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Abstract: Estimating the height of buildings and vegetation in single aerial images is a challenging 12 

problem. A task-focused Deep Learning (DL) model which combines architectural features from 13 

successful DL models (U-NET and Residual Networks) and learns the mapping from single aerial 14 

imagery to a normalized Digital Surface Model (nDSM) is proposed. The model is trained on aerial 15 

images whose corresponding DSM and Digital Terrain Maps (DTM) are available and is then used 16 

to infer the nDSM of images with no elevation information. The model is evaluated with a dataset 17 

covering a large area of Manchester, UK, as well as the 2018 IEEE GRSS Data Fusion Contest LiDAR 18 

dataset. The results suggest that the proposed DL architecture is suitable for the task and surpasses 19 

other state-of-the-art DL approaches by a large margin. 20 

Keywords: building height estimation; deep learning; digital surface model; object shadow; aerial 21 

imagery; LiDAR; convolutional neural networks; remote sensing; digital elevation models.  22 

 23 

1. Introduction 24 

Aerial images are widely used in geographic information systems (GIS) for a plethora 25 

of interesting tasks, such as: urban monitoring and planning [1–3]; agricultural 26 

development [4]; landscape change detection [5–7]; disaster mitigation planning and 27 

recovery [8]; as well as aviation [9,10]. However, these images are predominantly two- 28 

dimensional (2D) and constitute a poor source of three-dimensional (3D) information, 29 

hindering adequate understanding of vertical geometric shapes and relations within a 30 

scene. Ancillary 3D information improves the performance of many GIS tasks and 31 

facilitates the development of tasks that require geometric analysis of the scene, such as 32 

digital twins for smart cities [11] and forest mapping [12]. In such cases, the most popular 33 

type of this complementary 3D information is the form of a Digital Surface Model (DSM). 34 

The DSM is often obtained with a Light Detection and Ranging Laser Scanner (LiDAR); 35 

or an Interferometric Synthetic-Aperture Radar (InSAR), a Structure from Motion (SfM) 36 

methodology [13]; or by using stereo image pairs [14]. Structure from motion is a 37 

technique for estimating 3D structures from 2D image sequences. The main disadvantages 38 

of SfM include the possible deformation of the modeled topography, its over-smoothing 39 

effect, the necessity for optimal conditions during data acquisition and the requirement of 40 

a ground control point [15]. Like SfM, DSM estimation by stereo image pairs requires  41 

difficult and sophisticated acquisition techniques, precise image pairing, and relies on 42 
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triangulation from pairs of consecutive views. LiDAR sensors can provide accurate height 43 

estimations and have recently become affordable [16]. However, LiDAR sensors suffer 44 

from poor performance when complex reflective and refractive bodies (such as water) are 45 

present and can return irrational values in such cases, especially where there are multiple 46 

light paths from reflections in a complex scene. Despite these specific performance issues, 47 

LiDAR remains a commonly used technology for the acquisition of DSMs.  48 

A substantial non-technical disadvantage of obtaining aerial DSMs and DTMs of 49 

large areas with LiDAR technology is the high cost of the required flight mission. This cost 50 

factor can preclude LiDAR acquisition as economically prohibitive. Therefore, elevation 51 

estimation from an input image is a compelling idea. However, height estimation from a 52 

single image, as with monocular vision in general, is an ill-posed problem: there are 53 

infinite possible DSMs that may correspond to a single image. This means that multiple 54 

height configurations of a scene may have the same apparent airborne image [17] due to 55 

the dimensionality reduction in the mapping of an RGB image to a one-channel height 56 

map. Moreover, airborne images frequently pose scale ambiguities that make the 57 

inference of geometric relations non-trivial. Consequently, mapping 2D pixel intensities 58 

to real-world height values is a challenging task. 59 

In contrast to the remote sensing research community, the computer vision (CV) 60 

community has shown a significant interest in depth estimation from a single image. 61 

Depth perception is known to improve computer vision tasks such as: semantic segmen- 62 

tation [18,19], human pose estimation [20], and image recognition [21–23]; analogous to 63 

height estimation improving remote sensing tasks. Prior to the successful application of 64 

Deep Learning (DL) for depth prediction, methods such as stereo vision pairing, SfM, and 65 

various feature transfer strategies [24] have been used for the task. All these methods re- 66 

quire expensive and precise data (pre)processing to deliver quality results. Contrastingly, 67 

