

Contemporary discourse points to the central role that heritage plays in the process of
enabling groups of various cultural or ethnic background to strengthen their feeling of
belonging and sharing in the society. Safeguarding heritage is also valued highly in the
priorities of the European Commission. As a result, there have been several long-term
initiatives involving digitising, annotating and cataloguing artefacts of tangible cultural
heritage in museums and collections. In the case of built heritage, a specific challenge
is that historical monuments such as buildings, temples, churches and city fortification
infrastructures are hard to document due to historic transformations, destruction, reuse
of material, urban development that covers traces and changes the spatial configuration
of the site. The ability to reason about a monument’s form is crucial for efficient doc-
umentation and cataloguing. This paper presents a 3D digitisation workflow through
the involvement of reality capture technologies for the annotation and structure analy-
sis of built heritage with the use of 3D Convolutional Neural Networks (3D CNNs) for
classification purposes. The present workflow can contribute to the identification of a
building’s architectural components (e.g., arch, dome) and to the understanding their
stylistic influences (e.g., Gothic, Byzantine) can assist in tracking its history, identifying
its construction period and comparing it to other buildings of the same period. This
process can contribute to educational and research activities, as well as facilitate the
automated classification of datasets in digital repositories for scholarly research in digital
humanities.
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1. Introduction

One of the most widely used applications of computational methods in human sciences
is the automatic annotation and classification of large datasets (of text, images, etc.) in
digital libraries that otherwise would require a highly laborious annotation process by
trained and skilled users (Canul-Ku et al., 2018; Engel et al., 2019; Dhali et al., 2020).
In the case of image-based datasets, computer vision methods have been used to analyse
and annotate photos e.g., the geo-reference of series of aerial photos (Cantoro, 2014),
the semantic analysis of a digital library of museum artefacts, or a collection of old
photographs for the semantic categorisation of contents (Eramian et al., 2017).

Datasets generated by European efforts in digitising cultural content for preservation
and online access, in response to European Commission’s 2011 recommendations (https:
//ec.europa.eu/digital-single-market/en/digitisation-digital-preservation), have
been growing and have started to include not only 2D information about cultural artefacts
of museums and collections, but also 3D models and assets, as in EUROPEANA (https:
//pro.europeana.eu/project/3d-content-in-europeana), Horizon 2020 projects with rel-
evant APIs, standards, metadata schemata in 3D linked datasets (https://share3d.eu/,
https://www.inception-project.eu/en), as well as centralised online repositories for se-
mantically enriched 3D representations of cultural assets (https://sketchfab.com/tags/
europeana).

In this paper, we present a 3D digitising workflow specifically designed to assist schol-
ars and researchers in the humanities with the annotation and analysis of cultural her-
itage monuments. The present work is part of ANNFASS (An Artificial Neural Network
Framework for understanding historical monuments Architectural Structure and Style,
http://annfass.cs.ucy.ac.cy), a project funded by Research & Innovation Foundation
(RIF, https://www.research.org.cy/en/). The RIF Call through which ANNFASS was
funded encourages local research and technological innovation, focusing on several areas
one of whom is the promotion of the cultural heritage of Cyprus. ANNFASS embraces
this goal, aiming to develop an online platform framework for digital humanities, that
will integrate 3D CNNs for the classification of elements of Cypriot historical monuments.
The Cypriot architecture monuments are rich in complex combinations of structural and
stylistic elements, and serve as a challenging test scenario of our platform’s abilities and
possible restrictions.

2. Related Work

Recently researchers and scholars in the humanities have started to share and ex-
change 3D datasets of cultural heritage assets beyond the scale of museum and collec-
tion artefacts. For example, there have been efforts to create datasets for structures
closer to the size of an architectural construction (e.g., monuments), and often whole
excavated archaeological sites (Prasomphan and Jung, 2017), with the support of the
appropriate computational tools as well as resources for online visualisation. Beyond
the management, accessibility, and the “FAIRification” (Harrower et al., 2020) of these

Kalogerakis), gustavo.patow@udg.edu (Gustavo Patow), y.chrysanthou@rise.org.cy (Yiorgos
Chrysanthou), g.artopoulos@cyi.ac.cy (George Artopoulos)

2

https://ec.europa.eu/digital-single-market/en/digitisation-digital-preservation
https://ec.europa.eu/digital-single-market/en/digitisation-digital-preservation
https://pro.europeana.eu/project/3d-content-in-europeana
https://pro.europeana.eu/project/3d-content-in-europeana
https://share3d.eu/
https://www.inception-project.eu/en
https://sketchfab.com/tags/europeana
https://sketchfab.com/tags/europeana
http://annfass.cs.ucy.ac.cy
https://www.research.org.cy/en/


unstructured 3D datasets, a major challenge emerges for researchers with regards to
their analysis and interpretation in the context of humanities-driven enquiries. The
sheer number of digitised cultural heritage assets, their complexity and the sophisti-
cated computational interfaces that are required to be used by humanities scholars for
their study, require new tools and techniques that would aid and accelerate research,
as well as cross-disciplinary enquiries (Charalambous and Artopoulos, 2018). In addi-
tion, these big data can only benefit researchers if they are in the form of linked data
(https://inspire.ec.europa.eu/training/introduction-linked-data) that can be mined
for the identification of patterns, trends and macroscopic mapping of cultural production
through time (Fiorucci et al., 2020).

