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Abstract—This paper introduces a novel neural network
architecture, called Integrated Neural Network (INN), for direct
identification of nonlinear continuous-time dynamical models
in state-space representation. The proposed INN is used to
approximate the continuous-time state map, and it consists
of a feed-forward network followed by an integral block. The
unknown parameters are estimated by minimizing a properly
constructed dual-objective criterion. The effectiveness of the
proposed methodology is assessed against the Cascaded Tanks
System benchmark.

I. INTRODUCTION

Direct identification of continuous-time (CT) dynamical
systems from sampled data is nowadays a mature research
topic which has attracted the attention of many researchers in
the system and control community. Successful applications
and complete reviews of direct CT identification methods can
be found in the works [1-6], in the special issue [7], and in
the book [8]. However, the methodologies proposed in the
above-cited works can only be applied to the identification
of dynamical systems with linear input-output relationships,
such as linear time-invariant, linear time-varying and linear
parameter-varying systems. On the other hand, the identi-
fication of general nonlinear dynamical systems is still an
open and challenging research problem. In this paper, we
address the problem of direct continuous-time identification
of general non-linear state-space models, where the state
and the output mappings are described by artificial neural
networks.

For continuous-time neural state-space identification, a
straightforward approach is to discretize the ordinary dif-
ferential equation (ODE) representing the state mapping
function of the dynamical model and then minimize the
simulation error with respect to the model parameters [9].
The resulting procedure turns out to be very similar to the
ones used for discrete-time (DT) system identification with
Recurrent Neural Network (RNN) architectures. Training is
performed by applying the back-propagation through time
algorithm [10], [11]. Other approaches for discrete-time
nonlinear system identification with neural networks could
alternatively be applied, such as the one-step prediction error
method [12], or identification schemes using Long Short-
Term Memory networks [13]. The main limitation of these
approaches is that they cannot be parallelized, due to the
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inherently sequential nature of a simulation through time.
Thus, their implementation on modern hardware optimized
for parallel computing is often inefficient. A certain degree
of parallelization can be achieved by carrying out the train-
ing procedure simultaneously on several sub-sequences ex-
tracted from the training dataset, according to the widespread
(mini)batch optimization paradigm. However, special care
has to be taken to ensure that the initial conditions of all
these sub-sequences are compatible with the identified model
dynamics over the whole training dataset. For instance, a
multiple shooting approach has been discussed in [14], while
a regularization-based approach is presented in [15].

In order to estimate a continuous-time state-space model,
a novel neural network architecture, called integrated neu-
ral network (INN), is presented in this paper. The INN
architecture combines feed-forward neural networks and the
integral form of the Cauchy problem defined by the state-
space model dynamics. The output mapping function is
modelled as a standard feed-forward neural network. The
weights of the two networks and the estimate of the (hidden)
state sequence are computed simultaneously by minimizing
a properly-defined non-convex multi-objective loss function.
To solve this non-convex optimization problem, we take
advantage of modern deep learning libraries that provide a
combination of back-propagation algorithm [16] for gradient
evaluation and gradient-based solvers for optimization. The
proposed methodology has a flexible structure and allows
easy adaptation to non-uniformly sampled data. The latter
is a typical advantage of continuous-time identification with
respect to DT identification.

With the INN architecture introduced in this paper, we
circumvent the need to run time simulations by considering
the unknown state sequence as a tunable variable to be
optimized along with the state and output mappings. This
allows for a full parallelization of the training algorithm.
Furthermore, the derivatives of the loss function required for
optimization are obtained through a plain back-propagation
procedure, as opposed to the back-propagation through time
required in simulation error minimization. For completeness,
it is worth mentioning that the approach in [17] based
on 1-D Convolutional Neural Networks can be also highly
parallelized. However, unlike the proposed INN architecture,
the approach in [17] considers identification of discrete-time
models represented by the interconnection of finite impulse
response dynamic blocks with static non-linearities.