DL simplifies the process while achieving better performance. Eigen et al. [25] use a mul- 68 

tiscale architecture to predict the depth map of a single image. The first component of the 69 

architecture is based on the AlexNet DL architecture [23] and produces a coarse depth 70 

estimation refined by an additional processing stage. Laina et al. [26] introduce residual 71 

blocks into their DL model and use the reverse Huber loss for optimizing the depth pre- 72 

diction. Alhashmin and Wonka [27] use transfer learning from a DenseNet model [28] pre- 73 

trained on ImageNet [29], which they connect to a decoder using multiple skip connec- 74 

tions. By applying multiple losses between the ground truth and the prediction the state- 75 

of-the-art in-depth estimation from a single image was achieved. The interest of the CV 76 

community on depth estimation originates from the need for better navigation for auton- 77 

omous agents, space geometry perception and scene understanding, especially in the re- 78 

search fields of robotics and autonomous vehicles. Specifically, regarding monocular 79 

depth estimation, AdaBins [30] achieved state-of-the-art performance on KITTI [31] and 80 

NYU-Depth v2 [32] datasets by using adaptive bins for depth estimation. Mahjourian et 81 

al. [33] use a feature-metric loss for self-supervised learning of depth and ego-motion. 82 

Koutilya et al. [34] combine synthetic and real data for unsupervised geometry estimation 83 

through a generative adversarial network (GAN) [35] called SharinGAN, which maps 84 

both real and synthetic images to a shared domain. SharinGAN achieves state-of-the-art 85 

performance on the KITTI dataset. 86 

The main approaches used by researchers in aerial image height estimation based on 87 

DL involve: a) training with additional data, b) tackling auxiliary tasks in parallel to depth 88 
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estimation, c) using deeper models with skip connections between layers, and d) using 89 

generative models (such as GANs) with conditional settings. 90 

Alidoost et al. [36] apply a knowledge-based 3D building reconstruction by incorpo- 91 

rating additional structural information regarding the buildings in the image, like lines 92 

from structure outlines. Mou and Zhu [37] propose an encoder-decoder convolutional ar- 93 

chitecture called IM2HEIGT that uses a single but provenly functional skip connection 94 

from the first residual block to the second last block. They argue that both the use of the 95 

residual blocks and the skip connection contribute significantly to the model performance. 96 

The advantages of using residual blocks and skip connections are also highlighted in the 97 

works of Amirkolaee and Arefi [38] and Liu et al. [17], who also use an encoder-decoder 98 

architecture for their IM2ELEVATION model. Liu et al. additionally apply data prepro- 99 

cessing and registration based on mutual information between the optical image and the 100 

DSM.  101 

Furthermore, multi-task training proves to be beneficial, especially when height es- 102 

timation is combined with image segmentation. Srivastava et al. [39] propose joint height 103 

estimation and semantic labeling of monocular aerial images with convolutional neural 104 

networks (CNNs). Carvalho et al. [40] use multi-task learning for both the height predic- 105 

tion and the semantics of aerial images. A different approach to the height estimation 106 

problem uses a generative model that produces the height map of an aerial image given  107 

the image as input. This strategy employs the conditional setting of the GAN and per- 108 

forms image-to-image translation, i.e., the model translates an aerial image to a DSM. 109 

Ghamisi and Yokoya [41] use this exact approach for their IMG2DSM model. Similarly, 110 

Panagiotou et al. [42] estimate the Digital Elevation Models (DEMs) of aerial images. 111 

2. Materials and Methods 112 

This section discusses the datasets used to train and evaluate the model, the technical 113 

aspects of the methods and the techniques used in the Deep Learning model. The model’s 114 

architecture is also presented along with the task-specific design features that make it ap- 115 

propriate for height prediction. For further information on neural networks and Deep 116 

Learning, please refer to [43,44]. 117 

2.1 Datasets and data pre-processing 118 

Two relatively large datasets are used to develop and evaluate the proposed height 119 

prediction model, namely: a Manchester area dataset, compiled by the authors; and an 120 

IEEE GRSS data fusion contest dataset. The focus of the Manchester area dataset is on 121 

estimating the height of buildings, while the focus of the IEEE GRSS data fusion contest 122 

dataset is on estimating the height of all objects in the images. 123 

2.1.1 Manchester Area Dataset 124 

The first dataset used to train the model comprises images and LiDAR DEMs (DSMs 125 

and DTMs); all from the Trafford area of Manchester, UK. The aerial photography is from 126 

Digimap [45] (operated by EDINA [46]). Both the LiDAR DEMs and the RGB images are 127 

geospatially aligned according to the Ordnance Survey National Grid reference system, a 128 

system using a transverse Mercator projection with a straight-line grid system built over 129 

the Airy 1830 ellipsoid. The reference grid system choice is essentially arbitrary as the 130 

model uses input image sections small enough for alignment deviations to be 131 
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insignificant. Furthermore, as the model is trained to build DEMs from the input images, 132 

model DEM outputs will be aligned to the image pixel locations. The LiDAR data belongs  133 

to the UK Environment Agency [47]. It covers approximately 130 𝑘𝑚2 comprising 134 

roughly 8000  buildings. The RGB images have a resolution of 0.25 𝑚 by 0.25 𝑚 and the 135 

