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Abstract: Photovoltaic (PV) modules and solar plants are one of 

the main drivers towards zero-carbon future. Energy communities 

that are engaging citizens through collective energy actions can 

reinforce positive social norms and support the energy transition. 

Furthermore, by incorporating Artificial Intelligence (AI) 

techniques, innovative applications can be developed with huge 

potential, such as supply and demand management, energy 

efficiency actions, grid operations and maintenance actions. In this 

context, the scope of this paper is to present an approach for 

forecasting an energy cooperative’s solar plant short term 

production by using its infrastructure and monitoring system. More 

specifically, four Machine Learning (ML) and Deep Learning (DL) 

algorithms are proposed and trained in an operational solar plant 

producing high accuracy short-term forecasts up to 6 hours.  The 

results can be used for scheduling supply of the energy 

communities and set the base for more complex applications that 

require accurate short-term predictions, such as predictive 

maintenance. 

Keywords: Photovoltaic, Energy Prediction, Machine Learning, 

Deep Learning, Short-term prediction. Artificial Intelligence 

I. INTRODUCTION 

As consumer-empowerment and community-driven 
initiatives, energy communities can play a key role for social 
innovation as they reflect a fundamental shift in citizen’s 
behaviour and their role as a consumer [1]. Engaging citizens 
through collective energy actions can reinforce positive social 
norms and support the energy transition. Towards this 
direction, the Clean Energy Package of the European 
Commission (EC) recognises and offers an enabling legislative 
framework for ‘Citizen Energy Communities’ and ‘Renewable 
Energy Communities’ [2]. 

By 2030, the EU will have to increase renewables to 32% share 
of the energy supply and in order to reach this binding target, 
an explicit role for citizens and communities is foreseen [3-4]. 
This is an important step towards the ‘energy democracy’, as 
not only it acknowledged the role of democratically controlled 
communities in the energy transition but it will also help 
European citizens to set up their own renewable energy 
projects and protecting them from the big players of the energy 
market. Successful renewable energy cooperatives generate 
positive economic, social and environmental outcomes while 
accelerating the social and psychological dimensions of the 
global transition towards clean energy sources [5]. 

One major source of renewable energy is harvesting solar 
power through PV solar plants. The technology is becoming 
more widely used globally and year on year PVs make up a 
bigger part of the energy mix in the European Union (EU). In 
2018, the EU output of PV electricity reached the 127 TWh, 
amounting to 3.9% of the EU’s gross electricity output [6]. The 
coming decade continued growth is foreseen, mostly driven by 
increased self-consumption and more rooftop PV installations 
as a path towards a post-lignite era [7]. 

In order to maximise efficiency and optimise production for 
supply and demand [8], applications of Artificial Intelligence 
(AI) and the use of Machine Learning (ML) and Deep Learning 
(DL) algorithms are being implemented in several domains. 
More specifically, these are applications for production [9-10], 
anomaly detection [11-12] and energy disaggregation [13]. 
Predicting future energy production values, plays an important 
role in almost every AI-based application, in both short-term 
and long-term forecasting horizons, as the accuracy of the 
prediction is the main factor in several applications such as 



fault prediction, anomalies detection, load balancing and future 
performance of energy systems. 

Table I presents a moderate review of the state-of-the-art 
approaches for ML/DL applications related to PV. 

TABLE I.  ML/DL APPLICATIONS WITH PV MODULES 

Source Application Features Algorithms 

Mashud Rana et 

al. [9] 
Production forecasting Power data 

NNs, SVR, 
RF, LSTM and 

CNN 

Javier Huertas 
Tato et al. [10] 

Production forecasting 
Weather, 

power data 
Random 
Forests 

Joao Pereira et al. 

[12] 

Maintenance/anomaly 

detection 
Power data 

Variational Bi-

LSTM 

Mahdi Khodayar 

et al. [13] 

Production 

forecasting, energy 
disaggregation 

Pecan 

Street 

dataset & 
REDD 

dataset. 

