

characterization of young planets with GAPS2

Virtual space 25-28 October 2021

S. Benatti1, S. Desidera2, M. Damasso3 & the YO Team

1INAF – Astronomical Observatory of Palermo (Italy) 2INAF – Astronomical Observatory of Padova (Italy) 3INAF – Astrophysical Observatory of Torino (Italy)

What is the origin of the planetary systems diversity?

L 57

\cdot ~4850 planets

- ~3590 planetary systems
- ~800 multiple planet systems (exoplanet.eu)

Different processes within the first hundreds of Myr can shape the system

Planet formation Orbital evolution Radius evolution

- Properties of the disc
- Stellar multiplicity
- § Crowded vs isolated environment

- Disc vs Higheccentricity migration
- Orbital inclination
- Tidal circularization

- Contraction
- Photo-evaporation
- Core-powered mass loss

A snapshot of these processes at play…

 U

A wide view

Young planets offer the unique opportunity to investigate both the inner and the outer region of a system

A snapshot of these processes at play…

A wide view

Young planets offer the unique opportunity to investigate both the inner and the outer region of a system

Young close-in planets

- Detection and characterization with Radial Velocity and Transits
- Link between the protoplanetary disk and old age known population
- Validation of theoretical models

Observables

Orbital parameters

- Period
- Eccentricity
- § Obliquity (Rossiter-McLaughlin effect)

Time-scales

- Interaction with the gas of the protoplanetary disc: quick migration $(<10$ Myr)
- § Planet-planet scattering, secular interactions, …: long time-scale (up to 1 Gyr)

Mass-Radius relation evolution

§ RV + Transit detection

Young close-in planets: Radial Velocity

- § Active regions and fast rotation distort the spectral line profile
- § Several claims but fairly large retraction rate (e.g. Carleo+2018, Donati+2020, Damasso+2020)

Young close-in planets: Radial Velocity

- § Active regions and fast rotation distort the spectral line profile
- § Several claims but fairly large retraction rate (e.g. Carleo+2018, Donati+2020, Damasso+2020)

Is V830 Tau b really there?

- $M \sim 0.6 M_{\odot}$, P ~ 5 days (Donati + 2016)
- § We observed V830 Tau with HARPS-N for three seasons
- § RVs dominated by the rotation (2Myr)

The perspective of young transiting exoplanets

 $\mathbf 0$

1330

 -0.05

The planet detection is less Finitus A **sensitive to activity:** RV confirmation is **easier** than a RV blind search survey

- **Characterisation** with mass detection or Rossiter-McLaughlin effect
- Very **interesting targets** are emerging and are currently under investigation by several Teams

(Adapted from Benatti et al. 2019)

1340

BTJD [dav

GAPS – Young Objects Program Global Architecture of Planetary Systems

 \Box Italian collaboration among ~80 scientists in the exoplanets field **QLong-term multi-purpose observing program started in 2012 with** HARPS-N at TNG, now GIARPS at TNG

OMain Objectives:

- Characterization of the architectural properties of planetary systems
- Understanding the origin of planetary system diversity

The intriguing system of V1298 Tau

- Suarez-Mascareño et al. 2021, Nat.Astr. in press
- Maggio et al. subm.
- \bullet ~20 Myr old K star, P $_{\rm rot}$ ~3 d
- Four transiting planets from K2 photometry
- **Joined effort with Spanish collaborators:** ~260 RV (mainly HARPS-N and CARMENES)
- **Joint RV+LC modelling with Gaussian** processes regression
- Mass detection for planets b and e indicating unexpected high density young gaseous planets
- No evaporation expected for b and e, the $\frac{1}{2}$ _{0.6} fate of the inner planets depends on their actual mass (Maggio et al. subm.)

Benchmark system, stimulating more questions than answers

ESO Workshop - The Star-Planet Connection - S. Benatti (a)

Hot Neptunes around TOI-942 Carleo et al. 2021

- \sim 50 Myr old K star, P $_{\rm rot}$ \sim 3.4 d
- § Two transiting hot Neptunes from TESS photometry
- § One season of HARPS-N monitoring: time series dominated by the stellar activity signal
- § Mass upper limits:
	- M_b < 16 M_{oplus}
	- $M_c < 37 M_{\oplus}$
- Our follow-up is still ongoing

A quick evaporation is expected for planet b, while planet c can lose its atmosphere completely or only a fraction over longer timescales according to the actual mass

Four new systems from TESS & the characterization of DS Tuc Ab

Four young TESS systems are currently under investigation

- § Ages between 250-600 Myr
- Radii between 2 and 4 R_F
- § 1 multi-planet system
- § 1 system with a potential

Within a similar program at ESO we measured a mass upper limit of \sim 14 M_E for the 40 Myr Neptune-sized planet DS Tuc Ab, the Rossiter McLaughlin effect, and evaluated the atmospheric mass-loss rate

Young close-in planets: first lessons from TESS and Kepler

- Planets with age \le ~100 Myr populate a low density region in the Period-Radius diagram
- § Selection effects may be at work but it suggests a radius evolution with time

An opportunity to characterise young stars

Conclusions

 \Box The study of young close-in exoplanets allows to understand the **origin of the system diversity**, despite the high level of the stellar **activity**

 \Box Kepler/K2 and TESS are contributing with extremely **interesting targets**

□ GAPS – Young Objects program with HARPS-N at TNG is working to **characterise** such systems

 \Box Stellar activity, chemical abundances, starplanet interactions are also studied