The rest of the paper is organized as follows. The overall
identification setting is outlined in Section |lIl The proposed
methodology is described in Section [[TI] where the integrated



neural network is introduced and details for numerical im-
plementation of the training algorithm are provided. Results
on the cascaded two-tank system identification benchmark
are reported in Section to show the effectiveness of
the approach. Finally, conclusions and directions for future
works are discussed in Section [V]

II. PROBLEM SETTING

Let us consider a data-generating system S described by
the continuous-time state-space representation:

x(t) = f(x(t), u(t)) (1a)
x(0) = xo (1b)
yo(t) = g(x(t)), (lc)

where x(t) € R" and %(t) € R"» are the state vector and
its time derivative, respectively; xo € R™= is the state initial
condition; u(t) € R™ is the system input; y°(t) € R"
is the (noise-free) system output at time ¢t € R; f(-,-) :
R™ x R™ — R, and g(-) : R™ — R"v are the state and
output mappings, respectively.

A training dataset D consisting of N input samples

{u(ty), u(t1),..., u(ty—1)} and (noisy) output samples
{y(t0), y(t1),..., y(tn-1)}, gathered at time instants
T ={to=0,t1,..., ty—_1} from an experiment on the dy-

namical system & is available. The measured output samples
y(tx) at time instant ¢, k = 0,1, ..., N —1 are corrupted by
a zero-mean noise 7y, , i.e., y(tx) = y°(tx) +nx. We assume
that the input u(t) can be reconstructed (or reasonably
approximated) for all time instants ¢ € [0 ty_1] C R from
the measured samples {u(to), u(t1),..., u(ty-1)}.

III. INTEGRATED NEURAL NETWORK
A. Modelling

Our modelling approach relies on the representation of f
as a feed-forward neural network Ny, which is fed by the
system input u(t) and the (estimated) state x(t) at time ¢,
and returns the estimated state time-derivative X(t), i.e.,

x = Np((t), u(t); Wy), 2)

where Wy € R™/ denotes the neural network parameters to
be identified. Similarly, the output mapping ¢ is represented
by a feed-forward neural network N, fed by %(¢) and
returning the model output y(¢) at time ¢, i.e.,

¥(t) = Ng(x(t); W), 3)

where W, € R"s denotes the parameters of the network.
Note that, in many cases, the output map g is actually known
(e.g., when the system’s outputs correspond to a subset of
the state variables). Obviously, in these cases, the output
mapping can be fixed and there is no need to estimate the
network Nj.

The resulting neural dynamical model is then given by:

x(t) = Np(x(t), u(t); Wy) (4a)
%(0) = % (4b)
Y (t) = Ng(x(t); Wy). (4¢)

,0)
l&(t)

Fig. 1: Block diagram representing the solution %(¢) of (@).

In order to fit the neural network parameters to the
training dataset D, one possibility is to simulate (@) using
a numerical ODE solution scheme, and then to minimize
the simulation error norm penalizing the distance between
measured and simulated outputs, with respect to the neural
network parameters VW, and W,.

In this paper, we introduce an alternative method exploit-
ing the integral form of the Cauchy problem (@a)-@b), by
defining an integrated neural network network N7 as:

%1(t) = Ny(x(t), ult), Wy) )

with N7(x(t), u(t), Wy) :&(O)Jrfg Ny (x(7),u(r); Wy)dr.

If the state sequence X(t) feeding the integrated neural
network N7 is actually generated by model (4), then the
signal x;(t) exactly matches X(t), i.e.,

)A((t) = )A([(t) YVt € [to tN—l]- (6)

The block diagram in Fig. [T)is a representation of (3), along
with the output equation producing y(t).

B. Fitting criterion

In our approach, the neural network weights Wy, W, and
the state signal X(t),t € [top tny—_1] are tunable parameters
to be optimized alfogether according to a dual objective.
First, the model output should be close to the measurement
in D. This objective is represented by a fitting term in the
cost function penalizing the distance between y(fy) and
yv(tx), k=0,1,..., N—1. Second, the state signal x should
be compatible with the model dynamics (@). This is promoted
by an additional regularization term in the cost function
penalizing the distance between X;(¢) and X(¢), where X
is defined as in (3).