These efforts in digitising the content of study in humanities led to the development
of the cross-disciplinary field of Digital Humanities that involves the automatic semantic
analysis of visual content. Arguably this process is more complex than solely the anno-
tation of a cultural object’s, e.g., a vase or a column provenance and general description
(Dallas, 2003). One of the fundamental classification processes in humanities and ar-
chaeological research is the periodisation, i.e., to classify artefacts based on historical
period (Jiménez-Badillo et al., 2010). This is typically done by experts, who classify
artefacts chronologically based on spatial and social context, technique of production,
provenance, style and geometric or material features (Baratin et al., 2012). Up until
recently it has been very difficult to apply this process in the case of large-scale cultural
products, such as buildings or monumental structures, due to their inherent geometry
and architectural complexity which resulted in challenges in data management. However,
the exponential growth of Machine Learning (ML) algorithms, combined with the large
size of 3D datasets being generated in digital humanities and cultural heritage, recently
enabled researchers to apply ML techniques in their practice for the interpretation of
3D spatial data of buildings (Grilli and Remondino, 2019) or urban scales (Dirk et al.,
2018).

Until recently, most of research in architecture style analysis has been done with 2D
data, e.g., images, architectural drawings, or floor plan configurations (Hillier et al.,
1987), but advances in neural networks have allowed researchers to handle more com-
plex and bigger datasets, drawing from developments in other fields, cf. 2D image-based
retrieval of information by means of Convolutional Neural Networks (CNN) (Llamas
et al., 2017). CNNs were first introduced in 1980s LeCun et al. (1989) but were pop-
ularised more recently (Krizhevsky et al., 2012) because of their successful application
in image and video recognition, recommender systems, image classification, and medical
image analysis. CNNs drive inspiration from biological processes in that the connectivity
pattern between neurons resembles the organisation of animals’ visual cortex. Individual
cortical neurons respond to stimuli only in a restricted region of the visual field known as
the receptive field. Each neuron or node in a CNN depending on the layer it is located has
a different functionality. Input layer nodes, are responsible for receiving data/patterns
from the environment (analogous to human senses), and pass them to the next layer to
be processed. Finally, the output layer assesses the extracted features to classify the
network’s input, e.g., whether the input represents a door or a window (da Silva et al.,
2017).

In parallel, technological developments — both in spatial 3D documentation equip-
ment as well as in computer vision, e.g., photogrammetry — enabled the acquisition of
high resolution and precision 3D data, e.g., point clouds and meshes (Georgopoulos and
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Ioannidis, 2004), which naturally capture more information than 2D images of building
façades and floor plans, as previously used in architecture history for didactic purposes.
These developments and new research opportunities, together with the evolution of deep
learning methods in processing 3D data, such as 3D point cloud classification for object
identification and semantic annotation (Qi et al., 2017; Wang et al., 2017; Kalogerakis
et al., 2017; Su et al., 2018; Bassier et al., 2019; Poux et al., 2017; Messaoudi et al., 2018;
Wang et al., 2018; Malinverni et al., 2019; Feng et al., 2020; Pierdicca et al., 2020; Mor-
bidoni et al., 2020), have been the source of inspiration for the authors in applying 3D
CNNs, in 3D architectural elements and whole buildings’ historical understanding and
interpretation, involving annotation and classification processes. To do so the ANNFASS
project aims to develop an online platform and software tool that will classify architec-
tural styles and the relevant historical period of built heritage based on 3D analysis
instead of 2D image-based analysis (Mathias et al., 2012).

3. Dataset Generation Pipeline

The professional methodologies of measuring and documenting heritage buildings,
requires highly developed skills and precision, and is time consuming. However, many of
the activities involved in these methodologies, which are human-led, often result in data
loss during the transfer of information from the building site into 2D measurements in
order to create 3D representations. It is not rare that important details for the conversion
would be missed or neglected, as physical observation by an expert is required, especially
because of the difficulty of capturing in and representing physical complexity of the
building site through 2D drawings (Dallas, 2003).

Typical classification workflows of building elements and architectural style of heritage
comprise of the following steps:

• Production of 2D plans and diagrams.

• Literature review for the monument based on cross-referencing literature and onsite
findings and,

• Interpretation based on facts and assumptions, as stated by the architect.

