

Norwegian Meteorological Institute

Diurnal warming in Lake Vänern

Steinar Eastwood, Cristina Luis, Lars-Anders Breivik Norwegian Meteorological Institute (MET Norway)

GHRSST XV, Cape Town, 4th June 2014

Outline

- MET Norway buoy in Lake Vänern, Sweden
- Validation results from OSI SAF SST product in this lake
- Observed cycle of diurnal warming events
- Observed profile of diurnal warming events

Lake Vänern

- Europe's third largest lake
- 5650 km²
- Altitude 44m
- Latitude 59N

Lake Vänern

- Europe's third largest lake
- 5650 km²
- Altitude 44m
 - Latitude 59N
- Average depth 27m
- Max depth 106 m
- Turbid waters (Secci depth 3-5m)

Buoy data

- Buoy moored at 59N, 13E, ~20m depth (MetOcean iSPHERE buoy)
- Observations every 30 minutes
- Buoy termistor placed at ~20cm below surface
- 3rd May to 15th October 2013
- Also temperature loggers at 30cm to 220cm depths and ambient light and air temperature sensor

Buoy setup 2013

ᇞ Institute

SST data from the buoy

Norwegian Meteorological Institute

Some validation results

- Comparing OSI SAF products (from CMS, Meteo-France) with this single buoy
- Using confl 3, 4 and 5

	Night time (> 95)			Daytime (< 85)		
	bias	std	num	bias	std	num
METOP-A	-0.23	0.49	55	0.00	0.67	146
NOAA-19	0.06	0.45	82	0.03	0.68	108
NPP VIIRS	0.04	0.34	68	-0.02	0.53	90

Diurnal cycles

Diurnal cycles

Mean monthly diurnal cycle

 Using all days where SST15 >= SST06 and SST15 >= SST23

1st June case

- · Closer look at 1st June case
- · 7 deg C warming case
- First, look at OSI SAF AHL SST 1.5km product

GHRSST XV, Cape Town, June 2014

NWP wind at 09UTC (HIRLAM8)

NWP wind at 09UTC (HIRLAM8)

With NWP wind from Hirlam

Similar DW cases at High Latitudes

1st June case – SST profile

1st June case - SST profile

Temperature vs depth

GOTM modelling (wind 2m/s, Jerlov 1)

GHRSST XV, Cape Town, June 2014

Norwegian Meteorological Institute

25th June case

Mean diurnal cycle profiles

- Look at all days with diurnal warming > 1.0C
- DW = SSTmax SSTmin06, where SSTmin06 is minimum between 00 and 06
- Mean profile for May-October data with diurnal warming > 1.0C

Further work

- New buoy setup was deployed in Lake Vänern in April 2014
- Added wind speed instrument and temperature loggers at 5 and 10 m depths
- Will leave buoy to stay over winter (lake freezes during normal winters)

Conclusion

- Satellite SST products validate as expected in Lake Vänern
- Diurnal warming is frequent and might be very strong in lakes such as Lake Vänern
- Lake Vänern is a good location for validating satellite lake temperatures, testing measuring equipment and study diurnal warming

Thank you for your attention

Validation results CMS products

- · All satellites
- · Using confl 3, 4 and 5
- · Total 780 obs
 - cl 2: 85
 - cl 3: 347
 - cl 4: 194
 - cl 5: 154

Diurnal variability

Norwegian Meteorological

GHRSST XV, Cape Town, June 2014

What was the max DW amplitude?

Norwegian Meteorological Institute

