Lighthouse initiatives

An action driven approach

2021-09-20 Jan Willem Wagenaar, TNO

Special thanks to

- Mikel Iribas (CENER)
- Sandrine Aubrun (EC Nantes)
- Till Kristian Vrana (Sintef)

- ▶ Workshop at the EERA JPWIND and SETWind annual event in Amsterdam, September 2019.
- Presentation for the SETWind Steering Committee in October 2019
- Session at WindEurope Offshore with presentation of the SETWind lighthouse initiative and panel debate with key stakeholders, in Copenhagen, November 2019
- Blog on offshore wind, December 2019
- Workshop at EERA DeepWind in Trondheim, January 2020
- Presentation for the SETWind Steering Committee in February 2020
- SETWind report on Lighthouse initiatives in May 2020
- Presentation for the SETWind Steering Committee in December 2020
- Presentation for EERA JP Wind Steering Committee in May 2021
- Workshop with EERA JP Wind participants in May 2021
- Document writing + discussions with MB during summer 202
- Presentation for EERA JP Wind members in September 2021

Make a concise story out of it

Challenges of the writing process ...

- ▶ Why Lighthouse Initiatives ...?
- ▶ Why should EU bother ...?
- ▶ What does it yield ...?
- ▶ How to avoid: collection of everything, preference of personal 'hobbies', story from researcher point of view, ...
- ▶ What challenges to address ...?
- ▶ How to execute …?
- How to formulate a story that:
 - provides a convincing and understandable story to EU policy nakers
 - contains a solid technical body to tackle challenges

Approach

- Both Lighthouse have the same structure; top to bottom
- Vision
- Main objective
- ► EU policy; outlook towards 2050
- ▶ EU WE hub: industry and R&D
- Lighthouse initiatives intro
- Challenges and Ambitions
- Programmatic and Action-driven approach

Purpose

- Showing relation between the two
- Our dot on the horizon
- What will the EU get after this LH
- Connecting to EU policy
- Fundamental research is needed
- Our proposal to the research need
- What specific targets?
- Action driven: we know what to do
- Programmatic: more than a project (LH)

Vision

Offshore wind power will be the cornerstone of the future energy system

Main objective

Development of **reference multi-GW-scale** floating wind clusters for various European sea conditions with innovations to overcome the barriers for **large-scale deployment** of floating wind energy. The **open-source** reference wind farm is designed in collaboration with industry applying **20 to 30 MW wind turbines**. The challenges related to the barriers are in the fields of **reliability and robustness**, **societal costs, circularity and ecology**.

EU perspective

- 'Fit for 55, set for 2050'
- > 2050: 450GW offshore wind
- IEA: Potential FOWT >80% of offshore wind globally
- EU leading, but USA and China rising
- FOWT not mature, yet

Lighthouse initiative

- ➢ is a visionary, science-driven and large-scale initiative
- tackles EU challenges in an integrated and holistic way
- strives for impact by bringing excellent EU expertise together, complementing existing EU calls

Challenges and Ambitions

- develop circular and ecology friendly solutions
- assure and maintain European leadership
- develop an open access, reference, multi GW-scale floating wind farm

Programmatic and action-driven approach

- ➢ 3 overarching, conceptual themes (IRPWind-like)
- ➤ 5 technical themes

Sharing and Disseminating Knowledge					
Open Access to data					
Towards Ecology-friendly and Circularity					
Understanding external conditions	Creating reference floating wind farm	Controlling FOWT	Logistics, installation and O&M		Subsea and floating transmission
			ind		EERA uropean Energy Research Allian

Integration of large scale offshore wind energy

Vision

Offshore wind power will be the cornerstone of the future energy system

Main objective

Develop solutions to **ensure reliable and affordable** power system operation with offshore wind energy **to supply one third** of the European electricity demand in 2050.

The research and innovation will develop solutions for offshore wind **power plants, grid infrastructure and flexibility technologies** to ensure the future zero-emission European power system to be reliable and affordable.

Integration of large scale offshore wind energy

EU perspective

- 'Fit for 55, set for 2050'
- > 2050: 450GW offshore wind
- Need: Transport massive amounts of energy to shore
- Need: Stable operation
- Need: Flexibility technologies

Lighthouse initiative

- ➢ is a visionary, science-driven and large-scale initiative
- tackles EU challenges in an integrated and holistic way
- strives for impact by bringing excellent EU expertise together, complementing existing EU calls

Integration of large scale offshore wind energy

Challenges and Ambitions

- develop circular and ecology friendly solutions
- assure and maintain European leadership
- develop technologies for a wind-dominated, EU energy system
- develop technologies for wind energy conversion and storage
- control wind energy input optimally for a stable power system

Programmatic and action-driven approach

- > 3 overarching, conceptual themes (IRPWind-like)
- 4 technical themes

Thank you for your contribution

Questions and Discussion

Understanding external conditions:

- Met-ocean conditions
- Impact on FOWT and wind farm deployment

Creating ref, multi-GW wf cluster

- > 20MW-30MW FOWT; design tools
- Ref wind cluster

Controlling FOWT

- > WT control
- WF control

Logistics, Installation, O&M

- Anchoring and mooring
- Assembly, towing and O&M strategies
- Ships, harbors and supply chain

Subsea and floating electrical transmission

- Electrical cables in deep water
- Subsea technology

Integration of large scale offshore wind energy

Understanding flow physics:

- Micro and macro scale linking
- Aerodynamics of large power plants
- Power stability

Designing the grid

- > WT components
- > WF connections
- Long distances to shore

Towards new controls and markets

- Balancing and flexibility
- Controls for stability
- Expand sets of functionalities

Power to X

- Conversion to H2
- Storage
- Offgrid
- Infrastructure