LiDAR resolution is 1 𝑚 by 1 𝑚 . The RGB images and the LiDAR maps were acquired at 136 

different dates; hence there are data inconsistencies resulting from new constructions or 137 

demolished buildings. Such inconsistencies constitute a barrier to the training of a DL 138 

model yet are representative of the real-world problem, especially given that many wide- 139 

area LiDAR datasets are compiled as composite images from LiDAR flights on multiple 140 

dates. Due to the low LiDAR resolution, this dataset is not appropriate for estimating the 141 

height of vegetation; thus, the analysis focuses only on buildings. Since segmentation la- 142 

bels for differentiation of what is vegetation and what is not are not available, a threshold 143 

height value of 1.5 𝑚 has been used to distinguish buildings. This approach occludes low 144 

vegetation and cars, which is desirable since the cars are mobile objects and thus the 145 

source of additional inconsistency. Furthermore, vegetation is a highly variable entity that 146 

is easily removed from the environment and is not necessary for many applications. The 147 

model is trained with the RGB aerial images as input and the normalized DSMs (nDSM = 148 

DSM-DTM) as target. nDSMs ignore the altitude information of the terrain and concen- 149 

trate on the height of the objects. Figure 1 shows examples of different areas from the 150 

Manchester dataset and their corresponding ground truth nDSMs. Figure 2 shows the 151 

DTM and DSM of Figure 1 (bottom image) and demonstrates some flaws in the specific 152 

dataset. 153 

    154 

 155 

Figure 1. Aerial images from the first dataset (left), the corresponding nDSMs in heat-map format (middle) and the 156 
colorbars indicating the color-coding of the nDSM in meters (right). The aerial images on the left of each pair have a size 157 
of 4000 × 4000, while the size of the nDSMs is 1000 × 1000. nDSMs are presented at the same size as the aerial images 158 
for demonstration reasons. The Figure is best seen in color.  159 
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Figure 2. The DSM (left) and the DTM (right) corresponding to the bottom aerial image of Figure 1. The colorbar for each 168 
heat-map indicates the color-coding of the DEMs in meters above sea level. Both heat maps have several undetermined 169 
or irrational (extremely high or low) values shown in black color. Notably, some of these unexpe cted values in the DSM 170 
map (left) correspond to a river which illustrates a well-known problem of LiDAR measurements near highly reflective 171 
and refractive surfaces with multiple light paths. Such erroneous values raise significant problems regarding the training 172 
of the model. Thus, they are detected during data preprocessing and excluded from the training data  (see Section 2.4). 173 
They are also excluded from the validation and test data to avoid inaccurate performance evaluation. Overall, these values 174 
roughly comprise 10% of the dataset, but lead to a larger amount of discarded data since any candidate patch containing 175 
even a pixel of undetermined or irrational value is excluded from the training pipeline. This figure is best seen in color.     176 

2.1.2 IEEE GRSS Data Fusion Contest Dataset 177 

The Data Fusion 2018 Contest Dataset (DFC2018) [48,49] is part of a set of community 178 

data provided by the IEEE Geoscience and Remote Sensing Society (GRSS). The 179 

Multispectral LiDAR Classification Challenge data was used herein. The RGB images in 180 

the dataset have a 0.05 𝑚 by 0.05 𝑚 resolution, and the LiDAR resolution is 0.5 𝑚  by 181 

0.5 𝑚 . The data belongs to a 4.172 × 1.202 𝑘𝑚2  area. Given the higher resolution of the 182 

RGB images, this dataset is more suitable for estimating vegetation height than the 183 

Manchester area dataset. Figure 3 shows example pairs of RGB images and their 184 

corresponding nDSMs from this dataset. The ratio between the resolution of the RGB 185 

images and the resolution of their corresponding LiDAR scans affects the design of the 186 

depth-predicting model. Like in the Manchester area dataset, the model must handle the 187 

resolution difference between its input and its output and predict a  nDSM that is several 188 

times smaller than the RGB image. Since the two datasets have different resolutions 189 

between the RGB images and the LiDAR scans, the same model cannot be used for both 190 

cases. Consequently, the models differ in their input/output size and the resolution 191 

reduction they must apply. For the most part, the models used for the two datasets are 192 

very similar, but slight architectural modifications are applied to cope with the resolution 193 

difference. 194 

 195 
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Figure 3. Aerial images from the IEEE GRSS Data Fusion Contest (second dataset), the corresponding nDSMs and the 196 
colorbars of the heat maps indicating the color coding in meters. The RGB images on the left of each pair have a size of 197 
5000 × 5000 pixels, while the size of the nDSMs is 500 × 500 pixels. The heat maps are shown at the same size as the 198 
aerial images for demonstration reasons. This figure is best seen in color. 199 