A classification workflow involves the analysis of individual architectonic elements of
the building in great resolution and detail. Through this analytical process an architect
is able to map and interpret singular human interventions on the building structure, or
the stylistic influences the owner or its mason drew inspiration from, in order to arrive
at the classification of distinct elements.

Nowadays it is common for a built heritage to be documented in 3D through terrestrial
laser scanning or photogrammetric techniques for conservation and geometric analysis
purposes. This is enabled by advanced software that becomes increasingly accessible to
the public as well as by the advancement in computing power available to researchers
and professionals in the field. ANNFASS exploits these developments and adapts to
current best practices of architects and archaeologists. Thus, it starts the first steps of
its methodology by means of 3D documented models of architectural buildings.

ANNFASS’ state of the art pipeline involves the use of reality capturing technology,
such as 3D scanning technology and photogrammetric techniques, as an exercise to match
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archaeological and built heritage documentation practices to eventually provide, when
completed, a tool that could be used by practitioners, scholars and educators who work
with 3D reconstructions of buildings. Apart from the need to create this pipeline based
on the current state-of-the-art techniques in 3D reconstruction of complex geometry and
materiality of heritage buildings, other reasons for the authors’ choice to use 3D reality
capture models of historic monuments were to (a) avoid simplified manually modeled
representations, (b) and assess the limitations and challenges of developing a tool that
in the future would allow the public to upload 3D models of structures documented in
the wild by non-experts (recently mobile devices started integrating lidar sensors for 3D
capture).

The architectural study of the surveyed monuments was complemented with the the-
oretical documentation and classification of each building through the analysis of its
various characteristics, such as building façade, form, shape, structure, material, colour,
openings, ornamentation, roof type, as well as localised factors, including environmental
conditions, site topography or cultural aspects.

Stathopoulou and Remondino (2019) trained CNNs on 3D datasets of historic building
façades in Italian cities created with a photogrammetry-based documentation pipeline,
for the generation of labelled 3D datasets of heritage buildings. Contributing to this
inquiry, the ongoing research of ANNFASS explores the use of 3D CNNs trained on
3D point cloud datasets generated by means of photogrammetry, and aims to develop
an integrated interface for researchers and scholars in digital humanities for the guided
annotation and classification (in terms of architecture style, typology and period) of
heritage buildings, in three dimensions. Using historic buildings and monuments of
Cypriot architecture, which often are located outside a continuous urban fabric, and
therefore have more than two elevations in addition to a courtyard, to train the 3D
CNNs, is helping the authors to develop a flexible integrated tool for the labelling and
classification of all the 3D mass of a building structure, in addition to its façade.

The authors expect that, when the project is completed and the 3D CNNs will be
trained with a large enough 3D building dataset, the ANNFASS tool will enable for a more
accurate classification of the building typology, based not only on architectonic features
but also on whole building components (e.g., its roof). The authors expect that the
capacity of the tool for analysing the building as a whole, combined with the annotation
of the style and period of the architecture features and decoration of the façade, will
contribute more information to the architect user of the tool than other methods. The
3D CNNs of ANNFASS were trained using architecture 3D datasets (labelled dataset of
2000 buildings, of different types, an ongoing effort at the University of Massachusetts)
and is currently further used in labelling the many architectural features of Cypriot
heritage, listed below.

Below partial results of the conducted research in the context of the ANNFASS project
will be presented. Particularly, the theoretical considerations and practical challenges
related to the development of a 3D documentation workflow customised specifically to
the needs of reconstructing objects of architectural scale, involving 3D mesh adaptation
(3.1), as well as the parameters of the annotation processes (3.2). These two steps in the
process are essential in generating the necessary input that can be used to train the 3D
CNNs of the project.

The buildings were chosen because of their historical and cultural significance, with
the aim to cover as many historical architectural periods as possible, and are located
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in Nicosia, as the authors wanted to limit the study of exemplar cases to a historically
complex location where significant hybridisation / exchanges of stylistic features were
identified. It is worth mentioning that the historic city of Nicosia is ideal for collecting
data from various time periods, as it has a history of thousands of years and has been at
the crossroads of many empires and civilisations (Michaelides, 2012). A summary of the
selected buildings per period/architectural style can be seen in Table 1. In order to test
the developed workflow with the particularities of more contemporary architecture com-
prised of different geometric characteristics, the authors included in the dataset examples
of built heritage of the recent past and, in particular, select cases of Modernist architec-
ture. The following section explains in detail the challenges of annotating the selected
examples in the list below, and presents the results of the aforementioned workflow.

