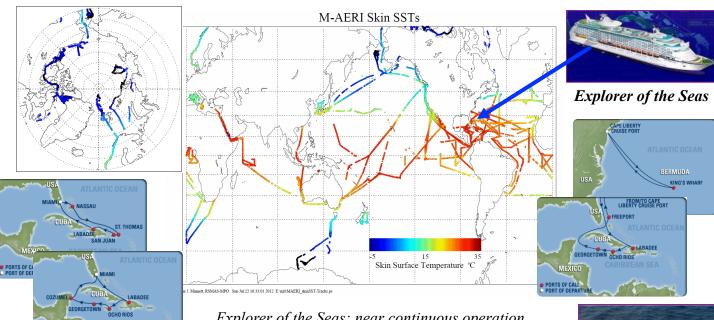
An overview of shipboard radiometers

Peter Minnett and Craig Donlon

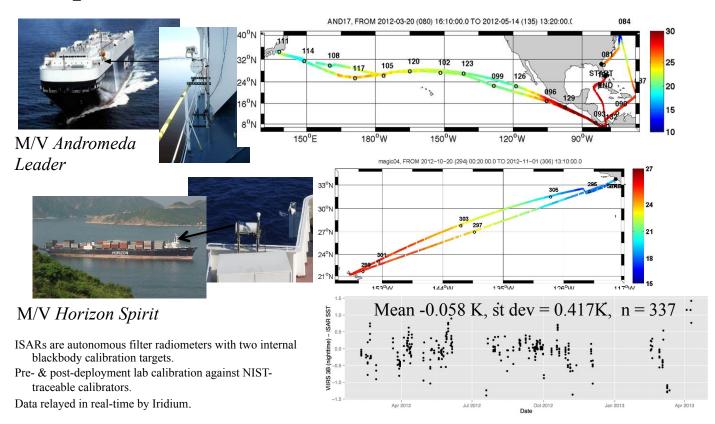

University of Miami and ESA-ESTEC

Name (date)	Spectral Definition	Passband (μm)	Detector type	Beam forming	Beam Steering	Calibration system	Comments
PRT-5 (1970)	Filter	Single channel 9.5 – 11.5	Bolometer	Objective lens	Non (manual pointing)	Stirred water bath	Challenging to deploy used a water bath calibrator.
RAL/SIL (1988)	Filter	Two channels 10 - 12	Pyroelectric	Gershun tube and parabolic mirror	Non (manual pointing)	Three internal black body cavities	No sky view unless radiometer manually pointed
DAR-011 (1992)	Filter	One channel 10.5-11.5	Pyroelectric	Gershun tube and parabolic mirror	Non (manual pointing)	Three internal black body cavities	Sky view on opposite side from the sea view i.e. not at the most optimal θ
SISTeR (1995)	Filter	Up to five channels 10.3 - 11.3	Pyroelectric	Off-axis ellipsoid mirror and steerable plane mirror	Programmable Plane rotating mirror	Two internal black body cavities	Research and autonomous deployment.
MISTRC (1995)	Filter:	Four channels 3.728 (P) 4.025 (P) 10.75 11.78	HgCdTe	Objective lens	Non (manual pointing)	External stirred water bath	Very large experimental demonstration system.
SOOSR (1998)	Filter	Single channel 8.0 – 12.0	TASCO THI-500L Thermopile	Ge AR lens	Non (manual pointing)	Two internal black body cavities	Low cost experimental demonstration system
M-AERI (1996)	FTIR	3.0 – 18.0	Cooled HgCdTe, InSb	FTIR collimated	Programmable Plane rotating mirror	Two internal black body cavities	Large Advanced Research spectro- radiometer
JPL-NNR (2002)	Filter	One channel	771	0.1	Non (manual		No sky view, deployed
ISAR (2004)	TO 11	rom Donlor Radiometer		_			rared tional to 3
CIRIMS (2005)		adiometry f					System
BESST (2013)	`	Elsevier Phy reparation.	Sical Sc	ichices s	oci ies), 20	J14. III	n

