

Search and characterization of young planets with GAPS2

The Star-Planet Connection

Virtual space 25-28 October 2021

S. Benatti¹, S. Desidera², M. Damasso³ & the YO Team

¹INAF – Astronomical Observatory of Palermo (Italy) ²INAF – Astronomical Observatory of Padova (Italy) ³INAF – Astrophysical Observatory of Torino (Italy)

What is the origin of the planetary systems diversity?

• ~4850 planets

- ~3590 planetary systems
- ~800 multiple planet systems
 (exoplanet.eu)

Different processes within the first hundreds of Myr can shape the system

Planet formation

- Properties of the disc
- Stellar multiplicity
- Crowded vs isolated environment

Orbital evolution

- Disc vs Higheccentricity migration
- Orbital inclination
- Tidal circularization

Radius evolution

- Contraction
- Photo-evaporation
- Core-powered mass loss

A snapshot of these processes at play...

A wide view

Young planets offer the unique opportunity to investigate both the inner and the outer region of a system

A snapshot of these processes at play...

A wide view

Young planets offer the unique opportunity to investigate both the inner and the outer region of a system

Young close-in planets

- Detection and characterization with Radial Velocity and Transits
- Link between the protoplanetary disk and old age known population
- Validation of theoretical models

Observables

Orbital parameters

- Period
- Eccentricity
- Obliquity (Rossiter-McLaughlin effect)

Time-scales

- Interaction with the gas of the protoplanetary disc: quick migration (<~10 Myr)
- Planet-planet scattering, secular interactions, ...: long time-scale (up to 1 Gyr)

Mass-Radius relation evolution

RV + Transit detection

Young close-in planets: Radial Velocity

- Active regions and fast rotation distort the spectral line profile
- Several claims but fairly large retraction rate (e.g. Carleo+2018, Donati+2020, Damasso+2020)

Young close-in planets: Radial Velocity

- Active regions and fast rotation distort the spectral line profile
- Several claims but fairly large retraction rate (e.g. Carleo+2018, Donati+2020, Damasso+2020)

Is V830 Tau b really there?

- M ~ 0.6 M_J, P ~ 5 days (Donati + 2016)
- We observed V830 Tau with HARPS-N for three seasons
- RVs dominated by the rotation (2Myr)

The perspective of young transiting exoplanets

0

-0.05

DS TUC A

1330

The planet detection is **less** sensitive to activity: RV confirmation is **easier** than a RV blind search survey

- **Characterisation** with mass detection or Rossiter-McLaughlin effect
- Very **interesting targets** are emerging and are currently under investigation by several Teams

(Adapted from Benatti et al. 2019)

Global Architecture of Planetary Systems

 Italian collaboration among ~80 scientists in the exoplanets field
Long-term multi-purpose observing program started in 2012 with HARPS-N at TNG, now GIARPS at TNG

□ Main Objectives:

- Characterization of the architectural properties of planetary systems
- Understanding the origin of planetary system diversity

The intriguing system of V1298 Tau

- Suarez-Mascareño et al. 2021, Nat.Astr. in press
- Maggio et al. subm.
- ~20 Myr old K star, P_{rot}~3 d
- Four transiting planets from K2 photometry
- Joined effort with Spanish collaborators: ~260 RV (mainly HARPS-N and CARMENES)
- Joint RV+LC modelling with Gaussian processes regression
- Mass detection for planets b and e indicating unexpected high density young gaseous planets
- No evaporation expected for b and e, the fate of the inner planets depends on their actual mass (Maggio et al. subm.)

Benchmark system, stimulating more questions than answers

V1298 Tau d

Hot Neptunes around TOI-942 Carleo et al. 2021

- ~50 Myr old K star, P_{rot}~3.4 d
- Two transiting hot Neptunes from TESS photometry
- One season of HARPS-N monitoring: time series dominated by the stellar activity signal
- Mass upper limits:
 - $M_{\rm b} < 16 M_{\oplus}$
 - $M_{\rm c} < 37 \ M_{\oplus}$
- Our follow-up is still ongoing

A quick evaporation is expected for planet b, while planet c can lose its atmosphere completely or only a fraction over longer timescales according to the actual mass

RV [m/s]

Four new systems from TESS & the characterization of DS Tuc Ab

Four young TESS systems are currently under investigation

- Ages between 250-600 Myr
- Radii between 2 and 4 R_F
- 1 multi-planet system
- 1 system with a potential additional RV signal

Within a similar program at ESO we measured a mass upper limit of $\sim 14 M_E$ for the 40 Myr Neptune-sized planet DS Tuc Ab, the Rossiter McLaughlin effect, and evaluated the atmospheric mass-loss rate

Young close-in planets: first lessons from TESS and Kepler

- Planets with age < ~100 Myr populate a low density region in the Period-Radius diagram
- Selection effects may be at work but it suggests a radius evolution with time

An opportunity to characterise young stars

Conclusions

The study of young close-in exoplanets allows to understand the origin of the system diversity, despite the high level of the stellar activity

Kepler/K2 and TESS are contributing with extremely interesting targets

GAPS – Young Objects program with HARPS-N at TNG is working to **characterise** such systems

Stellar activity, chemical abundances, starplanet interactions are also studied