3.1. Building 3D documentation

The interactive visualisation of these heritage buildings and monuments on the AN-
NFASS interface extends typical vector-based and orthophotographic visualisation prac-
tices. This interface allows the user of the tool to have a photo-realistic 3D representation
of the structure that enables both expert and non-expert audiences to study and com-
pare architectonic elements, stylistic variations, and their integration in the form of the
building. The steps of the hybrid 3D documentation process, that involves terrestrial
photogrammetry methods and manual 3D modeling, are described below. An integrated
photogrammetry method is defined as a hardware/software configuration that produces
photogrammetric products from digital imagery using manual and automatic techniques.
Close range photogrammetry is a measurement technology that can be used for the ex-
traction of 3D points from the images, and by extension, these points are useful for
the accurate 3D modeling and visualisation. Digital photogrammetry derives all the ap-
propriate measurements from the images themselves rather than taking measurements
directly from the objects (Lachambre et al., 2017).

The architectural structure 3D documentation process involved the following steps:

On-site collection of data

The result of this procedure was the complete dataset of 3D models of every building
in the list, in terms of geometry and texture. In this first step, the aim was to gather
multiple photos of the monument from various angles, along with the basic external
measurements. In some cases, it was necessary to have a more detailed geometry and
texture, in combination with the main geometry, at different elements of a monument
such as doorways, ornaments, pilasters. For example, an ornament’s texture which covers
a large area of a model might be enhanced by adding a higher resolution detail texture
at a much smaller scale which shows small details and imperfections in the ornament.
The documentation process of the geometry and texture of architectural details was the
same followed for regular, plain building surfaces, except that shots were taken more
closely to the building, focusing on a small area. However the part of the building that
was documented in order to produce the texture had to be as generic as possible, as
detail textures are typically tiled many times across an object. In practice, these shots
were taken at the closest focus limit of the camera and lens combination used in the
documentation.
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Lusignan - Gothic Architecture

Armenian Church

Cathedral of Our Lady Hodegetria

Augustinian Hermits

St. Catherine’s Church

Ottoman Architecture

Buyuk Han

Bayraktar Mosque

Ayios Michael Tripiotis

Axiothea House

Hadjigeorgakis Kornesios Mansion

Venetian Architecture

Famagusta gate

Kyrenia Gate

Stavros tou Misericou

British - Colonial architecture

Pafos Gate

English school

The club of the British Cavalry

Neo-classicism - Greek-revival architectural style

Faneromeni Church

Parthenagogio of Faneromeni

Pancyprian Gymnasium in Nicosia

The Severios Library

Archaeological Research Unit (ARU) Building

Cyprus Archaeological Museum portico

Vernacular construction methods

Townhouses in Ayioi Omologites

Townhouses in Strovolos

Modernist architecture principles

Stavrou Economou Building

Lefkaritis Building

Nicolaou Building

Table 1: List of selected monuments, categorised by period/architectural style.

Lastly, due to the lack of access to private properties, in some cases there were parts of
the building that were covered from plants or civic equipment, and also due to location
of the buildings in the densely populated historic core of Nicosia the aerial recording
was at the time not an option for documentation. These restrictions resulted in the
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photogrammetric process producing partial 3D models of the heritage buildings in the
list rather than a complete documentation of them in terms of geometry and texture.
(fig. 1).

(a) ARU Building, Alignment of the collected data (b) ARU Building, Dense 3D Point cloud

Figure 1: Examples of processing the collected data.

In technical details, the survey equipment used consisted of a Canon EOS6D, self-
calibration was used, and a tripod for image stabilisation (see Table 2).

Property Value

Dimensions 5472× 3648

ISO speed ISO-100

F-stop f/7.1

Exposure time 1/250 sec.

Flash mode No Flash

Focal Length 35 mm

Output .CR2(raw) & .JPEG

Table 2: Rectified photography properties

Generation of dense 3D point-clouds

The next step of the documentation process was the generation of dense 3D point
clouds. The photographs acquired were imported into photogrammetric modeling soft-
ware, Agisoft Metashape. Reference points were selected on the monument, e.g., the
corners of the building which are easily identifiable and separable. This process is known
as orientation. Furthermore, the reconstruction application compares the shapes in the
photos (Alignment) to generate a high resolution 3D point could and by extension the
mesh model. The color contained in the pictures is then transferred to either the point
cloud and mesh vertex colors (Colourise) or to textures used on the surface of the mesh.

The photogrammetric software generated an extremely high-resolution point cloud
and mesh model. This was not suitable for use in 3D modeling software and the online
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annotation tool because rendering, processing and interaction with its geometry were
prohibitively slow. We decimated the original models with photogrammetric software
(see Table 3). We observed that the important architectural details for the classification
of the building from the high resolution 3D mesh were preserved. The texture transfer
from the original mesh model to the decimated one was done with a texture baking
process.