2.2 Data Preparation  200 

The model operating on the Manchester area dataset uses image patches of size 201 

256 × 256 × 3, while the model operating on the DFC2018 dataset uses image patches of 202 

size 520 × 520 × 3. The specific input sizes determine that the former model outputs a 203 

map of size 64 × 64 and the latter has an output of 52 × 52 since the resolution ratios of 204 

the image to LiDAR datasets are 4 and 10, respectively: every 4 pixels in one aerial image 205 

of the Manchester dataset correspond to 1 pixel in the respective nDSM and 10 pixels in 206 

one aerial image of the DFC2018 dataset correspond to 1 pixel in the respective nDSM. 207 

The 64 × 64 and the 52 × 52 sizes of the models’ outputs offer a compromise between 208 

computational and memory requirements during training and sufficient scenery area 209 

consideration when calculating a nDSM, i.e. basing the estimation on several neighboring 210 

structures in the input image for achieving better accuracy. Various output sizes were 211 
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experimented with and it was discovered that predicting larger nDSMs tends to achieve 212 

slightly better accuracy at the cost of increased memory usage and computational 213 

requirements. 214 

2.3 Model Description  215 

In this section, technical aspects of the methods and techniques used in the proposed 216 

DL model are discussed. The model’s architecture is presented, together with the task- 217 

specific design features that make it appropriate for depth prediction. The authors have 218 

called the model presented herein ‘IMG2nDSM’ because it maps an aerial photography 219 

image to a nDSM.  220 

The proposed architecture shares some similarity with semantic segmentation 221 

models, where the model must predict the label of each pixel in an image and thus 222 

partition it into segments. The segmentation may have the size of the input image or a 223 

scaled-down size. In this study, instead of labels, the real values corresponding to the 224 

elevation of each pixel are predicted in a down-scaled version of each RGB image. As with 225 

the semantic segmentation task, several DL models are suitable for learning the task of 226 

predicting the nDSM values. A popular DL architecture, the U-Net model [50], was chosen 227 

due to its efficiency and effectiveness on tasks based on pixel-level manipulations like 228 

semantic segmentation [51–53]; and as its architectural scheme easily combines with other 229 

DL techniques to introduce task-specific enhancements.  230 

The U-Net architecture has been implemented with residual blocks both in the 231 

encoder and the decoder mechanisms. Specifically, three types of residual blocks are used, 232 

as shown in Figure 4:  233 

• A typical residual block (RBLK), 234 

• A down-sampling residual block (DRBLK),  235 

• An up-sampling residual block (URBLK). 236 

 A typical residual block contains two convolutional layers at the data path and a 237 

convolutional layer with a kernel size of one at the residual connection path. The down- 238 

sampling residual block differs in the stride used at the first convolutional layer and the 239 

skip connection. Using a higher stride at these convolutions, the previous feature maps 240 

are downscaled by a factor 𝑠 (here, 𝑠 = 2) at the first convolutional layer of the block and 241 

the skip connection, which results in smaller feature maps. The up-sampling residual 242 

block uses sub-pixel convolutional up-scaling [54] in the first layer of the block. Sub-pixel 243 

upscaling is performed in two steps, with the first step calculating a representation 244 

comprising feature maps of size ℎ × 𝑤 × 𝑠2𝑐 , where 𝑠  is the up-scaling factor, and 245 

ℎ × 𝑤 × 𝑐 is the size of the input feature maps. The second step of the process applies a 246 

reshape operation on the feature maps and produces a representation containing feature 247 

maps of size 2ℎ × 2𝑤 × 𝑐 . The skip connection of the up-scaling residual block also 248 

applies sub-pixel up-scaling. The detailed architecture of the residual blocks is shown in 249 

Figure 4.  250 

A very similar model for both datasets is used, with minor changes regarding the 251 

input patch size and the size of the output prediction. The Manchester area dataset has an 252 

RGB image over nDSM resolution ratio equal to 4, so the neural network dealing with 253 

this dataset reduces the input size from  256 × 256 × 4 to output size 64 × 64. On the 254 

other hand, the DFC2018 dataset has an RGB image over depth map resolution ratio equal 255 
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to 10 , so the neural network dealing with this dataset reduces the input size 256 

from 520 × 520 × 4 to output size 52 × 52. 257 

 258 

 259 

Figure 4. The architecture of the three types of residual blocks used in the proposed models: (a) The typical residual block 260 
(RBLK) (b) The down-sampling residual block (DRBLK) uses a stride of two at both the first convolutional layer and the 261 
skip connection. (c) The up-sampling residual block (URBLK) uses sub-pixel up-scaling at the first convolution and the 262 
skip connection. BN stands for batch normalization [55], PReLU for parametric ReLU, and 𝑠  is the stride of the 263 
convolutional layer. 264 

