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Abstract 

Multiple and diverse factory digital twins have been proposed in the literature. However, despite the recognized growing importance of workers 

in smart and autonomous industrial settings, such models still lack or oversimplify human representation. 

Human digital twins must include human monitoring and behavioural data and models based on psychophysical status, knowledge, skills, and 

personal needs to manage production systems that aim, at the same time, to achieve process performance and workers' wellbeing. This paper 

proposes a meta-model based on data, events, and connectors that supports the modular composition of tailored human digital twins. This work 

also addresses an industrial application of the meta-model for preliminary validation. 
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1. Introduction 

Industry 4.0 introduced the idea that production system 

control and decision-making can be realised, even 

automatically, by relying on Cyber Physical Systems (CPS) as 

dual elements composed of a physical production item and its 

digital counterpart: the digital twin (DT) [1]. 

Many examples exist where digital copies of machines, 

devices, products or entire production systems are used to 

improve performances, make predictions and take decisions. 

However, humans, which still have a relevant impact on 

process quality, performances and continuous improvement 

[2], have been excluded, up to now, from the digital 

representation of the factory. The human factor is usually 

considered only within industrial and workplace design to 

improve ergonomics, prevent hazards, and to train and educate, 

rather than for continuous decision-making and production 

system control. Yet, in order to create production systems that 

seamlessly complement human capabilities, the digital factory 

has to include a precise and realistic digital representation of 

humans, the Human Digital Twin (HDT). In such a model, 

workers’ behaviour is predicted by analysing historical data 

and psychophysiological status, aiming to optimise processes 

and to make better decisions. In so doing, a multi-objective 

optimisation is pursued targeting not only production system 

performance but also improvement of workers’ wellbeing in all 

its facets from physical health to the acquisition of new skills. 

This research explores the concept of HDT from a modelling 

perspective proposing a meta-model that supports the 

definition of workers’ digital representation in manufacturing. 

The model has been applied and validated in an injection 

moulding application.  

The rest of the paper is structured as follows. Section 2 is 

dedicated to reviewing the literature related to HDTs while 
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section 3 discusses the need for flexible and modular 

representation of the worker within the shop floor. Section 4 

presents the core of the meta-model and section 5 presents a 

real case study. Finally, section 6 concludes this paper. 

2. Human digital twin: state of the art 

NASA introduced the concept of DT in 2012 as “an 

integrated multi-physics, multi-scale, probabilistic simulation 

of a flying vehicle or systems” [3]. From that moment, this 

concept has evolved and has been adopted in several domains. 

Thanks to the technologies introduced by the Industry 4.0 

paradigm, DTs became incredibly relevant in the 

manufacturing industry. DTs have been successfully used to 

mirror and simulate industrial settings, for predictive 

maintenance, for virtual commissioning, for anomaly detection, 

and for optimisation of the product life cycle. 

Despite several examples being available in the context of 

products, devices, and machines, only a handful of works 

addressing the HDT (or more in general human modelling in 

industrial contexts) can be found. Workers have been 

considered, in the overall factory digital representation, mainly 

from a high-level perspective by creating mere static digital 

models [4]. However, such models are not enough to 

dynamically mirror the worker as the DT is more than a 

representation having to estimate the status and to simulate the 

behaviour of the things it represents. 

Most recent research provides only models aimed to 

represent workers, without addressing the connection between 

the digital and physical world, the data management, and, more 

specifically, how to create a HDT. Romero et al. described the 

human operator through its capabilities, categorising them into 

physical, sensorial, and cognitive [5]. Another research, 

focusing on creating a reference framework for user monitoring 

in the context of Industry 4.0, considers only physiological 

parameters [6], which have also been included by Wang in its 

human programming interface [7]. D’Addona et. Al proposed a 

man-in-the-loop automation system focusing not only on the 

optimization of production performances but including also the 

human operator as a full-fledged part of the whole process [8]. 