The following minimization problem is thus formulated:

)},J\nifig/\/g(](i7 Wf7 Wg)7 (73)
where
€y
N—1
J =N |ytr) — y(tn)|?
k=0
Iy (7b)
[
tN-1
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Fig. 2: Block diagram representing the loss function for the
proposed integrated neural network.

¥ (tr) = Ny(x(te); Wy), (70)

)i Wy
x5(t) )2(0)-6—/0 N¢(x(7),u(r); Wy) dr.

(7d)

The weighting constant o > 0 acts as a regularization
hyper-parameter balancing the relative importance of the
fitting objective .J, and the regularization objective .J,. Fig. 2]
is a block diagram representation of the operations required
to compute the cost J in (7b).

C. Numerical implementation

Note that the optimization problem is actually infinite-
dimensional as one of the optimization variable is the
continuous-time state signal x(t) € R™, t € [to tn—_1]
In order to transform into a finite-dimensional problem
amenable for numerical optimization, X(¢) is approximated
using a finite-dimensional parametrization. For the sake
of exposition, we adopt in this work a simple piecewise
constant parametrization, where X(t¢) is constant on the
intervals [ty tx41], K =0,1,..., N — 1. In general, different
parametrizations for X such as piecewise linear of polynomial
could be adopted. Moreover, the intervals for the piecewise
definition of X do not necessarily correspond to the ones
induced by the measurements in D.

Furthermore, the integrals in (7b) and are approx-
imated by applying a numerical integration scheme. For
the sake of simplicity, we adopt the classical rectangular
approximation rule for the numerical integration of both
integrals. Thus, the piecewise constant parametrization of
%x(t) and the rectangular quadrature of the integrals yield:

tN—1 N—1
[ alr) = k(a3 i (t) = %(00) P At
to k=1
3)
where Aty =ty — tx_1, and is approximated as:
k—1
Xp(te) mx0 + > At Np(X(t),u(ty); Wy). (9)
§=0

Algorithm 1 Training neural network through gradient de-
scent

Inputs: training dataset D; number of gradient-descent iterations
n; learning rate \; weighting constant o.

1. Initialize the neural network parameters YWy, W, and the state
sequence X.

2. for j =0,..,n—1do

2.1. )A([(to) — f((to)

22. for k=0,1,...,N—1do
V(tr) < No(x(tr); Wy)
Axp = Ny (%(te), ulte); We) (ter1 — tr)
Xr(th1) < Xr(te) + Axk

3. Define the cost J from and (@), i.e.,

TV Wy %) S 1900) — y (6]

N-1

+a Y [Rr(te) — ()| (b — th—1)

k=1

4. Compute the gradients Vyy ¢ J, Vw,J, VxJ through back-
propagation
5. Update the network parameters and the hidden state:
Wf < Wf — AVWf J
Wy <~ Wy — AV, J
X X — A\VzJ

Output: neural network parameters Wy and W,,.

Note that, for implementation convenience, the sum in ()
can be constructed recursively as:

Axk,

X7 (te+1) =% (t) + Atg 1 Ny (X(tr), u(ty); Wy) .

(10)

In general, other quadrature rules such as the trapezoidal
rule or Gaussian quadrature [18] could be adopted for
approximation of the integrals in and (7d).

D. Algorithm overview

Algorithm |1| describes the steps required to estimate the
network parameters Wy and W, by minimizing the loss
J defined in over a number of n gradient-descent
iterations.

At the beginning of the procedure (Step [I), all the op-
timization parameters Wy, Wy, and X are initialized to
some selected (or random) values. It is import to remark
that, for numerical implementation and with some abuse of
notation, the optimization variable X in Algorithm [1| denotes
the finite-dimensional representation of the state signal X,
ie., x = {x(¢),...,%X(txy—1)}. The measured input and
output values in the dataset D may also be normalized, if
required.

Then, at each iteration j = 0,...,n — 1 of the gradient-
based optimization, the following operations are repeated.