In detail, texture baking generally refers to the process of recording as an image,
some aspect of the texture or mesh characteristics of a model. The baking tool starts
with a low-resolution model and casts rays inwards towards to the high-resolution mesh
model. When a ray intersects the high-resolution mesh model, it records the surface
detail and saves that into a texture map, using the first model’s Texture Coordinates. In
other words, in texture baking, what is originally a procedural texture can be recorded
as an image. Sometimes various “channels” of a material can be consolidated into a
single image, simplifying the number of texture images used. In normal baking, the
mesh normals can be recorded – this results in very specialised images with RGB values
based on normal vectors. Usually baking requires having the model UV-unwrapped and
-mapped, so the resulting image is properly fit to the model (fig. 2).

(a) Townhouses in Ayioi
Omologites, Detailed mesh

model of the fanlight.

(b) ARU, Detailed mesh model
of entrance ornamentation.

(c) Cyprus Archaeological
Museum portico, Detailed

mesh model of the entrance.

Figure 2: Examples of monuments’ detailed geometry and texture.

Due to the fact that the mesh quality and resolution may vary significantly depending
on the algorithms involved during the decimation, this process required several attempts,
in order to decimate the generated 3D meshes appropriately, so as to maintain the ge-
ometric features and architectural details of the building (and the original 3D model),
but at the same time to produce a 3D model that would meet the constraints and speci-
fications of the annotation digital platform (fig. 3). The main constraints were computer
memory and processing time, which resulted in a trade off between the model resolu-
tion/detail and loading time (proportional to model size). This led to the proposed
methodology, creating hybrid models with enough detail to resemble closely the original
and reducing memory consumption (especially for mobile devices) and loading/rendering
time to the minimum.

Table 3 lists the details of the original photogrammetric models of some of the build-
ings in the list, the points of which range from 422,123,606 points, in the case of the
Archaeological Research Unit Building, to 77,773,370 points for the townhouses in Ayioi
Omologites, while the poly-counts that consisted the mesh models range from 158,554,674
(Townhouses in Ayioi Omologites) to 20,057,150 (Severios Library). After the decima-
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(a) Townhouses in Ayioi
Omologites

(b) Townhouses in Ayioi
Omologites, High

poly-count 3D mesh
model, 15.000.000

triangles

(c) Townhouses in Ayioi
Omologites, Medium
poly-count 3D mesh
model, 6.000.000

triangles

(d) Townhouses in Ayioi
Omologites, Low poly-
count 3D mesh model,

800.000 triangles

Figure 3: Mesh model decimation

tion of the original 3D mesh models, the final low poly-count model of the monuments
was limited to a range between 441,804 (for the Townhouses in Ayioi Omologites) and
1,555,196 (English School). In detail, the process of the mesh model decimation was
done in the photogrammetric modeling software Agisoft Metashape, the re-meshing and
the mesh smoothing steps were done with the use of the Autodesk’s Mesh Mixer open
source software, while the final processing and synthesis of all 3D models was done with
the use of Autodesk’s Maya design software.

Monuments 3D documentation

Cameras Point Cloud Mesh model Final Model

Colonial / Hybrid architectural style

English school 596 / 650 440,971,995 88,209,900 1,555,196

Neo-classicism / Greek-revival architectural style

Severios
Library

333 / 357 100,285,759 20,057,150 1,293,236

ARU Building 915/ 930 422,123,606 101,435,980 1,427,309

Cyprus
Archaeological

Museum
486 / 487 108,395,083 21,679,015 1,089,696

Vernacular construction methods

Townhouses in
Ayioi

Omologites
242 / 255 77,773,370 158,554,674 441,804

Townhouses in
Strovolos

234 / 234 256,645,209 51,329,037 1,248,625

Table 3: Statistics of Modeling Procedure

10



Post-processing of the produced 3D mesh and manual 3D modellings

All the above restrictions in the resolution of the 3D models forced the authors to
create a hybrid method (partly automated and semi-supervised) for the production of the
monument 3D models. This process involved the creation of a 3D model that combined
high mesh quality of the period relevant and style-characteristic architectural features
(e.g., windows, doors, pilasters), with a reduced resolution of the mesh of the not so
distinct elements (e.g., walls, roof, etc.), some of which were even modelled manually
(fig. 4).

Figure 4: Hybrid 3D model of townhouses in Ayioi Omologites.