Finally, May et Al. [9] developed a Human-centric Factory 

Model that characterises workers based on three dimensions 

(anthropometry, functional capabilities, and 

knowledge/skills/expertise), but without detailing how to 

measure, collect and use these data. Bilberg and Malik [10] 

adopted a Kinect sensor to monitor the human presence inside 

the workspace and track the interference-volumes and 

frequencies between humans and robots, creating a geo-spatial 

representation of the worker. The collected data have been used 

to optimise robot trajectories online to reduce collisions. The 

most exciting results and application of HDTs, however, do not 

come from the manufacturing sector. Shen et al. [11] created a 

digital representation of workers operating in the construction 

sector by automatically collecting physiological parameters, 

including human heart rate, breathing rate, upper body posture 

angle, travelling speed, and acceleration to identify workload 

severity. From the same sector, Cheng et al. [12] merge 

workers’ spatio-temporal and thoracic posture data to identify 

the activity type and assess productivity in real-time. In 

different contexts, physiological data have been used to model 

physical fatigue and workload [13]. In the medical field, the 

HDT has been introduced to allow a detailed and continuous 

inspection of the health status and personal history, thus 

allowing predicting the occurrence of illnesses in order to 

prevent or treat them [14]. Such a digital representation 

promises to evolve from the legacy way treatments are 

delivered, “one-size-fits-all”, to the so-called “personalized 

medicine”. Again, in this field, few examples realize the 

automatic exchange of data between humans and their digital 

counterparts. Among them, a conceptual framework has been 

introduced by Liu et al. [15], describing how to exploit human 

health-related data produced by IoT-connected wearable 

devices to feed DTs. Finally, in the fitness field, HDTs have 

been used to predict athletes’ performance and optimize 

training, by collecting and tracking fitness-related data such as 

food income, activity, and sleep [16]. 

3. A holistic representation of the worker 

Realising the full potential of HDT in the context of smart 

manufacturing demands a variety of aspects to be considered. 

Indeed, decisions have to be made regarding the support 

platform architecture (software/hardware) and technology 

scouting to identify possible existing solutions. Still, these can 

only be undertaken downstream of a smart factory modelling 

process that considers all the key players involved in the 

manufacturing process, be they inanimate devices or human 

beings. 

An integral part of the modelling process entails identifying 

data sources and collecting, analysing, and exchanging 

information between the physical and digital factory. Again, 

workers and machines/robots are both sources and recipients of 

information flows. 

Over the years, various methodologies and tools have been 

developed to support the modelling of the physical components 

of a factory to build digital twins. As we have seen, although 

essential, human actors are rarely represented, thus generating 

shortcomings and sub-optimalities in the management of the 

production process. Workers are one of the most relevant 

stakeholders of a company. Considering their preferences and 

expectations is fundamental to create a motivated workforce. 

These elements can contribute to plan the right career plan, 

define training activities, and future job profiles. Moreover, 

personal needs are strongly related to motivation, which affects 

performance indicators [17]. For these reasons, it is of utmost 

importance to maintain an organic, comprehensive, and 

continuously up-to-date representation of the workers' status. 

As is already the case with devices and products, for which 

various models suit the type of analysis to be performed, 

distinct but complementary representations of the workforce 
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must be considered to meet the interests of the factory and the 

individual's needs holistically. A human being is a multifaceted 

entity and can be characterised by many different dimensions, 

each of them allegedly requiring a dedicated model. 

Experience, knowledge, skills, capabilities, wellbeing, and 

performance indicators are all elements that characterise a 

worker and that could be encompassed in his/her digital 

representation. 

The most common attributes presented in the literature are 

physical and anthropometric traits and functional capabilities. 

Body size and other anthropometric data are the basis for 

ergonomics and workstation design [18]. The use of simulation 

and 3D environments are today widely adopted. A precise 

physical representation of the worker can contribute to the 

successful design of workstations by simulating ergonomics 

[19] [20]. The worker's presence in space (position, orientation, 

and volume) and its evolution over time is also a relevant 

characterisation. 

As for functional capabilities, they are usually adopted in 

medical and social sciences in studies on disability and ageing. 