LSTM, GRU, 

CNN 

Hyung Keun 

Ahnet et al. [14] 
Production forecasting 

Weather, 

power data 
Deep-RNN 

Jorge Vicente-

Gabriel et al. [15]  

PV power prediction 

& PV maintenance/ 

anomalies 

Weather, 

power data LSTM 

A.A. du Plessis et 
al. [16] 

Production forecasting 

Low-level power 

output dynamics 

Weather, 
power data 

FFNN, LSTM 
GRU 

Elizaveta 
Kharlova et al. 

[17] 

Production forecasting 
Weather, 

power data 

Sequence to 

Sequence deep 

learning model 
with Attention 

Alessandro Betti 

et al. [18] 

Maintenance/anomaly 

detection 

SCADA 

data, fault 

taxonomy 

Self-

Organising 

Map (SOM) 

and KPIs 

 Utilising relevant infrastructure and sensor-based systems 
are of major importance in energy efficiency [19], optimising 
supply and demand and base of energy management [20] of a 
solar plant system and its capabilities. In this context, the scope 
of this paper is to present an approach for forecasting an energy 
cooperative’s solar plant short term production by using its 
infrastructure and monitoring system. More specifically, four 
ML algorithms are proposed and trained in an operational solar 
plant producing high accuracy short-term forecasts up to 6 
hours. 

 Apart from the introduction, the paper is structured along 
three sections. The second section provides an overview of the 
methodology. The results from the application of the selected 
ML/DL algorithms are summarised in the third section. Finally, 
the last section is summarising the key issues that have arisen 
in this paper. 

II. METHODOLOGY  

A. Overview 

The methodology followed, was to gather relevant data for 
forecasting energy production from a solar plant and test 
several ML/DL algorithms to evaluate their accuracy. Time-
series forecasting and techniques were used, to test the impact 
of different time lags and how they contribute in the prediction. 
These tests were aiming to identify the historical data that an 
energy community would it need in order to generate an 

accurate prediction. Finally, the prediction horizon was altered 
to assess the algorithm’s ability to produce accurate forecasts in 
several time frames.  

In the figure below the methodology is described. 

 

Fig. 1. Methodology schema  

The input data would come directly from the solar plant’s 
system, both weather and production data (PAC). However, 
since the solar plant installation is new (measurements begins 
in February of 2020), the temperature sensors on site were 
installed in the early 2021 and to this end, weather data were 
retrieved from a website that gathers data from a local 
meteorological station [21] and Copernicus Atmosphere Data 
Store [22]. 

The time lags were used with the assumption that the 
operator would be able to have operational historical data up to 
24 hours before. In that way, the architecture of the models 
offers a timely solution for the required inputs. The prediction 
horizons are designed for short-term forecasts, with an up to 6 
hours horizon. 

 In this solution, historical data points are solely being used, 
to eliminate probable errors due to the uncertainty of the 
weather forecast in future points. The model’s output is the 
predicted hourly PAC production in KWh, in several time 
horizons. 

B. Data Inputs and Pre-processing 

The dataset used, consisted of a period spanning over 30 
months (August 2018 - January 2021) of production data from 
a specific solar plant, with a one-hour interval between 
observations. Data quality of the production data is considered 
to be very high, as they are deriving from a monitoring 
platform through the sensor-based system, and the observations 
of the production are the direct output from 4 DC/AC inverters 
that are installed.  

PV production is related primarily with solar irradiance and 
the ambient temperature near the site. Since weather data from 
the on-premises infrastructure is not available, the dataset that 
the website and the Copernicus database provided, consists of 
several features. The data quality of the weather information 
also considered to be high, as main driver of PV production, 
solar irradiance, is extracted from the Copernicus database [23] 
[24]. 

A correlation analysis is used to exclude statistically 
irrelevant features from the weather variables. As expected, the 
most statistically relevant parameters are the solar irradiance, 
temperature, and humidity, which will be used as inputs from 



the weather datasets. Table II presents the Pearson and 
Spearman correlation coefficients of the above variables to the 
production of the PV are presented, to demonstrate both the 
linear and non-linear correlations. 