Segmentation of the 3D model into elements

The last step of the modelling process proved more challenging than the original esti-
mations, due to the required segmentation of each building’s 3D model into its elements,
in order for the user of the ANNFASS annotation tool to be able to easily annotate
the architectural parts. In order to respond to this requirement, the process had to be
developed as follows: as soon as the final 3D model of a building was produced, a series
of segmentations on the generated final surfaces needed to be created, be named, and
grouped together with all the relevant architectural elements (e.g., other windows), that
is, semantically structuring the elements of the building. The goal of this stage was to
speed up the selection of elements from the user, who can select on the (ANNFASS) tool
the command <EXPAND> to be allowed to add into the selection new elements of the same
architectural characteristics as the already selected elements. The following paragraphs
present details related to the factors that were integrated in the tool for the function of
monument classification (fig. 5).
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(a) Severios Library (b) Archaeological Research Unit Building

(c) Cyprus Archaeological Museum portico (d) Townhouses in Ayioi Omologites

Figure 5: 3D mesh models of selected historical monuments

3.2. Building classification and stylistic definition factors

In ANNFASS, the period and architecture style classification is based on a building’s
main architectural parts (e.g., tower, roof type, courtyard, openings), as well as the archi-
tectonic features on its elevations. ”Architectonic” is used here to refer to architecture,
formal and structural aspects of a building feature. The building elevations are divided
into two sets of features, i.e., structural parts and decoration. The selected heritage
buildings were analysed and compared according to the indicators of their elevations,
such as:

• Form and shape: in terms of main form, geometric or irregular and dimension;

• Building structure: in terms of type of structure (skeletal frame, load bearing),
type of column, material and shape of brackets and material of balustrade;

• Building Material: in terms of usage, color, function;

• Openings: in terms of size, shape, position on the building façade;

• Door, Entrance, Window: in terms of height, width, position;
12



• Balcony / Bay window / Semi open space: in terms of location, function, size;

• Ornamentation: in terms of period, style, date; and,

• Proportions and plan space configuration.

The methodology of building classification included the factor of visual analysis, such
as observation and 3D documentation, as well as the study of literature of historical
sources, in order to understand all the elements and the details that compose the se-
lected monuments. The main aim was to analyse the design of the buildings in terms
of morphological characteristics. In this context, the buildings in the list were selected
as exemplar cases of historic architecture in Cyprus to train the algorithms (as briefly
discussed in section 4.2 below) and give the opportunity to users of the ANNFASS plat-
form to make a comparative assessment between different buildings of various historical
periods of Cypriot architecture.

The list of architectural components and stylistic factors, along with the correspond-
ing labels used for the building annotation purposes can be found in Table 4.

Architectural Components

Arch bay Balcony Bay window

Beam Bell tower Canopy

Column Chimney Door

Doorway Fanlight Keystone

Minaret Ornamentation Pilaster

Railing Roof

Table 4: List of labels used to name the architectural components.

The selected heritage buildings was a set of pilot cases to assess the performance of
algorithms through the use of Cypriot monuments.They presented probably some of the
most challenging examples of architecture to classify. This is due to the irregular and
variable combination of decoration and features borrowed by their builders from multiple
historical periods. This difficulty was tackled by dividing them in separate objects per
architectural part and engaging groups of experts to guide the classification process, as
presented below. Thus the classification would regard individual building parts and not
the whole monument. The authors’ motivation was to use these difficult examples in
order to showcase the value of the ANNFASS tool in educational environments.

4. Features of the ANNFASS Framework

In the previous section (section 3 Dataset), the procedure of creating the hybrid 3D
models of monuments was described (fig. 6), here the functionalities and purpose of the
annotation tool and platform will be discussed as the next step in the workflow presented
by the article.

It is worth mentioning that prior to the development of the annotation tool and AN-
NFASS platform, the authors sought for digital tools developed for similar scope and
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Figure 6: 3D digitisation workflow for architecture-specific annotation of built heritage.

research purpose aimed to be used in digital humanities by scholars and cultural her-
itage experts in comparative, analytical studies. As it was difficult to identify tools that
offer similar functionalities to ANNFASS’, the authors had to assess the needs of ex-
perts through primary research, in this case participatory methods such as focus groups
and workshops. In doing so, several meetings with a group of history of architecture
experts were held, introducing the group of stakeholders to the objectives of the ANN-
FASS, and discussing the needs, challenges, and particularities of their research. Those
meetings were necessary and helpful for the development of a platform tailored to their
requirements.

4.1. Annotation Tool

In these meetings, the architecture experts had the chance to use an annotation tool
inspired by the annotation tool of the BuildingNet platform Selvaraju et al. (2020), and
further developed based on the objectives of ANNFASS. The meeting consisted of a
short demonstration of the tool’s fundamental functionalities, followed by an annotation
session where the experts were asked to annotate structural components (wall, door,
etc.) of monuments. This process not only offered to the target user group a hands-on
experience of the tool, but also allowed the authors to collect valid labels for their dataset
of monuments and buildings. Feedback from the experts was collected by means of a
previously validated questionnaire that captured input specifically on the user interface
of the online ANNFASS tool, accessibility, friendliness and usefulness/purpose of the tool
for specialists.