The input/output sizes of the models are a compromise between having a 265 

manageable input size in terms of computational requirements and having a sufficient 266 

output map size and performance. The few differences between the two models are 267 

necessary for applying the different reduction factors between the input and the output 268 

of the two datasets as dictated by the RGB/nDSM resolution ratio of each dataset. 269 

Specifically, the number of layers, the number of channels and the kernel sizes of the 270 

convolutional layers of the model trained on the DFC2018 dataset are different from the 271 

ones used in the model trained on the Manchester dataset. This is due to the requirement 272 

of a larger resolution reduction. However, these changes are applied at the initial and the 273 

last layers of the model to maintain the U-NET scheme unaltered. Figures 5 and 6 show 274 

the detailed architectures of both models and the size of the feature maps after each layer.        275 

The model dealing with the Manchester area dataset has 164  layers (including 276 

concatenation layers and residual blocks’ addition layers) and consists of approximately  277 

125 𝑀  trainable parameters. The model dealing with the DFC2018 dataset has 186 278 

layers (including concatenation layers and residual blocks’ addition layers) but has fewer 279 

parameters to handle the higher memory requirements during training due to the larger 280 

input size. Precisely, it consists of 104 𝑀  trainable parameters. The only differences with 281 

the model used for the Manchester area dataset are a) the addition of some convolutional 282 

layers with “valid” padding to achieve the correct output size and b) the reduction of the 283 

parameters of the convolutional layers. 284 

 285 
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 328 

Figure 5. The architecture of the model trained with the Manchester dataset. All convolutional layers use kernel size 3 and 329 
“same” padding. BN represents a Batch Normalization layer and CNT a Concatenation layer. 330 
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 331 

Figure 6. The architecture of the model trained with the DFC2018 dataset. Compared to the model trained with the Man- 332 
chester dataset, the kernel sizes of certain convolutional layers are increased and their padding is changed from “same” 333 
to “valid” as indicated by the figure notes. Additionally, some convolutional layers are introduced at the end of the model. 334 
These modifications aim at applying a reduction factor of 10 between the input and the output of the model to match the 335 
resolution ratio between the aerial images and the nDSMs in the DFC2018 dataset.  BN represents a Batch Normalization 336 
layer and CNT a Concatenation layer.   337 
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2.4 Training details 338 

Simple augmentations are applied to the patches during training: rotations of 90, 339 

180 and 270 degrees, small-value color shifting and contrast variations. Patches where 340 

the elevation maps contain incomplete or extreme elevation values (> 100𝑚) are ignored 341 

in both datasets. Moreover, specifically for the Manchester area dataset, small elevation 342 

values (< 1.5 𝑚) were replaced with zeros to prevent the model from considering non- 343 

stationary objects and low vegetation. This pre-processing is important in part because of 344 

the time difference between the acquisition of the RGB images and the LiDAR point 345 

clouds, which results in inconsistencies between the images and the elevation maps due 346 

to the presence of mobile objects like cars in the viewing field of either of the two sensors  347 

(RGB or LiDAR). The time of acquisition inconsistency in the Manchester area dataset also 348 

introduces inconsistencies in vegetation height, and occasionally, in building heights 349 

(demolished buildings or newly constructed buildings). Consequently, regarding the 350 

Manchester area dataset, the model is focused on predicting the elevation of human-built 351 

structures like houses, factories, and public buildings. The DFC2018 dataset has better 352 

resolution, and no inconsistencies have been observed. This fact facilitates the prediction 353 

of vegetation height as well; thus a threshold filter is not applied to the ground truth 354 

nDSMs for the DFC2018 dataset.  355 

The models are trained with the Adam optimizer [56] and a learning rate of 1 × 10−4 356 

which decreases by a factor of 10 each time the error plateaus for several iterations. Both 357 

datasets are randomly split into three sets each containing images of size 1000 × 1000  358 

for the Manchester dataset and 5000 × 5000  for the DFC2018 dataset: a training set (70%), 359 

a validation set (15%), and a test set (15%). The validation set is used for hyper-parameter 360 

fitting and then merged with the training set for retraining the models. The test set is only 361 

used to report the models’ performances. The models were trained for 5 different random 362 

dataset splits and the average of the performances on the test sets  is reported. The pixel- 363 

wise Mean Absolute Error (MAE) is used between the ground-truth elevation maps and 364 

the predicted output as the loss function during training. Mean Squared Error (MSE) was 365 

also considered, but it was found that MAE performs slightly better probably because it 366 

does not penalize outliers as much as the MSE. The Root Mean Squared Error (RMSE) 367 

performance is also reported as an additional evaluation metric. All parameters are 368 

initialized with the He normal technique [57]. 369 

3. Results 370 

The model presented herein achieves a MAE of 0.59 m and an RMSE of 1.4 m for the 371 