TABLE II.  CORRELATIONS TABLE 

Features Pearson Coefficient Spearman Coefficient 

Production to Solar 
Irradiance 

0.974 0.9772 

Production to 
Temperature 

0.555 0.511 

Production to Humidity -0.6757 -0.6504 

C. Algorithms and Models Architecture 

Four different algorithms were tested for predicting the 
future forecasts: Long Short-Term Memory (LSTM), Support 
Vector Regression (SVR), Multiple Linear Regression (MLR) 
and XGBoost. In the following table a short description of each 
algorithm is presented, along with the specific architecture that 
was used on implementation. The datasets are split in a 80/20 
way, meaning that 80% of the data are used to train the models 
and 20% are used as unseen data to evaluate the algorithms’ 
performance. 

TABLE III.  ALGORITHMS DESCRIPTION AND ARCHITECTURE 

Algorithm Short Description Architecture 

LSTM 

LSTM is an artificial recurrent neural 
network (RNN) architecture used in 

the field of deep learning. LSTM has 

feedback connections and can process 
entire sequences of data. A common 

LSTM unit is composed of a cell, an 
input gate, an output gate and a forget 

gate. The cell remembers values over 

arbitrary time intervals and the three 
gates regulate the flow of information 

into and out of the cell. 

24/48/96/192/284 

layers 
Learning rate: 0.001 

Adam optimiser 

Early stopping 
patience=5 

Epochs: 100 
Validation_split: 0.2 

Batch_size: 128 

 

SVR 

Support-vector machines are 

supervised learning models with 
associated learning algorithms that 

analyse data for classification and 

regression analysis.  

C: 10 

Epsilon: 0.01 
Timeseries cross 

validation (4-fold 

split) 

MLR 

Linear regression is a linear approach 

to modelling the relationship between 

a scalar response and one or more 

explanatory variables. The case of one 

explanatory variable is called simple 

linear regression; for more than one, 
the process is called multiple linear 

regression. 

Timeseries cross 

validation (4-fold 
split) 

XGBoost 
Gradient boosting is a machine 
learning technique for regression and 

classification problems, which 

N estimators: 50 
Max Depth: 3 

Learning Rate: 0.1 

Algorithm Short Description Architecture 

produces a prediction model in the 

form of an ensemble of weak 

prediction models, typically decision 
trees. When a decision tree is the 

weak learner, the resulting algorithm 

is called gradient boosted trees. 

Timeseries cross 

validation (4-fold 

split) 

III. RESULTS AND DISCUSSION 

The results are presented below, split by the lagged inputs 
and the different time horizons, by comparing their R2 value 
and their Root Mean Square Error (RMSE), in both train and 
test sets. 

TABLE IV.  PREDICTION RESULTS (LAG T-1, HORIZON T+1) 

Algorithm 
Train set Test set 

R2 RMSE R2 RMSE 

LSTM 

SVR 

MLR 
XGBoost 

86.73 

85.89 

86.73 
88.56 

1.970 

2.031 

1.970 
1.829 

85.96 

84.55 

85.69 
86.66 

1.920 

2.014 

1.938 
1.871 

TABLE V.  PREDICTION RESULTS (LAG T-5, HORIZON T+1) 

Algorithm 
Train set Test set 

R2 RMSE R2 RMSE 

LSTM 
SVR 

MLR 

XGBoost 

96.37 
92.81 

94.68 

96.22 

1.030 
1.449 

1.246 

1.051 

95.58 
91.41 

93.74 

95.65 

1.994 
1.501 

1.282 

1.083 

TABLE VI.  PREDICTION RESULTS (LAG T-10, HORIZON T+1) 

Algorithm Train set Test set 
R2 RMSE R2 RMSE 

LSTM 

SVR 

MLR 
XGBoost 

96.20 

93.43 

94.84 
96.39 

1.055 

1.387 

1.229 
1.028 

95.15 

91.77 

93.81 
95.56 

1.128 

1.471 

1.275 
1.081 

 
The accuracy of these four different algorithms were tested 

and evaluated in several time lags, 1h, 5h and 10h before the 
current time for forecasting the next hour’s production of the 
solar plant. The results show that in every algorithm, its 
accuracy is very high, and their respective RMSEs are very 
low.  