In detail, the user experience involves the following steps: once a user accesses the
annotation tool, a monument is loaded in two visualisation forms, the 3D model (stripped
from any textures) and its textured twin (fig. 7). The model to be annotated appears on
the left side of the screen, but since sometimes architectural features can not easily be
distinguished in the plain model, the textured version of the 3D model is also presented
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next to it in order to enhance the user’s perception and allow for detailed observation.
Through this interface a building 3D model can be observed by rotating it 360◦ in any
direction and zooming in/out to provide to the user a better look at the different elements
of the building.

Figure 7: 3D model in annotation tool. Geometry of a the model (left) and textured monument (right).

For the annotation process to start, the user must click on the component of in-
terest and assign it a label. A label can be chosen in one of the following ways: by
navigating to the desired label on the upper right corner of the screen or pressing the
<View all labels> button, for the entire list of labels to appear between the two build-
ing model views, and selecting the desired one. The authors are well aware that an
architectural element might appear in a variety of configurations and designations, thus
to eliminate confusions and mislabellings, a set of example images (fig. 8) for each label
is provided by clicking on the link below the label in question. The extent and specificity
of the labels is limited to the most frequently found architectural elements, in order to
cover the majority of buildings on the platform while avoiding to overwhelm the user. In
the event of lacking a corresponding label for a component, it can remain unlabelled or
the user can select the label “cannot label”.

Furthermore, to speed up the annotation process, similar elements were grouped
together semantically based on function/operation during the subdivision step in the
modeling process, so that when the <EXPAND> button is selected, all similar elements will
be selected and labelled at once. The selected item(s) turn white on the plain model to
be distinguished from the rest of the components, while a floating, highlighted bounding
box appears surrounding the item on the textured model, to help the user of the tool
identify it faster. Once, a component is labelled it will be given the corresponding colour
of its label, so that it is differentiated from those elements that remain unlabelled. To
avoid relabelling when an annotated element is picked, a message will appear to the user
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Figure 8: Explanatory images for label “parapet”.

Figure 9: Partially annotated monument.

stating the current label of the element (fig. 9). Naturally, an architectural element can
be relabelled if the user deems it necessary.

Finally, when the user is satisfied with the annotation completion and accuracy,
she/he can select the <Done - Submit task> button in order to continue to the an-
notation of another building or exit the tool. In case a user is given a monument that
is not of their interest, she/he can click on <skip this building> to load the next
monument in the list. On the submission of a building, the annotation choices are saved
and used in the next stage of the workflow which includes the development and testing
of the platform’s automated functionality briefly mentioned in the following section, and
currently under development.
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4.2. Platform

Following the demonstration of the ANNFASS platform for heritage annotation in
the expert group meetings, feedback was received from the participants, regarding their
experience with the tool, including suggestions about improving the user interface and
the need for other desirable functionalities of the platform. These served as design and
development guidelines for the final platform that will be delivered to the architecture
history experts, at the end of the ANNFASS project.

The primary outcome of the questionnaires collected, was that this tool is much
needed to the education community in particular, since it modernises, automates and
speeds up the currently used methods and procedures in scholarly analysis in architecture.
Responding to this feedback, the final ANNFASS platform, currently under development,
will consist of both essential features for the visualisation of the 3D model of the building,
as well as automated modules for comparative analysis. Essential tool features and
functionalities include: viewing a monument’s 3D model, or displaying its description
and historical information.

Specifically, every model in the platform is accompanied with the following infor-
mation: monument name, brief description / chronicle, architectural style(s) / stylistic
influences, location (country and geographic position), the 3D model and lastly, a cover
photo for preview purposes. During the expert group meetings, it was indicated that this
is the minimal information needed to perceive the main context. More information can
be added, if available, to enrich this perception, such as architect(s), construction start
and end period, and a photo gallery of the monument. The ANNFASS tool addresses
didactic needs in educational environments and the main purpose is not to automatically
determine the construction period of the monument under study but rather to assist in
identifying the historical references of decorative and architectural features of the build-
ing. In addition to the visualisation features, the platform will also be equipped with the
following automated modules:

• Architectural Component Recognition

• Construction Period Recognition

Architectural Component Recognition

Analysing and identifying the various architectural elements and components (e.g.,
roof, door) is a necessary step in the process of studying a building’s structure and
style, that is also a time consuming and tedious procedure. The current advances in
the field of machine learning allow the automation of this procedure, with the use of
3D CNNs, and specifically the employment of deep learning methods. The success of
neural networks in image-based tasks, induced by the introduction of convolutional layers,
inspired researchers to develop convolutional layers that can operate on 3D data through
the use of convolutions in 3D space (3D CNNs) Wu et al. (2015); Wang et al. (2017);
Choy et al. (2019); Wang et al. (2020). ANNFASS’ architectural component recognition
relies on an 3D CNN with sparse 3D convolutional layers, called MinkowskiNet Choy
et al. (2019), adapted in our case to learn how to identify the various components of 3D
building models.
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In detail, the network is trained in a supervised manner, taking as input a set of 3D
models and their ground truth labels (expert annotations), in order to learn patterns
and extract features that appear frequently (fig. 10). The authors are aware that deep
neural networks require a large number of data to learn effecting representations for part
labeling. The Cypriot dataset on its own is not sufficient for this task. For this reason,
another much larger 3D building dataset was developed at UMass, called BuildingNet
Selvaraju et al. (2020), which consists of 513,087 annotated building mesh components
across 2000 building models of different types (e.g., residential, religious), and 31 unique
semantic labels (e.g., tower, wall).

