Supporting documents for the Construction Classification System Database for Understanding Resource Use in Building Construction

1. Introduction	1
2. Guidelines for contributing to the database	4
3. Variables	2
4. Tables	4
5. References	8

1. Introduction

Welcome to the Construction Classification System Database for Understanding Resource Use in Buildings.

This database provides a novel dataset and a building material data structure to facilitate study of resource use in building design and construction. The ontology developed for this database uses UniFormat (CSI and CSC, 2010) in conjunction with MasterFormat (CSI and CSC, 2016) for organizing and storing the building material data.

The dataset was developed by collecting design or construction drawings for the studied buildings and performing material take-offs based on the drawings. The ontology is based on Uniformat and MasterFormat to facilitate interoperability with existing construction management practices, and to suggest a standardized structure for future MI studies. The structure of the database and these guidelines builds on the structure presented by (Heeren & Fishman, 2019).

The initial database version is created by the research team supervised by Prof. Shoshanna Saxe at the University of Toronto and submitted to the journal Scientific Data (Guven et al. 2021) in October 2021 to describe the dataset and the associated methods and details.

Thank you for considering contributing to the database. Data contributors must follow the steps detailed below and must ensure that their inputs do not infringe any intellectual property or copyright agreements.

2. Variables

- 1. building_identifier: A unique building identifier, e.g. 001, 002, 003.
- 2. country: The country where the building is located, based on the ISO 3166-1 alpha-2 code (International Organization for Standardization (ISO), 2021) (i.e. two-letter country codes defined in ISO 3166-1), e.g. CA for Canada.
- 3. city: The city where the building is located. First three letters of city names are used, e.g. TOR for Toronto.
- quality_or_stage_of_data: Communicates the quality or stage of building drawings, demonstrating the level of completion of construction documents, such as Issued for Construction (00IFC) or Issued for Building Permit (0IFBP). Canadian Construction Association's classification is used for the level of construction documents completion (Canadian Construction Association, 2012) (see Table 1 for full list).
- 5. construction_date: It is the year (or projected year) of completion. For renovated buildings, construction date is the year the building was originally constructed.
- 6. building_type: Shows the type of building that is quantified, e.g. single detached (SND), institutional (INS), educational (EDU). "R" in the building type code indicates that it is a renovated building (see Table 2 for full list).
- 7. contributor_name: Identity of the contributor who added each subsequently-submitted column.
- 8. floor_level: Describes the floor or part of building where the material is placed. 00R is for roof, 999 represents the whole building. Underground floors are named based on purpose of use (i.e. basement or parking). Basements are denoted with letter B (e.g. B01) while parking is denoted with letter P (e.g. P02). Foundation is 00F, ground floor is 000, mezzanine floors are denoted with letter M (i.e., M00), and above-ground floors are 002, 003, etc.
- 9. uf_level_1: Major categories of construction information separated by their special function, according to UniFormat (CSI and CSC, 2010) (e.g., Substructure, Shell and Interiors).
- 10. uf_level_2: UniFormat Level 1 categories divided into classes by separating the categories into the discrete concepts that compose them (e.g., Foundations, Slabs-on-Grade).
- 11. uf_level_3: Subdivisions of UniFormat Level 2 classes, (e.g., Standard Foundations, Special Foundations).
- 12. uf_level_4: Subdivisions of UniFormat Level 3 classes, (e.g., Wall Foundations, Column Foundations, Standard Foundation Supplementary Components).
- 13. uf_level_5: Additional elemental information that provides further details on certain structural elements (e.g., joists, beams, trusses) in some of the Substructure (i.e., Wall Foundations) and Shell categories (i.e., Floor Structural Frame, Roof Structural Frame). This variable is optional. For full list, please refer to Table 3.