From the four algorithms, the best in each scenario is 
XGBoost, scoring the best results with an R2 of 88.56 in the 
train set and 86.66 in the train set for inputs with one hour lag, 
and considerably better performance for lagged inputs of 5 and 
10 hours, with values 96.22/95.65 of R2 and 1.051/1.083 of 
RMSE respectively in the test set. 



 

Fig. 2. Predicted and real results plot of XGBoost (lag t-5, horizon 1h) 

For the highest performing algorithm, its behaviour on a 24 
hours lagged input and a prediction horizon of 3 and 6 hours 
was tested, in order to assess its performance for forecasts 
larger than 1 hour. The results are presented below: 
 

TABLE VII.  PREDICTION RESULTS, XGBOOST (LAG T-24, HORIZON T+3) 

Algorithm 
Train set Test set 

R2 RMSE R2 RMSE 

XGBoost 92.19 1.509 89.65 1.640 

 

 

Fig. 3. Predicted and real results plot of XGBoost (lag t-24, horizon 3h) 

The accuracy of XGBoost as the highest performing algorithm 
is still very good, for the 3-hour horizon forecast with a RMSE 
of 1.509 on the train set and 1.640 on the test set. Although 

there are several values around zero that the algorithm misses, 
this could be the fact that there was no optimisation of the 
algorithm for both the 3- and 6-hours horizon forecasts. 



As expected, the 3-hour horizon is better in the respective 
metrics of the 6-hour one, but still the accuracy of the model 
that forecast production 6 hours ahead, is still very good, with 
an RMSE of 1.700 on the train set and 1.834 on the test set.  

TABLE VIII.  PREDICTION RESULTS, XGBOOST (LAG T-24, HORIZON T+6) 

Algorithm 
Train set Test set 

R2 RMSE R2 RMSE 

XGBoost 90.10 1.700 87.06 1.834 

 

 

Fig. 4. Predicted and real results plot of XGBoost (lag t-24, horizon 6h) 

Finally, the autocorrelation of the production signal itself is 
calculated, to check how the seasonality of it affects the 
performance of the algorithms (Fig. 5) 

It is observed that there is significant autocorrelation of the 

production signal, and it is also seasonal. As autocorrelation 

shows the degree of similarity between a given time series and 

a lagged version of itself over successive time intervals, this 

could explain the very similar performances of all algorithms 

for time lag 5 and 10, as in both of those situations it is 

observed a high positive autocorrelation.  

 

Fig. 5. Autocorrelation plot of production signal 



IV. CONCLUSIONS AND NEXT STEPS 

In this paper, the energy production of a solar plant’s PV 
modules is forecasted, based only on previous performance and 
previous weather data. Four different ML/DL algorithms were 
used for forecasting purposes, LSTM, SVR, MLR and 
XGBoost and it was found that all the algorithms perform very 
well, in different combinations of lagged inputs. 

The highest performance algorithm was found to be 
XGBoost, which performed reasonably well in different 
forecast horizons, thus making it possible to achieve short-term 
forecasts. The approach followed, requires very few previous 
observations, in order to make extremely accurate forecast for 
the next hour, and very good forecasts for the next 3 and 6 
hours, demonstrating its efficiency in an energy community 
environment, where the availability of data is often limited. 
The results can be used for several action regarding the PVs 
such as scheduling supply of the energy communities and set 
the base of more complex applications that require accurate 
short-term predictions, such as predictive maintenance or 
energy trading. 

The next steps would be to replace the weather variables 
with the data gathered from the on-site sensors. This will make 
the predictions even more accurate, since the locality of the 
weather values plays a key role when predicting the output of 
PV modules. Furthermore, the autocorrelation of the 
production signal itself needs to be further investigated as it 
could possibly drive the forecasts. To this end, energy 
production forecasting without using weather data is also 
foreseen so as to investigate the potential and the applicability 
of different actions regarding the PVs operation.  
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