However, many research works have been carried out recently 

in the context of manufacturing, where the relation between 

worker capabilities, workplace, job, and performance is 

increasingly considered [21]. 

Skills, together with capabilities, are fundamental to assign 

the right job and tasks to the right worker, and they strongly 

correlate with company performance. Many taxonomies exist 

today for skill characterisation. Particularly relevant are ESCO 

[22] and O-NET [23]. 

Finally, the psychophysical status is also a relevant facet that 

contributes to a complete representation of the worker. Pain, 

illnesses, and injuries are all elements considered in 

ergonomics. However, with the widespread adoption of 

wearable technologies, also physiological parameters are 

becoming relevant in the context of manufacturing. 

Physiological data can be used to infer the insurgence of 

phenomena such as fatigue [24] and mental stress [25], which, 

in turn, have a relevant impact on process performance.  

4. The meta-model for human digital twin 

As mentioned, HDTs are useful tools to describe, monitor, 

and simulate workers' behaviour in a production environment. 

Therefore, it is essential to model the human being in terms of 

physical, psychophysical and behavioural traits. In particular, 

workers influence each other and relate to the shop floor and to 

the product. Moreover, for the HDT to be adherent to reality 

(workers' state, behaviours and dynamics), it must be updated 

continuously by analysing information flows obtainable 

through fixed and wearable devices. 

Therefore, in order to realise digital twins that are flexible, 

customisable and dynamic we have identified the following 

priorities in the development of a meta-model: 

1) The HDT must be definable through a modular and 

flexible syntax that is understandable to humans and 

machines alike. 

2) It must be possible to describe the relationships 

between humans and between humans and the 

environment so that the control and decision systems 

can have a complete view of the state of affairs. 

3) It must be possible to describe data sources in detail 

and characterise them adequately (data type, 

frequency, units of measure, maximum and minimum 

values, functions applicable to the signal, etc.).  

According to these priorities, this section presents the main 

elements of the meta-model developed to represent the human 

digital twin and its relationships with the environment and 

devices. 

This meta-model is grounded on two principles, which are 

proper to Domain Driven Development (DDD) and Object-

Oriented Programming (OOP), namely, 

inheritance/generalisation, and aggregation/composition. The 

former enables us to create hierarchies of entities (the base 

class) permitting the definition of progressively more 

specialised concepts; the latter provides the ability to define 

complex concepts as a set of simpler parts. In this way, we can 

provide the modeller with ready-made libraries of entities to 

instantiate, and the means to define his/her own concepts as 

needed. A set of primitive data and binary formats and 

serialisation processes (in JSON or XML) finally guarantee 

that the model can be transferred without loss of information 

and transformed into digital twins by dedicated software. 

Figure 1 illustrates the topmost elements of the proposed 

meta-model using the UML class diagram notation. The main 

component is the root class entity, characterised by attributes 

(primitive data types or other entities). An entity can aggregate 

other entities to define complex objects and containers (such as 

lists, sets, trees, etc.). The entity class can be extended at the 

modeller's will. However, the proposed meta-model includes 

some semantically meaningful extensions for supporting 

interoperability. In this section are presented only those 

extended entities that are considered pivotal to the definition of 

HDTs, namely, workerModel, connection, functionalModel, 

context, dataSource, and event. 

The entity called workerModel represents the human actor 

within the factory. In order to offer a flexible modelling tool 

but with a precise semantic meaning, the meta-model identifies 

three primary descriptive elements that characterise the worker 

from different points of view. 

The workerCharacteristic represents any enduring human 

characteristic like skills, experience, functional (sensory, 

intellectual, communication, physical capabilities), 

anthropometric characteristics, needs or preferences. An 

enduring feature is not necessarily a permanent one as it can 

potentially change over long periods (e.g., experience gain) or 

as a consequence of a particular episode (e.g., skill acquisition 

through training). Differently, workerCondition describes a 
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worker’s temporary condition. This class is extended into 

different sub-classes making room for the concept 

expansibility. As an initial subset, three sub-classes are 

identified: medicalCondition, emotionalCondition and 

psycophysicalCondition. The medicalCondition can include 

instances like illnesses or injuries described using specific 

medical standards. The emotionalCondition supports the 

representation of workers’ feelings. The 

psycophysicalCondition admits the modelling of conditions 

like physical fatigue, mental stress, loss of attention, anxiety 

and pain, relevant to assessing workers’ wellbeing and 

optimising process performance. Finally, the class 

workerParameter envelops all the dynamic parameters that 

can be collected from the worker. These can be categorised in 

psycophysicalParameter, including heart rate, heart rate 

variability, galvanic skin conductance, or 

geospatialParameter like localisation or posture. 