- 14. mf_level_1: Divisions of a building by the related work results (i.e., Construction result achieved in the production stage and identified by one or more of the following: the particular skill or trade involved; the construction resources used) according to MasterFormat (CSI and CSC, 2016).
- 15. mf_level_2: Subdivisions of MasterFormat Level 1 (mf_level_1) titles, this variable is optional.
- 16. mf_level_3: Subdivisions of MasterFormat Level 2 (mf_level_2) titles, this variable is optional.
- 17. mf_level_4: Subdivisions of MasterFormat Level 3 (mf_level_3) titles, this variable is optional.
- 18. mf_level_5: Subdivisions of MasterFormat Level 4 (mf_level_4) titles, this variable is optional.
- 19. Unit: Amount of construction material calculated via material takeoff. Expressed in terms of mass (i.e. kg) or volume (i.e. m3).
- uncertainty_score: Communicates the uncertainty of the data sources used in the quantification process of the material on a scale of 1 to
 The pedigree matrix originally developed by (Weidema & Wesnaes, 1996) is adapted (Table 4) to describe the uncertainty of the data sources used in the material quantification process.
- 21. quantity_1: Two quantities (quantity_1 and quantity_2) are reported for each material take off, a minimum and a maximum. If the calculation of the takeoff is performed within a range of minimum and maximum, the minimum value must be written under the quantity_1 column and the maximum value must be written under the quantity_2 column. If the result of the takeoff is a discrete number, then the same amount must be entered under the quantity_1 and quantity_2 columns.
- 22. quantity_2: Two quantities (quantity_1 and quantity_2) are reported for each material take off, a minimum and a maximum. If the calculation of the takeoff is performed within a range of minimum and maximum, the minimum value must be written under the quantity_1 column and the maximum value must be written under the quantity_2 column. If the result of the takeoff is a discrete number, then the same amount must be entered under the quantity_1 and quantity_2 columns.
- 23. In addition to the variables above, the gross floor area (GFA) of each building should be reported. The GFA is described as the total floor area of all floor levels including underground space and the area taken by external walls, internal walls, columns, and partitions. The unit of measurement for the GFA is square meters.

The data descriptor article submitted to the journal Scientific Data (Guven et al. XXXX) provides details on the method and data structure of the database.

3. Guidelines for contributing to the database

The database contains the variables that are described in the "Variables" section below. For contributing to this data repository, please follow these guidelines:

- Data must be provided for all variables that are not defined as optional.
- The amount of construction material that is calculated via material takeoff must be expressed in terms of mass (i.e. kg) or volume (i.e. m³). The amount must be entered to the database under two columns: Quantity 1 and Quantity 2. If the calculation of the takeoff is performed within a range of minimum and maximum, the minimum value must be written under the Quantity 1 column and the maximum value must be written under the Quantity 2 column. If the result of the takeoff is a discrete number, then the same amount must be entered under the Quantity 1 and Quantity 2 columns.
- Contributors must identify themselves in the contributor column and should adhere to the given data format.
- Contributors to add new data to the dataset should create copies of the repository (i.e. forks) and update the dataset this way.

4. Tables

Table 1. List of construction stages for documents

Quality / Stage of Data	Code
Concept sketch design	00CSD
<33% design development	L33DD
33% design development	G33DD
50% design development	050DD
66% design development	066DD
95% design development	095DD
Issued for Tender	00IFT
Issued for Building Permit	OIFBP
Issued for Tender and Building Permit	IFTBP
Issued for Construction	00IFC
Issued as Record Drawings	OIARC

Table 2. List of building types

Building Type	Code
Apartment building	APB
Institutional	INS
Office	OFF
Educational	EDU
Single detached	SND
Semi detached	SMD
Detached accessory dwelling units	ADU
Secondary units	SEC
Townhouse	TWN
Mixed Use	MIX
Laneway Suites	LNW
Renovated single detached	SNR
Renovated semi detached	SMR

Table 3. Additions to UniFormat

Additions to UniFormat	Levels	Code
Substructure Interior	Level 2	A50
Floor Construction	Level 3	A5010
Interior Partitions	Level 3	A5020
Ceiling Finishes	Level 3	A5030
Floor Structural Frame - A50	Level 4	A5010.10
Floor Decks, Slabs, and Toppings - A50	Level 4	A5010.20
Ramps - A50	Level 4	A5010.30
Interior Fixed Partitions - A50	Level 4	A5020.10
Interior Partition Supplementary Components - A50	Level 4	A5020.20
Plaster and Gypsum Board Finish - A50	Level 4	A5030.10