In Step 2, the neural network output y and the inte-
grated state X; are evaluated according to and (I0),



respectivelym The cost function J is then computed (Step
as in and (8), and its gradient with respect to the
optimization variables Wy, W,, and X is obtained through
back-propagation (Step [)), based on the computational graph
in Fig. 2| Lastly, the optimization variables Wy, W, and X
are updated according to the gradient descent optimization
algorithm with learning rate A (Step [). Enhanced variants
of the vanilla gradient descent algorithm such as RMSProp
and Adam [19] can also be adopted in Step [3

The computational graph corresponding to the loss mini-
mized in Algorithm [I]is sketched in Fig. 3] It is evident from
this graph that all the neural network function evaluations can
be performed in parallel, as the state sequence X(t) is a free
optimization variable. Only the cumulative sum required to
obtain recursively X7 (ti4+1) as Xr(tx4+1)=%7(tx)+Axy has
to be computed sequentially. However, this simple operation
has a negligible computational cost compared to neural
network evaluations.

For the sake of comparison, the computational graph of
a simulation error minimization training strategy based on
the forward Euler numerical scheme for ODE integration
is shown in Figure [ It is evident that in this case the
neural network function evaluations have to be performed
sequentially as the simulated state X(¢j11) at time step ¢4
depends on the previously simulated state x(¢;) at time
step t;. This does not allow a parallel implementation and
generally results in a longer algorithm runtime.

Remark 1: 1t is possible to take adavantage of a previously
available model to initialize the optimization variables in
Step 1 of Algorithm |1} For instance, an initial estimate of
state sequence X may be obtained by optimizing the cost
function J with respect to X only, while fixing the system
dynamics to the initial model. This type of initialization is
proposed in [20] for general nonlinear identification of state
space models, with an initial linear model obtained as the
Best Linear Approximation of the training data.

Remark 2: In Algorithm 1, the entire training dataset is
processed at each iteration j of the optimization loop. Unlike
in simulation error minimization, (mini)-batch training is
not required in our approach to increase the level of par-
allelization. Nonetheless, executing the training procedure
on shorter training sequences could still be beneficial for
different reasons. First, as shown in [14], the Lipschitz
constant of the objective function may blow up exponen-
tially with the training sequence length for non-contractive
system dynamics. Thus, the optimization problem (7)) may be
better posed when solved over subsequences extracted from
the training dataset. Furthermore, for large-scale training
datasets, minibatch training may be required due to memory
limitations of the hardware.

IV. CASE STUDY
A. System description
The proposed method is evaluated on a publicly avail-
able system identification benchmark proposed in www.

'Note that (T0) is an approximation of (7d).

Fig. 3: Computational graph corresponding to the Integrated
Neural Network training described in Algorithm E}
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Fig. 4: Computational graph corresponding to simulation
error minimization, with system dynamics integrated using
the forward Euler numerical scheme.
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Fig. 5: Schematics of the cascaded two-tank system.

nonlinearbenchmark.coml In particular, the Cascaded
Tanks System (CTS) benchmark thoroughly described in [21],
[22] is considered here.

The CTS (schematized in Fig. [5) consists of two cascaded
tanks with free outlets. The system input is the water flow
provided by a pump feeding water from a reservoir into the
upper tank, while the measured output is the water level
in the lower tank. When one of the tanks is completely
filled, water overflow occurs. Furthermore, when an overflow
occurs in the upper tank, part of the water flows into the
lower tank, while the rest leaves the system.

An approximate nonlinear state-space model of the CTS
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Fig. 6: Plot of the inputs of the system. The blue trace
represents the input in the training set and the black dashed
line represents the input in the validation set.

can be derived as in [21], exploiting Bernoulli’s principle
and conservation of mass (but ignoring the water overflow
effect):

Xl(t) = —kl \/Xl(t) + k411(t) (118.)
XQ(t) = kg\/ Xl(t) — kgll(t) (llb)
y(t) = xa(t), (11c)

where u(t) is the input signal that controls the water pump
flow from the reservoir into the upper tank; x; (¢) and x2(t)
are the state variables of the system representing water level
in the upper and lower tank, respectively; y() is the output
signal that measures the water level in the lower tank; and
k1, ko, ks, k4 are unknown coefficients depending on the
CTS configuration.