Manchester area dataset, as well as a MAE of 0.78 m and an RMSE of 1.63 m for the 372 

DFC2018 dataset. The lower error values on the first dataset most likely occur due to 373 

ignoring small nDSM values (<1.5 𝑚), increasing the model accuracy in the prediction of 374 

buildings and human-made structures. The proposed architecture improves on the results 375 

of Carvallo et al. [40] and Liu et al. [17] by a significant margin (see Table 1), although a 376 

direct comparison cannot be accurate since all approaches use random data splits.   377 

 378 

 379 

 380 

 381 
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Table 1. Model’s performance on the test set and comparison to other methods. 382 

Method MAE(m)↓ RMSE(m)↓  

Manchester Area dataset 1   

IMG2nDSM*  0.59 1.4 

DFC2018 dataset 2   

Carvallo et al. [40] (DSM) 1.47 3.05 

Carvallo et al. [40] (DSM + semantic) 1.26 2.60 

Liu et al. [17] 1.19 2.88 

IMG2nDSM* 0.78 1.63 

1  0.25 m/pixel RGB resolution, 1m/pixel LiDAR resolution, inconsistencies 

2  0.05 m/pixel RGB resolution, 0.5m/pixel LiDAR resolution 

*IMG2nDSM is the model presented in this work 

3.1 Height prediction for the Manchester Area dataset 383 

The estimated heights of areas in the Manchester Area test set are depicted in Figure 384 

7. The estimations are shown in the form of heat maps for better visualization (i.e. 385 

providing a more precise display of the relative height values) and evaluation purposes. 386 

Since the model operates on patches of size 256 × 256 × 3, the RGB images are divided 387 

into several patches with overlapping regions of 16 pixels. Then, the model predicts a 388 

nDSM for each patch and, finally, the estimated maps are recombined to create the overall  389 

nDSM for the RGB image. During the recombination process, the outer 16 pixels of each 390 

predicted map are ignored to achieve a more natural blending and avoid artifacts.  391 

Interestingly, the model avoids spiky estimations like the ones indicated with note 1 392 

in the images of Figure 7: ground truth LiDAR maps occasionally contain points of 393 

unnaturally high values compared to neighboring points that constitute false readings 394 

that occur for several reasons. These reasons relate mainly to the physical properties of 395 

the LiDAR sensor and the environmental conditions during data acquisition (see Section 396 

1 for a discussion on this). Furthermore, some incorrect readings may have values that lie 397 

in the boundary of reasonable LiDAR values and are difficult to discriminate from 398 

incomplete readings with irrational values. Such spiky readings naturally occur in the 399 

training set too. Nevertheless, the model is not affected by such inconsistencies in the 400 

training set and its estimates corresponding to spiky measurements in the ‘ground truth’ 401 

data are closer to the actual ground truth (see Figure 7, note 1). 402 

 Moreover, the Manchester Area dataset contains several inconsistencies in regards 403 

to structures that are missing either from the RGB images or from the nDSM due to 404 

different acquisition times between the two data types. Such inconsistencies are shown in 405 

Figure 7 (indicated as note 2): In these cases, some structures present in the ground truth 406 

nDSM are missing from the RGB images; however, the model correctly predicts the 407 

corresponding regions containing the inconsistencies as undeveloped spaces. This 408 

behavior is, of course, desired and demonstrates effectively that the IMG2nDSM model 409 

presented herein is robust to false training instances. Furthermore, the results reveal some 410 

additional cases which indicate that the model is doing a  good job estimating the height 411 

of buildings, surpassing the quality of the ground truth map. Notably with noisy data on 412 

specific structures with known forms. Note 3 in Figure 7 demonstrates such a case where 413 
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the ground truth map seems noisy, given the known form of the apex roof structure, while 414 

the estimation of the model is more detailed and smoother. This raises the point that, 415 

although the model performance is calculated against the LiDAR data as ‘ground truth’, 416 

it sometimes outperforms the LiDAR data and generates results closer to actual ground 417 

truth. 418 

     419 

Figure 7. Left: RGB images of an area in the test set of the Manchester area dataset. Middle: The ground truth nDSMs. 420 
Right: The elevation heat maps as predicted by the model. Note 1 shows cases of spurious points in the ground truth that 421 
the model correctly avoids estimating. Note 2 shows occasional inconsistencies in the dataset due to different acquisition 422 
time of the RGB images and the LiDAR measurements. Although these inconsistencies are also evident in the training set, 423 
the model is robust to such problematic training instances. Note 3 shows cases where the model produces better quality 424 
maps than the ground truth in terms of surface smoothness and level of detail as the LiDAR data contains noisy values.   425 