Table 3. List of UniFormat Level 5 elements

Name of element	Code
Continuous Footings	0CF
Foundation Walls	0FW
Spread Footings	OSF
Column Piers	0CP
Columns Supporting Floors	CSF
Floor Girders and Beams	FGB
Floor Trusses	OFT
Floor Joists	OFJ
Columns Supporting Roofs	CSR
Roof Girders and Beams	RGB
Roof Trusses	ORT
Roof Joists	ORJ
Parking Bumpers	OPB
Precast Concrete Stair Treads	PCS
Roof Curbs	ORC
Exterior Wall Construction	EWC
Composite Decking	CPD
Cast-in-Place concrete	CIC
Floor Structural Frame	FSF
Associated Metal Fabrications	AMF
Floor Construction Supplementary Components	FCS
Roof Construction Supplementary Components	RCS
Residential Elevators	ORE
Vegetated Low-Slope Roofing	VLR
Swimming Pools	SWP
Excavation Soil Anchors	ESA
Roof Window and Skylight Performance	RWS
Rainwater Storage Tanks	RST

Gray Water Tanks

GWT

Table 4. Uncertainty according to the reliability of the data sources used for quantification of building materials (definitions adapted from Weidema and Wesnaes, 1996).

Pedigree matrix indicator scores	Reliability indicator pedigree matrix definition	Definition adapted to material quantification process
1	Verified data based on measurements	Material quantification based on measurements performed on site, reflecting as-built conditions
2	Verified data based on measurements	Material quantification based on building drawings and details (e.g. specifications, notes, legends)
3	Verified data partly based on assumptions or non-verified data based on measurements	Material quantification based on trusted references for information not included in the building drawings (e.g. local and/or national building codes, brochures, literature)
4	Non-verified data partly based on qualified estimates	Material quantification based on consultation with industry experts and estimators for information not included in the building drawings
5	Qualified estimates (e.g. by industrial party)	Material quantification based on proxy data for information not included in the building drawings
6	Non-qualified estimate	N/A

4. Acknowledgements

Below is the names of people contributed to the creation of the original dataset and the ontology published in (Guven et al. 2021):

Aldrick Arceo

- Allison Bennett
- Alex W. Olson
- Batool S. Zehra
- Bolaji Olanrewaju
- Charu Tyagi
- Gursans Guven
- Kaan Isin
- Melanie Tham
- Molly McGrail
- Rose Zhang
- Salim Hourieh
- Shoshanna Saxe

The paper should be cited as: Guven, G., Arceo, A., Bennett, A., Tham, M., Olanrewaju, B., McGrail, M., Isin, K., Olson, A.W., and Saxe, S. (2021). "A Construction Classification System Database for Understanding Resource Use in Building Construction", submitted October XX, 2021 to Scientific Data, Nature.

5. References

- Canadian Construction Association. (2012). *Guide to Cost Predictability in Construction : An analysis of issues affecting the accuracy of construction cost estimates*. (1), 1–26.
- CSI and CSC. (2010). UniFormat A Uniform Classification of Construction Systems and Assemblies. Constructions Specification Institute (CIS) and Construction Specifications Canada (CSC).
- CSI and CSC. (2016). *MasterFormat Numbers & Titles* (pp. 1–186). pp. 1–186. Constructions Specification Institute (CIS) and Construction Specifications Canada (CSC).
- Heeren, N., & Fishman, T. (2019). A database seed for a community-driven material intensity research platform. *Scientific Data*, 1–10. https://doi.org/10.1038/s41597-019-0021-x

International Organization for Standardization (ISO). (2021). ISO Online Browsing Platform. Retrieved from Country codes website:

https://www.iso.org/obp/ui/#search

Weidema, B. P., & Wesnaes, M. S. (1996). Data quality management for life cycle inventories-an example of using data quality indicators. *Journal of Cleaner Production*, 4(3–4), 167–174.