

Using a 1-d model to reproduce diurnal SST signals ESA STSE Project "SSTDV: R.EX. – IM.A.M."

Ioanna Karagali, Jacob L. Høyer

DTU Wind Energy, Risø campus

Wednesday, June 4th, 2014

DTU Wind Energy Department of Wind Energy

GHRSST XV Meeting

SSTDV:R.EX.-IM.A.M. Project Description

• WP1. Regional extent of diurnal warming

- T1.1 SEVIRI vs AATSR
- T1.2 Foundation Fields: Sensitivity Tests, Validation & Quality Control
- T1.3 Characterization of regional diurnal warming

• WP2. The General Ocean Turbulence Model

- T2.1 Sensitivity Tests
- T2.2 GOTM at point locations: In Situ, SEVIRI, GOTM comparison
- T2.3 GOTM in the North Sea/Baltic: SEVIRI, GOTM, parametrizations comparison
- WP3. SST and Atmospheric Modelling
 - T3.1 SEVIRI hourly SST in WRF
 - T3.2 WRF diurnal parametrizations
 - T3.3 Validation and error estimates (10m wind, heat fluxes)

Model Description

- Basic hydro/thermodynamic processes related to vertical mixing in water column
- 1-d equations for transport of heat, momentum & salt
- Surface fluxes calculated (bulk algorithms) or prescribed
- Turbulence schemes: TKE K_{ϵ} , 2^{nd} order, KPP
- 2-band light absorption scheme
- 150 layers to 150 m depth
- Top 10 m: 70 layers

Model Options

Code No	Option	Code No	Option
	1. Surface Fluxes		6. Length Scale Method
1	Prescribed (usually from NWP outputs)	1	Dynamic dissipation
2	Calculated (using meteorological inputs)	3	Generic Length Scale
	2. Short-wave Radiation		7. Stability Method
1	Prescribed (usually from NWP outputs)	5	Mellor-Yamada
2	Calculated (using meteorological inputs)	6	Kantha & Clayson (1994), full
		7	Burchard & Baumert (1995), full
		8	Kantha & Clayson (1994), guasi-equilibrium
	3. Long-Wave Radiation	9	Burchard & Baumert (1995), guasi-equilibrium
1	Clark et.al (1974)		
2	Hastenrath and Lamb (1978)		8. Light Extinction
3	Bignami et al. (1995)	1	2-band Jerlov-I
4	Berliand and Berliand (1952)	2	2-band Jerlov-I (upper 50 m)
5	Brunt formula,	3	2-band Jerlov-IA
	coef Grant & Hignett (1998)	4	2-band Jerlov-IB
6	Prescribed by user	5	2-band Jerlov-II
	4. Type of Turbulence Closure	6	9-band with attenuation lengths,
1	TKE & length scale		proportional coeff. Paulson & Simpson (1981)
2	2 nd order model	7	9-band att. length Paulson & Simpson (1981),
3	KPP model		coeff. COART model
	5. Method for TKE	8	9-band att. length Paulson & Simpson (1981),
1	kε		coeff. MODTRAN model
2	Mellor-Yamada		

Arctic

Barrents Sea DW (Eastwood et al.,2008)

- 74.4 N 44.5 E, 20-22 June 2008
- Profiles: WOA09, MetNo (top T level adjusted)
- Heat & Momentum Fluxes:
 - Calculated: HIRLAM (10m wind, P_{air}, T_{air}, Humidity, Cloud Cover)
 - Prescribed: Heat Flux, Momentum Flux estimated from HIRLAM (MetNo)

Figure: GOTM top layer temperature evolution for different set-ups using T profiles from WOA09 & MetNo (left) and different light extinction schemes (right).

Code Modifications

- 9 band light absorption scheme
- New parametrisation for incoming long-wave radiation
- Option to prescribe incoming long-wave radiation
- Stability functions

DTU Wind Energy Department of Wind Energy

GHRSST XV Meeting

select case (extinct_method)

```
caseShamat]
from type with coefficients from Grant and Hignett, 1998
ccf=s
from type with coefficients from Grant and Hignett, 1998
ccf=s
ccf=s
ccf=s
from type with coefficients from type with coefficient from type with t
```

select case(stab_method) case(Constant) cmue1=cm0 fix cmue2=cm0 fix/Prandtl0 fix case(MunkAnderson) call cmue_ma(nlev) case(SchumGerz) call cmue_sg(nlev) case(EiflerSchrimpf) call cmue rf(nlev) case(MellorYamada) call cmue my(nlev) case(KanClay) call cmue_kc(nlev) case(BurBaum) call cmue bb(nlev) case(KanClav0e) call cmue kcge(nlev) case(BurBaumOe) call cmue bbge(nlev) case default

Table: Calculated (left) vs prescribed down-welling long-wave radiation (right) & LE schemes (coloured lines).