Both the training and the validation datasets consist of
N = 1024 samples and the sampling time is At = 4 s.
The input u and the output y are expressed in Volts, as they
correspond to raw actuator and sensor readings, respectively.
The plot of the inputs of the training and validation data is
given in Fig. []

The goal of this benchmark is to estimate the dynamics of
the system as accurately as possible, using only the training
data. The efficiency of the estimation algorithm is then tested
on the validation dataset. As proposed in [21], the Root Mean
Square Error (RMSE) between the measured output y and
the open-loop simulated output ¥ is used as performance
index:

N-1

1 N
ernrs = \| 7 2 ¥ () =gl
k=0

(12)

B. Neural model structure

Based on the proposed identification architecture and on
the physics-based model given in (TI)), the following neural
network model structure is chosen:

X(t) = Ny (%(t), u(t); Wr)

with x(#) € R2 This model structure is motivated by
the observation that (i) the physics-based model has two
state variables and (i) the second one corresponds to the
measured output.

The feed-forward neural network N7 has three input nodes
(corresponding to the two state components and the system

(13a)
(13b)
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Fig. 7: Boxplot of eppsg for different number of neurons per
layer.

input u); two hidden layers with 80 nodes with a sigmoid
non-linearity; and two linear output nodes corresponding to
the two components of the state equation ((13a)).

C. Algorithm setup

The proposed identification algorithm is implemented us-
ing the PyTorch Deep Learning framework [23]. In order
to adjust data with different magnitude scales, the input
and the output data are normalized to have zero mean and
unitary standard deviation. In Algorithm (I} gradient-based
optimization is performed using the Adam method [19] over
n = 4 -10° iterations, fixing the learning rate to A =
10~°. The hyper-parameter « is set equal to 1/8. The code
for reproducing this example is available in the following
GitHub repository: https://github.com/bmavkov/
INN-for—-Identification

D. Results

The achieved results may vary due to the random initial
conditions assigned to the optimization variables and the
non-convexity of the objective function. Thus, multiple exe-
cutions with different initial conditions and a varying number
of neurons per layer were performed. The neural network
consists of 3 layers, while the number of neurons varied in
the range of 20 — 120 per each layer. The boxplots of the
RMSE values of the validation data are shown in Fig.

The measured output and the simulated model output in
the training and in the validation datasets are reported in
Fig. [8al and Fig. [8bl respectively. The resulting RMSE index
for the best preforming model is eryg = 0.36 for the
training dataset and erprs = 0.41 for the validation dataset.

We observe that the achieved performance index is similar
in the training and in the validation datasets, and that the
results are in line with the ones obtained using other state-of-
the-art identification methods applied to this benchmark [24—
29]. Detailed listing of the resulting RMSE values of these
algorithms are given in Table

V. CONCLUSIONS

A novel neural network architecture has been presented
for the identification of nonlinear dynamical systems in
continuous-time state-space forms. The proposed structure
consists of a feed-forward neural network followed by an
integral block. The network is trained using gradient-descent
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Method €RMS
Svensson et al.[29] 0.45
Volt.FB (Schoukens et at.)[24] 0.39
NOMAD (Brunot et al.) [25] 0.37
PNLSS-I (Relan et al.) [27] 0.45
NLSS2 (Relan et al.) [27] 0.34
PWARX (Mattsson et al.) [28] 0.35
INN Training data 0.36
INN Test data 0.41

TABLE I: Comparison of different identification methods.

Training Data
T T

——Measured
m—— Simulated

Magnitude (V)

I I I
0 500 1000 1500 2500 3000 3500

2000
time (s)
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Fig. 8: Plots of the simulated and measured outputs. The
black dashed trace represents the simulated output of the
estimated model and the blue trace represents the true output.

optimization, with gradients computed through standard
back-propagation.
Current research activities are focused on the extension of

the

proposed approach for direct identification of systems

described by partial differential equations, which requires
handling infinite-dimensional state-space vectors.
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