The contextModel is used to describe what surrounds the 

worker. Different classes are defined, including environment, 

factory and job. The class environment is used to describe 

ambient characteristics like humidity, noise, pollution, or 

lighting. Factory describes more complex elements that not 

only influence the worker but also interact with him/her, like 

machines, equipment, and robots. The class job represents the 

complete set of duties assigned to a worker during a specific 

working period (e.g., a shift).  

The dataSource entity describes items that produce data 

streams within the shop floor. These can be, among others, 

shop or machine sensors, wearable devices, automation 

controls, and software applications. Every data source is 

connected to a physical entity operating in the shop floor and 

to the workerParameter or environmentalParameter that it 

feeds. 

A state machine can describe the evolution of a digital twin 

(human or not) over time. In this sense, events perturb the status 

of this entity, driving its development over time. The event 

class describes the events that change the HDT status, evolving 

any of its entities or attributes. Connections define the 

endpoints of the affected entities or attributes.  

The functionalModel describes all those computational 

processes that can elaborate entities and attributes, making the 

HDT capable of simulating, predicting, reasoning, and 

deciding. The class functionalModel aggregates one or more 

events that can be used to update the state of the HDT 

depending on the result of the computation performed. Inputs 

are defined as connections to the entities needed by the model 

(e.g., physiological parameters and worker conditions for 

detecting fatigue level). Internally, functional models can 

employ any mean of data processing and calculation such as 

mathematical functions, machine learning, or empirical 

models. These, if necessary, can be stored as binary blobs and 

annotated to be managed correctly. The functionalModel class 

can be further extended into sub-classes. The 

monitoringModel, for instance, targets specific entities and 

attributes monitoring their evolution, elaborating specific 

attributes and detecting possible deviations (e.g., fatigue 

detection, mental stress detection, loss of attention, worker 

tracking). The decisionModel applies decision policies to the 

HDT. Decisions may entail modifying existing connections 

(e.g., assigning a task to a worker) or specific attributes (e.g., 

cobot speed). Finally, the behaviouralModel elaborates on the 

current status of the HDT to make predictions, and simulates 

its evolution (e.g., to detect risky situations). 

The entity connection describes links between two other 

entities, specifying the relationship nature, direction (optional), 

and the communication interface. The use of this entity permits 

the modeller to aggregate entities in graphs, to have an 

independent, distributed creation and evolution of the HDT. 

The connection entity can be extended for better qualification. 

assignedJob (linking workers to jobs) and wornDevice (relating 

a worker and a data Source) are examples of possible 

specifications. 

Figure 1 HDT meta-model 
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5. A HDT in an industrial scenario  

The suitability of the meta-model presented in the previous 

section is demonstrated here through the definition of an HDT, 

which has been realised for the experiment presented in detail 

in [26] and adopted in the industrial scenario depicted in Figure 

2. This has been realised thanks to the collaboration of Ghepi 

s.r.l, a Small Medium Enterprise located in Reggio Emilia 

(Italy). In this experiment, the HDT has been applied to 

estimate the worker’s condition in quasi real-time, including 

physical and mental stress and to drive the collaboration 

between human operators and a collaborative robot (cobot).  