Code (02010401010108-)	μ	σ	r	Code (02010601010108-)	μ	σ	r
01 (2-band)	-0.29	0.23	0.41	01 (2-band)	-0.15	0.18	0.71
02	-0.23	0.22	0.53	02	-0.07	0.15	0.81
03	-0.25	0.22	0.51	03	-0.10	0.16	0.78
04	-0.19	0.20	0.59	04	-0.04	0.14	0.83
05	-0.11	0.19	0.66	05	0.05	0.13	0.85
06 (9-band)	-0.10	0.21	0.59	06 (2-band)	0.05	0.16	0.76
07	-0.20	0.22	0.53	07	-0.05	0.16	0.76
DTU Wind EAStgy	-0.14	0.21	0.59	08	0.01	0.16	0.77
DEU Wind EABry Department of Wind Energy	-0.14	0.21	0.59	08	0.01	0.16	0.77

GHRSST XV Meeting

DTH

PIRATA Buoy 15°N, 38°W

Table: Calculated (left) vs prescribed down-welling long-wave radiation (right).

μ	σ	r	Code (02010601010108-)	μ	σ	r
-0.03	0.08	0.97	01 (2-band)	0.05	0.09	0.97
-0.01	0.11	0.96	02	0.06	0.12	0.94
0.01	0.08	0.97	03	0.09	0.11	0.96
0.03	0.10	0.96	04	0.11	0.13	0.95
0.07	0.13	0.93	05	0.15	0.16	0.92
0.11	0.15	0.95	06 (9-band)	0.19	0.19	0.94
0.02	0.10	0.96	07	0.09	0.13	0.95
0.07	0.12	0.95	08	0.15	0.16	0.96
	$\begin{array}{c} \mu \\ -0.03 \\ -0.01 \\ 0.03 \\ 0.07 \\ 0.11 \\ 0.02 \\ 0.07 \end{array}$	$\begin{array}{c c} \mu & \sigma \\ \hline -0.03 & 0.08 \\ -0.01 & 0.11 \\ 0.01 & 0.08 \\ 0.03 & 0.10 \\ 0.07 & 0.13 \\ 0.11 & 0.15 \\ 0.02 & 0.10 \\ 0.07 & 0.12 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

DTU \

PIRATA: SEVIRI vs GOTM

Table: Calculated (left) vs prescribed down-welling long-wave radiation (right).

Code (02010401010108-)	μ	σ	r	Code (02010601010108-)	μ	σ	r
01 (2-band)	-0.08	0.11	0.94	01 (2-band)	-0.05	0.11	0.94
02	-0.04	0.12	0.93	02	-0.01	0.12	0.92
03	-0.03	0.11	0.94	03	0.00	0.11	0.94
04	0.00	0.12	0.93	04	0.03	0.12	0.93
05	0.05	0.14	0.90	05	0.08	0.15	0.90
06 (9-band)	0.08	0.16	0.90	06 (9-band)	0.11	0.17	0.90
07	-0.03	0.13	0.91	07	0.00	0.13	0.91
wind Energy	0.03	0.14	0.91	08	0.07	0.15	0.91
tment of Wind Energy							

DTU

PIRATA: SEVIRI vs GOTM

PIRATA

GHRSST XV Meeting

1 Introduction

2 WP2. GOTM

3 Test Cases

Summary & Conclusions

- GOTM reproduces the daily cycle reasonably well
- Full temperature profile controls amplitude, not only the top layer
- \bullet LE schemes can induce temperature differences ${\sim}1^\circ$
- $\bullet~$ BRM parametrisations can induce temperature differences ${\sim}0.1\text{--}0.2^\circ$
- Prescribing DLR does not always improve statistics (so far)
- Full measured datasets (ocean+meteo variables) required!

Thank you

Questions?