Figure 10: Architectural component recognition 3D CNN.

The aforementioned dataset, is used to train the 3D CNN on recognising the different
structural components of buildings. Once the network is adequately trained on Build-
ingNet, a representative subset of the Cypriot monuments will be used for fine-tuning
the network parameters. The fine-tuning phase aims to help the network identify specific
to the Cypriot building labels (e.g., keystone), since only a few training examples are
available in the training dataset. The remaining data will serve as test cases to evaluate
the network’s abilities on unseen data.

In the end, the trained network will apply the acquired knowledge (learned features)
to classify components of 3D models uploaded by the platform users. It is not required for
the uploaded models to be pre-segmented to components, as the used 3D CNN produces
annotations using only the geometry information and textures of a model. Though,
for purely aesthetic reasons, having this additional information can be used in post-
processing steps to produce smoother results.

An example case is illustrated in fig. 11, where a toy example model (square) consists
of a single component with four faces (f1−f4) coloured based on two annotation strate-
gies (face-based vs component-based labeling). In the first case, labels are derived for
each mesh face, with faces f1−f3 annotated as label-1 (orange) and f4 as label-2 (blue),
resulting to an inhomogeneous component annotation. However, for the component-level
labelling, an additional step is taken, that of averaging all component child faces label
probabilities and assigning the predominant one to the whole component i.e., in this case
label-1 (orange). Note that the only given information for this additional step was the
component a face belongs to.
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Figure 11: 3D CNN prediction projections on mesh on face and component level.

The inclusion of the 3D CNN in the platform allows a digital humanities expert to
extract the architectural components of a building with minimal effort and in much less
time, since the network will largely automate the classification task.

Automated suggestion of stylistic influences at building component / architectural fea-
ture level

The process of studying and understanding a heritage building in the context of
the development and completion of the ANNFASS platform, continues after the steps
presented by this article, with the detection of its stylistic influences. This task is proven
to be more challenging than the architectural component labelling and recognition, since
several styles can be concurrently present on a building - a common occurrence in the
case of Cypriot heritage, with its characteristic hybridised architectural style. To tackle
this issue, a similar approach to the previous task is pursued by the authors. That is,
having another 3D CNN trained to recognise the architectural style influences of each
component (if any) based on its appearance, and in the end of the process to present the
various possible stylistic influences of the building identified by the tool to the user.

Once again, for the training of the 3D CNN a set of buildings with style-based anno-
tations is required as input to the tool. To acquire this information another session with
the architecture historians was conducted. This time, a period categorisation (Lusignan,
Ottoman, etc.) was assigned to classify the various architectural components based on
their appearance, instead of their functional aspects and type of architectural object
(door, window, etc.). At the end of this process, and after the collection of historic ar-
chitectural style labels and the training of the 3D CNN is completed, the user can load
a new 3D model on the ANNFASS platform and have the 3D CNN recognise its stylistic
influences by means of percentages (fig. 6). As this is an on-going task, a number of
methods are being tested to determine the better performing one, before finalising the
style recognition pipeline.

5. Conclusion

As stated before, this work is part of an on-going project (ANNFASS). The collection
of data for the 3D model generation is currently completed, having 3D models for all
selected Cypriot heritage buildings ready to be used for the training of the 3D CNNs.
A variety of computation methods have been developed, tested and assessed regarding
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the reliability of the automated modules, which will be hosted on a server for better
communication with the ANNFASS platform. The ANNFASS platform will be updated
with multi-period monuments, built in Cyprus under different cultural influences, which
in turn will be used to enrich the feature learning for the structure and style recognition
3D CNNs. A hidden aspect of the classification process of architectural elements is first
to identify a building’s stylistic influences and function by finding similarities that are
common between monuments of the same historical period. By extension, the mapping
of similarities makes it easier to identify the uncommon and the rarest samples that can
be found in cultural heritage monuments. Monuments that are not able to be classified
in a specific large group of canonical examples of a historical period can be viewed as
uncommon or exquisite cases of architecture outside the norm / standard and established
styles and could be examined as unique/ non-standard cases. In a sense, the ANNFASS
platform strives to provide the capacity to identify what is hidden and uncommon in
many examples of architectural elements, styles and buildings, contributing to scientific
excellence in architectural history, education and research.
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