The main goal of the experiment was to accomplish 

mutualism between a human and a cobot in an injection 

moulding work cell, improving both the worker’s wellbeing 

and process performance. In this work cell, three tasks are 

performed, namely, moulding, finishing and assembly. A task 

can be as either commutable, which means that can be 

performed by both worker and cobot, or non-commutable, 

which can be carried out by only one of the two. A smart 

decision-maker dynamically assigns tasks to the worker or 

cobot defining different work cell configurations based on the 

worker’s conditions (physical and mental stress), worker needs 

(e.g., rest), buffers levels and optimisation goals. In particular, 

the elements reported in Figure 3, representing the HDT model 

for the experiment, have been designed and developed on the 

basis of the HDT meta-model. 

There are three main entities in the model: the worker 

(ghepiWorker), the work cell (ghepiWorkcell), and the 

decision-maker (interventionManager). The ghepiWorker is 

used to organise human data, including characteristics (age, sex 

and 13 more characteristics), physiological data 

(galvanicSkinResponse, heartRate and 12 more parameters), 

worker conditions (mental stress and fatigue). ghepiWorkcell 

is used to organise factory data, (buffer levels, system 

configurations, and tasks). The interventionManager is used to 

represent decision policies to be enacted elaborating data 

related to the worker's conditions like fatigue, mental stress, 

and buffer levels to define the cobot support level. The 

interventionManager reads data exposed by the ghepiWorker 

and the ghepiWorkcell to set the work cell configurations.  

Different data sources are used to initialise and update the 

HDT. Physiological parameters are brokered by a 

huaweiWatch, continuously collecting data from an Empatica 

E4 wristband and Polar H10 Bodyband. Worker characteristics 

(like age and sex) have been harvested through a custom 

adaptation of the OREBRO musculoskeletal pain 

questionnaire, giving a detailed and static representation of the 

worker. Buffers have been monitored through an image 

processing module based on a vision system, whereas data on 

operations advancements and cobot availability are collected 

from a PLC. It is worth noting that data sources encapsulate 

models to ingest, filter, harmonise, and integrate collected data. 

Three different monitoring models have been adopted: two 

dedicated to the worker and one to the work cell. Models 

dedicated to the worker, including fatigueMonitoringSystem 

and heartRateVariabilityModel exploit data from the 

workerModel, including physiological parameters and 

characteristics to identify fatigue and mental stress levels. The 

bufferMonitoringModel processed images from the cameras 

to compute buffers levels and regulate the FIFO logic. 

Figure 3 HDT model in an injection moulding work cell (part 1) 

Figure 2 Ghepi's work cell 
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A specific model, represented in Figure 4, has been 

dedicated to the entities linked through connections that 

aggregate events. The monitoringModel(s) has connections 

with the interventionManager, characterised by different 

updating events, that specify that an entity of the HDT has been 

updated. The interventionManager has a connection with the 

ghepiWorkcell, characterised by a new configuration event, 

that specify the tasks allocated to the cobot and to the worker, 

update the HMI and deliver a notification through the worker’s 

watch.  

6. Conclusion 

While there are various examples of DT meta-models and 

models dedicated to the factory, until now no one had dealt 

specifically with human. To cover this gap, the proposed work 

presents a meta-model that supports the modular composition 

of tailored HDTs, reducing development efforts and increasing 

the re-usability of its components. The meta-model has been 

instantiated and validated through an experiment in an injection 

moulding work cell to demonstrate its effectiveness and 

industrial relevance. The results showed the improvement of 

workers’ wellbeing, while optimising the production and 

quality performance, as also described in the video available at 

[27].  

Future activities will concentrate on the functional 

representation of the HDT to describe, in a hierarchical and 

modular approach, the functional composition of the HDT 

building blocks (e.g. data acquisition, data analysis, decision-

making, etc.). Conformity to already existing approaches and 

standards will be also pursued. In particular, it is planned to use 

this meta-model as the basis for an extension of the RAMI 

Asset Administration Shell in the direction of a Worker 

Administration Shell. 

Moreover, integration with existing factory DT models will 

be carried out. Therefore, the work carried out in [28] will be 

taken as a reference to increase extensibility, interoperability 

and multi-disciplinarity of our meta-model. Finally, libraries 

will be developed to support the creation of new HDT instances 

in order to allow the validation in other contexts. 
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