 426 
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3.2 Height prediction for the DFC2018 dataset 427 

The estimated nDSMs of consecutive areas of the DFC2018 test set are illustrated in 428 

Figure 8. As in the case of the Manchester Area test set, the RGB images are divided into 429 

overlapping patches and the model predicts the nDSM for each of the patches. The only 430 

difference is that the size of the patches for this dataset is 520 × 520 × 3  pixels. The 431 

estimated nDSMs are amalgamated, as described in section 3.1, to create the nDSM of the 432 

entire area. 433 
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Figure 8. Left: RGB images from the DFC2018 test set. Middle: Ground truth nDSMs. Right: Model’s height estimations. Note 438 
1 indicates an area that contains a group of trees and is magnified in Figure 9 to demonstrate how the model treats vegetation 439 
in the RGB images. 440 

The predicted nDSMs look very similar to the ground truth. The higher resolution of 441 

the RGB images and the consistency between the RGB and the LiDAR measurements in 442 

terms of data acquisition time have a positive impact on the model’s performance. For this 443 

dataset, the model can estimate vegetation height accurately. Regarding vegetation, the 444 

model is consistently overestimating the area covered by foliage, as it fills the space 445 

between the foliage. Note 1 in the second row of Figure 8 (located at the ground truth 446 

nDSM) shows the height measurements for a group of trees. Figure 9 shows the 447 

magnification of that area, the magnified ground truth map and the model’s height 448 

estimation; and demonstrates the tendency of the model to overestimate the volume of 449 

foliage. It is thought that this behavior contributes to the higher MAE that the model 450 

scores on the DFC2018 dataset compared to the better performance on the Manchester 451 

area dataset. As described above, the latter dataset has lower resolution and more 452 

inconsistencies, but the model training ignores vegetation and low standing objects to its 453 

favor. However, this behavior of the model with vegetation height estimation could be 454 

beneficial under some circumstances, such as projects that focus on tree counting, 455 

monitoring tree growth or tree coverage in an area [12]. 456 

 457 
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Figure 9. Magnification of the noted region (Note 1) in Figure 8. Left: The magnified RGB image. Middle: The Ground 459 
truth nDSM. Right: Model output. The model consistently overestimates foliage volume by filling the spaces between 460 
foliage with similar values to neighboring estimations. 461 

3.3 Model Analysis 462 

The very good results of the model, as shown in Table 1, result from its carefully 463 

designed architecture which was selected after many experiments and trials with various 464 

alternate options. The initial form of the model was a basic model having the U-NET 465 

scheme proposed in [50] with typical residual blocks (Figure 4.a) only, max-pooling 466 

(down-sampling) layers and nearest-neighbor interpolation (up-sampling) layers. Then, 467 

the basic model was improved upon by replacing individual architectural features with 468 

ones that improved performance. The modifications that affected performance the most 469 

are listed according to their contribution (higher contribution first): 470 

• Use of the up-sampling residual block (URBLK) as shown in Figure 4.c in- 471 

stead of nearest-neighbor interpolation.  472 

• Use of the down-sampling residual block (DRBLK) with strided convolu- 473 

tions as shown in Figure 4.b instead of max-pooling. 474 

• Modification of the basic U-NET scheme so that the first two concatenation 475 

layers are applied before the up-sampling steps and not after them as orig- 476 

inally proposed in [50]. 477 

• Use of “same” instead of “valid” padding in the U-NET scheme.  478 

• Replace the ReLU activation functions with PReLUs.  479 

The first three modifications (use of URBLKs, DRBLKs and the change in the concat- 480 

enation layers positions) enabled the model to surpass the performance of other state-of- 481 

the-art works, while the remaining modifications (the use of “same” padding and PRe- 482 

LUs) further increased the performance gap in favor of the proposed model. Overall, the 483 

proposed model relies on a task-specific architecture for achieving good results in predict- 484 

ing the nDSM of a scene from an aerial image. 485 

   486 

 487 
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3.4 Limitations 488 

Despite the overall promising results of the proposed model, there are still some 489 

cases where the model does not perform correctly. Buildings are well represented in both  490 

datasets, and thus, the model can predict their height with little error. The same applies 491 

to vegetation in the DFC2018 dataset. However, for objects that are rarely seen in the data 492 

(e.g., objects that are tall and thin simultaneously, such as light poles and telecommunica- 493 

tion towers), the model sometimes fails to estimate their height correctly. In cases of very 494 

scarce objects, the model treats them as if they do not exist. Rarely seen tall objects that 495 

are not bulky or whose structure has empty interior spaces are tough for the model to 496 

assess. Examples of such failed cases are shown in Figure 10. The leading cause of the 497 

problem is the under-representation of these structures in the dataset. It can be mitigated 498 

by introducing more images containing these objects during training.  499 

Although the model performs well, it is acknowledged that it has many parameters. 500 

