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SST matchup database

* Prabhat K. Koner
 Andy R. Harris & Eileen Maturi



tion

IcCa

if

Cloud detection ver




(T39-BT39)/K(3.9,sst)
1

Suitability of Operational Bayesian
Cloud Detection

July 2013 (Night)
[ July 2013 (night)
1pClr>0.98 12/
3 (
nPix=9881 an ol p'Cvlr<9;)8 .
nPix=8753
250 a0
! ~ 6l
! ]
."' D ," N w‘
LR 20 % 4f “
I ".' . 8 )
/)
o d ", L 150 = a .
o) A M B
:“?IL /g‘? f ' : 8| or ‘, |
RS &8 ||
'\" . y If’.:._‘, . : . N ';_27 ; y .
WA F 100 4
o , -4 3
T o E 1100
. ' ¥ -6 o’ H
I _8 1 1 1 1 |
| | | | J -10 -5 0 5 10 15
8 6 -4 -2 0 2 4 6 & 10 1 SSTh-SSTy
SSTh-SSTg

[ Significant cloud leakage due to scatter of left hand figure.
O Huge falls alarms (90% of passes cloud free)



Error Masking Algorithm

 High Cloud:

- Dynamic threshold based Spectral
Difference method (3.9, 6.7, 11 &
13.4 ums )

 Low Cloud, model error, glint &
aerosol :

- Differences of single channel
retrieval of 3.9 & 11uyms

- Spectral test using Nearest
Neighborhood Measurements



Results for different Cloud detections
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[ Data coverage can be increased 50% using New Cloud (*)
O Significant falls alarm found in Bayesian Cloud Detection (+)
O Additional filter used to remove some cloud leakage in (BCD)



Time Series MTSAT Bayes Cloud

Bayesian Cloud Detection
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1 OEM error is higher than a priori error for allmost of all months
O RBC can improve a little, but increased error double sometimes.



Time Series MTSAT New Cloud

New Cloud Detection
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O MTLS errors are low and stable

[ Difference between MTLS & OSPO is high

L OEM errors are higher than a priori error for most of the months
0 OEM and REGB errors are also reduced



Comparative Results
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0 No additional filter for bayesian cloud detection
L No reduction of data under DFR (> 0.95)

0 50% more data coverage in new cloud detection
L MTLS error is much lower in new cloud detection



Time Series GOES|3 Bayes Cloud

Bayesian Cloud Detection
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L OEM error is higher than the LS error for most of the months
O MTLS without RBC is better choice

O Cause of seasonal variation is the cloud detection algorithm

L MTLS results are matched with operational and preoperational



Time Series GOES |3 New Cloud

New Cloud Detection
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L OSPO error is high continuously in new cloud detection
L All other errors in new cloud detection is lower

1 RBC introduces additional error

O MTLS produce low error and stable

MTLS
+RBC



Comparative Results
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O No additional filter for bayesian cloud detection

L No reduction of data under DFR (> 0.95)

L 50% more data coverage in new cloud detection

 MTLS error is much lower in new cloud detection (cloud leakage significant)
L RBC introduces additional error in MTLS



Conclusions

¢ In this study, MTLS displayed the best
performance among the set of tested algorithms

* New cloud detection shows increased data
coverage by ~50% and a significant reduction in
cloud leakages.

¢ In this study, OEM did not perform as well as
other methods.

e Operational version of Bayesian cloud detection
displays both cloud leakage and significant false
alarms
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Bias Corrections
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Cloud

Koner cloud & MTLS
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