SST radiometers in routine use

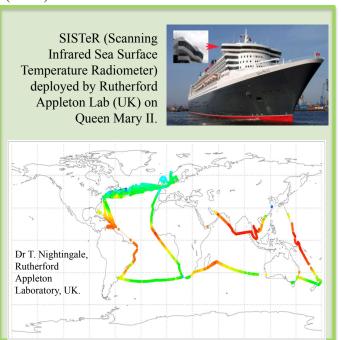
Name (date)	Spectral Definition	Passband (μm)	Detector type	Beam forming	Beam Steering	Calibration system	Comments
SISTeR (1995)	Filter	Up to five channels 10.3 - 11.3	Pyroelectric	Off-axis ellipsoid mirror and steerable plane mirror	Programmable Plane rotating mirror	Two internal black body cavities	Research and autonomous deployment.
M-AERI (1996)	FTIR	3.0 – 18.0	Cooled HgCdTe, InSb	FTIR collimated	Programmable Plane rotating mirror	Two internal black body cavities	Large Advanced Research spectro- radiometer
JPL-NNR (2002)	Filter	One channel 7.8 - 13.6	Thermopile	Ge lens	Non (manual pointing)	One internal black body cavity	No sky view, deployed on moorings
ISAR (2004)	Filter	One channel 9.6 - 11.5	Heitronics KT15.85D	Optical lens focused to diameter 6mm at 98mm	Programmable Plane rotating mirror	Two internal black body cavities	Autonomous operational deployment for up to 3 months
BESST (2013)	Filter	Three channel 10.8 12.0 8.0-12.0	320 X 256 pixel thermal imaging micro- bolometer	Ge objective lens	Programmable Plane rotating mirror	Two internal black body cavities	Lightweight design suitable for flight on drones

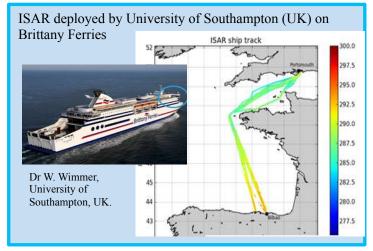
M-AERI cruises for MODIS, AATSR & AVHRR validation



Explorer of the Seas: near continuous operation

December 2000 – December 2007.


Ship radiometers: ISARs



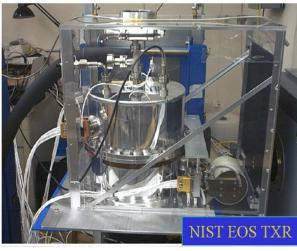
VIIRS v7.0 algorithm Reference SST WindSat 5day average.

Ship-board IR filter radiometers

Several groups deploy filter radiometers on ship for satellite SST validation. The European radiometers are supported by ESA for Envisat (past) and Sentinal-3 (future) validation.

Within the framework of GHRSST and ISSI Study Group, a consistent format for radiometer data and metadata is being defined to facilitate data exchange.

An archive is being identified – likely to be the British Oceanographic Data Centre.


SI-traceable calibration of ship-board radiometers

SI-transfer standards

Laboratory blackbodies to assess the uncertainties in the ship-borne radiometer measurements pre- and post-launch calibration being compared to SI-standard references by AMBER at NPL (left) and by TXR at Miami (right).

Ship radiometer data format

Follow the Climate and Forecast netCDF conventions.
Implemented in netCDF 4.

Copies for comment available from Tim Nightingale

The Recommended GHRSST L2i Data Specification

Version 1.0 Revision 2

Reference:	The Recommended GHRSST L2i Data Specification v1.0 rev2.doc				
Version:	1.0	Document Revision:	2		
Date of issue:	Thursday, 29 May 2014				
Document type:	Microsoft Word [Compatibility Mode]				
BookCaptain:	Tim Nightingale				
Author:	ISSI In situ Radiometer Group				
Master File Location:	Approved on TBD Development	-line version: : versions in:			

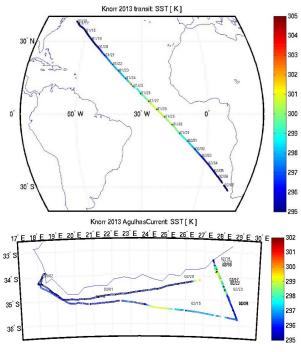
Content of Records

All L2i products should contain, at a minimum, the variables:

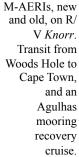
- Sea Surface Temperature data (sea_surface_temperature)
- Estimates of the total uncertainty in each SST sample (sst_total_uncertainty)
- Flags specific to each L2i data set that help users interpret data (sst_flags)
- A quality level for each measurement (quality_level)
- For radiometers, the viewing angle from nadir (view_elevation)

In addition, a number of auxiliary fields are recommended:

- An alternative time variable (julian_day)
- Estimates of the random uncertainty in each SST sample (sst_random_uncertainty)
- Estimates of the systematic uncertainty in each SST sample (sst_systematic_uncertainty)
- Measurements or estimates of the surface wind speed and direction (wind_speed, wind_direction)
- Measurements of the platform orientation and motion (speed_over_ground, course over ground, speed through water, true bearing)
- Azimuthal orientation of the instrument view (view azimuth)


Repository

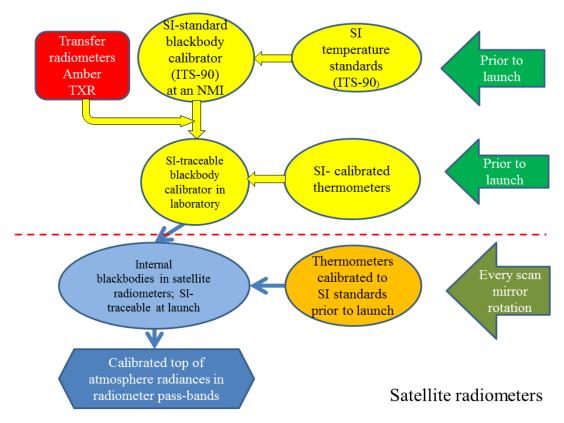
Likely to be British Oceanographic Data Center.


Suggestions for other centers welcomed.

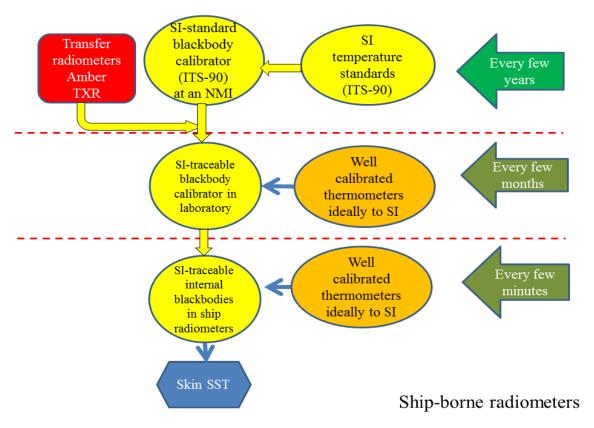
• Comments welcomed.

Ship radiometers: M-AERIs

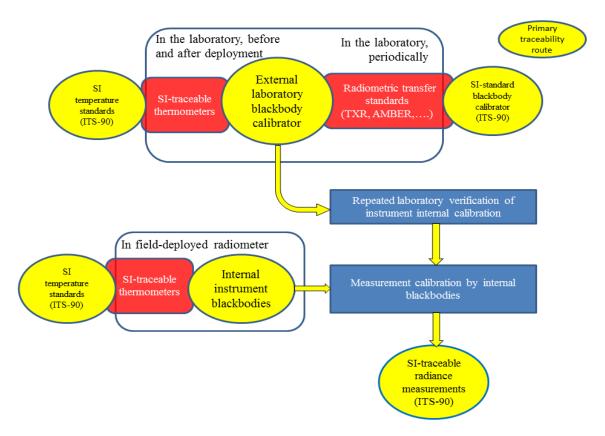
Skin SST measurements from R/V *Knorr*: January – March 2013

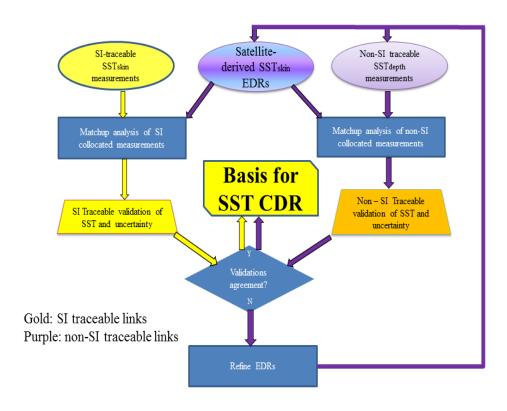


VIIRS v7.0 algorithm Reference SST WindSat 5day average.


M-AERIs are Fourier Transform Infrared interferometers with two internal blackbody calibration targets.

Pre- & post-deployment lab calibration against NIST-traceable calibrators.


Calibrating satellite radiometers


Calibrating ship-board radiometers

SI-traceability of ship-board radiometers

Transfer SI-traceability to satellite retrievals