However, predicting the nDSM of an individual patch is quite fast, especially when the 501 

model runs on a Graphical Processing Unit (GPU). Inferring the nDSM of a large area 502 

requires the splitting of the RGB image into several patches. Using a GPU, the estimation 503 

of the nDSMs of all patches is performed in parallel by processing a batch (or batches) of 504 

patches, taking advantage of the hardware and its parallel computing capabilities. 505 

 506 

Figure 10. Sample failed cases where the model misses the presence of an object completely. The cases are magnified 507 
regions from the second RGB image (second row) of Figure 8. The top left image shows a very high pole standing on a 508 
highway (on the left of the train wagons) with a height of 30 meters (according to its LiDAR measurement). Despite the 509 
pole’s long shadow, the model does not detect it. The left bottom magnified region contains a tall electric energy trans- 510 
mission tower (close and on the right of the train wagons) that is also not detected by the model.   511 

 512 

 513 
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4. Discussion  514 

Obtaining the height of objects in aerial photography with hardware equipment can 515 

be costly, time-consuming, and require human expertise and sophisticated instruments. 516 

Furthermore, the acquisition techniques of such data are demanding and require special- 517 

ized operators. On the other hand, inferring this data solely from aerial RGB images is 518 

easier, faster, and especially helpful if the availability of image pairs is limited for a certain 519 

terrain modeling task. Height estimation from aerial imagery is difficult due to its ill- 520 

posed nature, yet DL techniques offer a promising perspective towards providing ade- 521 

quate solutions to the task. 522 

The authors propose a model, named IMG2nDSM, with a task-focused DL architec- 523 

ture that tackles the problem with very good results, which are better than state-of-the-art 524 

to date. The model has been tested on two different datasets: one with 0.25 𝑚 by 0.25 𝑚 525 

image resolution, 1 𝑚 LiDAR resolution, and different acquisition times (thus, it has spa- 526 

tial inconsistencies) and one with 0.05 𝑚 by 0.05 𝑚 image resolution and 0.5 𝑚  LiDAR 527 

resolution. The first dataset (capturing lower resolution images) covers the Trafford area 528 

in Manchester, UK, while the second dataset is part of the 2018 IEEE GRSS Data Fusion 529 

Contest. The first dataset is used to estimate building heights only, while the second da- 530 

taset is used to estimate both buildings and vegetation heights. Despite the inconsistencies 531 

encountered in the first dataset, the effectiveness of the model indicates its high robustness 532 

and ability to build domain knowledge without resorting to dataset memorization. This 533 

indication is also suggested by the fact that data curation or special prepossessing, besides 534 

data augmentation, was not employed. 535 

The authors aspire to the idea that the possibility of deriving high-precision digital 536 

elevation models from RGB images without expensive equipment and high costs, will ac- 537 

celerate global efforts in various application domains that require geometric analysis of 538 

areas and scenes. Such domains include urban planning and digital twins for smart cities 539 

[11], tree growth monitoring and forest mapping [12], modeling ecological and hydrolog- 540 

ical dynamics [58], detecting farmland infrastructures [59], etc. Such low-cost estimation 541 

of building heights will allow policy-makers to understand the potential revenue of roof- 542 

top photovoltaics based on yearly access to sunshine [60] and law enforcement to verify 543 

whether urban/or rural infrastructures comply with local land registry legislation. 544 

Finally, it is noted that the model experiences some cases of poor performance with 545 

tall-thin and generally under-represented objects. This issue can be solved by including 546 

more examples of such objects in the training images, which is an aspect of future work. 547 

5. Conclusions 548 

A DL model, IMG2nDSM, is proposed for inferring the heights of objects in single 549 

aerial RGB images. The model is trained with aerial images and their corresponding 550 

nDSMs acquired from LiDAR point clouds, but only the RGB images are required during 551 

inference. The model was tested on two datasets and its performance is significantly better 552 

than other state-of-the-art methods. Results prove that the model builds good domain 553 

knowledge and sometimes produces results that are better compared to the LiDAR data 554 

when assessing the ground truth scenario. The model’s behavior regarding vegetation 555 

height estimation is also analyzed and some failed cases are reported. 556 

Future research directions and model improvements include the reduction of failed 557 

cases for under-represented structures in the aerial imagery such as rarely seen special- 558 
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purpose structures with electronic devices, telecommunication towers and energy trans- 559 

mission towers. The value of the proposed methodology stems from its convenient and 560 

easy application and the fact that it only requires the RGB images during inference. 561 

Achieving the height estimation task from single RGB images without requiring LiDAR 562 

or any other information greatly reduces the cost; required effort and time; and the diffi- 563 

culties emerging from using complex data acquisition techniques or complex analytical 564 

computations.            565 
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