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Abstract—Deep neural networks can be converted to multi-
exit architectures by inserting early exit branches after some of
their intermediate layers. This allows their inference process to
become dynamic, which is useful for time critical IoT applica-
tions with stringent latency requirements, but with time-variant
communication and computation resources. In particular, in edge
computing systems and IoT networks where the exact computa-
tion time budget is variable and not known beforehand. Vision
Transformer is a recently proposed architecture which has since
found many applications across various domains of computer
vision. In this work, we propose seven different architectures for
early exit branches that can be used for dynamic inference in
Vision Transformer backbones. Through extensive experiments
involving both classification and regression problems, we show
that each one of our proposed architectures could prove useful
in the trade-off between accuracy and speed.

I. INTRODUCTION

Deep neural networks have achieved immense success in
recent years [1], however, they commonly consist of many
interconnected layers containing millions of parameters which
require high computational resources and cause slow inference
speed. Dynamic inference methods [2] allow deep models
to modify their computation graph during inference in order
to alleviate this problem. One such method is early exiting
[3], [4], leading to multi-exit architectures, where early exit
branches are inserted after intermediate hidden layers of the
backbone network and provide early results, albeit with less
accuracy compared to the final result of the backbone network.

Early exits are useful in computationally restricted settings
such as mobile and edge computing, where early results can be
used for “easy” inputs to save resources. Additionally, multi-
exit architectures can be helpful in anytime prediction settings
where the inference process may be interrupted at any time and
the network is expected to provide a response even if it was
interrupted before completion. Examples of anytime prediction
settings are distributed environments such as edge computing
systems and IoT networks, where the latency depends on the
communication channels, which means the exact computation
time budget is not known beforehand and varies over time.
Here, the latest result provided by a multi-exit architecture
can be given as output whenever the network is interrupted.

Vision Transformer [5] is a recently proposed architecture
for computer vision which has since been applied to various
problems, such as image classification, object detection, depth
estimation, and many more [6]. To the best of our knowl-
edge, multi-exit Vision Transformer architectures have not yet

been studied in the literature, which limits the application
of Vision Transformers in mobile and edge computing. In
this work, we propose seven different architectures for early
exit branches that can be inserted into Vision Transformer
backbones. Through extensive experiments on both image
classification and crowd counting, the latter being a regression
problem, we show that depending on the particular problem
at hand, each of these architectures has the potential to be
useful in the trade-off between classification accuracy and
inference speed. Our code will be made publicly available at
https://gitlab.au.dk/maleci/multiexitvit.

II. RELATED WORK

A. Multi-Exit Architectures

A deep neural network (DNN) can be formulated as a
function f(X) = fL(fL−1(...f1(X))) where X is the input, L
is the number of layers in the DNN and fi is the differentiable
operator at layer i. The output of layer i is denoted by
hi = fi(hi−1) and θi refers to the trainable parameters of
fi(·). The training process for this DNN can be formulated
as shown in Equation (1) where θ =

⋃L
i=1 θi is the set of all

trainable parameters of the DNN, {Xn, yn}Nn=1 is the set of
training samples and l(·) is a loss function.

f∗ = argmin
θ

N∑
n=1

l(yn, f(Xn)) (1)

In order to convert a DNN to a multi-exit architecture, an
early exit branch cb(hb) = yb is placed at every selected
branch location b ∈ B ⊆ {1, .., L}, where cb is the classifier
or regressor producing the early result yb. The schematic
illustration of a multi-exit architecture is shown in Figure 1 (a).
Since there are multiple outputs in a multi-exit architecture,
its training procedure is not as straightforward as Equation
(1). Three major strategies for training multi-exit architectures
exist in the literature [3]. The classifier-wise strategy freezes
the backbone, meaning the parameters θ will not be modified,
and trains the branches separately and independent of each
other or the backbone. In the end-to-end strategy, the loss
function lt = l +

∑
b∈B λblb combines the losses lb of the

early exit branches with the backbone’s loss and trains the
entire multi-exit architecture simultaneously. In this strategy,
the contribution of the loss of the branch at location b is
captured by weight score λb. Finally, the layer-wise strategy
first trains the layers up to and including the first early exit
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branch. Subsequently, the previous layers are frozen and the
rest of the layers up to and including the second branch are
trained, and this operation is repeated until the entire backbone
has been trained.

In the end-to-end and layer-wise strategies, the number of
branches and their placement create trade-offs between the
accuracy of different exits. In addition, with the end-to-end
strategy, the weight scores introduce new hyper-parameters. In
contrast, no trade-offs or new hyper-parameters need to be con-
sidered with the classifier-wise strategy. However, since in this
case the parameters of the backbone remain unchanged, fewer
parameters are affected during the training of the branches. In
this work we investigate all three training strategies.

It is important to note that branches placed later in the net-
works do not necessarily result in a higher accuracy compared
to previous branches. We use the term impractical in order to
refer to such branches, and the term practical for branches
with a higher accuracy than all previous branches. The usage
of impractical branches would not be sensible since earlier
branches with a higher accuracy exist.

B. Vision Transformer

Vision Transformer (ViT) [5] is an adaptation of the Trans-
former architecture [7] for computer vision problems. At the
core of the Transformer is the self-attention layer, which takes
a sequence X = (x1, . . . , xn) ∈ Rn×d as input and outputs the
sequence Z = (z1, . . . , zn) ∈ Rn×dv , which can be formulated
as Equation (2), where Q = XWQ, K = XWK and
V = XWV are query, key and value matrices, respectively, in
which WQ, WK and WV are learnable weight matrices [5].
dk = dq are the size of the vectors in query and key matrices.

Z = softmax

(
QKT

√
dk

)
V (2)

In order to capture more than one type of relationship
between the entities in the sequence, self-attention is extended
to multi-head attention by concatenating the output of several
self-attention blocks, each with its own set of learnable param-
eters. Figure 1 (b) depicts the Vision Transformer architecture,
where initially an input image is cut into several image
patches. A sequence of patch embeddings is then formed by
projecting each patch and concatenating a positional embed-
ding to the resulting vector. An extra learnable classification
token is also appended to the sequence. The sequence passes
through L Transformer encoder layers, each containing multi-
head attention layers among other operations. Finally, the
output vector corresponding to the classification token is
passed on to an MLP dubbed classification head to obtain
the final result.

C. Attention-Free, MLP-Based Architectures

Several MLP-based architectures for computer vision that
also operate on sequences of image patches have been recently
proposed [8]. The aim of these architectures is to reduce
the computational cost of ViT by removing the attention
mechanism, while achieving a comparable performance by

(a)

(b)

Fig. 1. (a) Schematic illustration of a multi-exit; and (b) Vision Transformer
architecture.

preserving a global receptive field similar to that of ViT. Since
the intermediate representations in the hidden layers of ViT
is in the form of a sequence of patches, it is simple to use
the building blocks of these MLP-based architectures as early
exit branches placed on ViT backbones. These building blocks
create more lightweight branches compared to the Transformer
encoders in ViT.

One such architecture called MLP-Mixer [9] is shown in
Figure 2 (a). Each mixer layer in MLP-Mixer consists of token
mixing and channel mixing operations, which are formulated as
Equations (3a) and (3b), where f1(·) . . . f4(·) are linear layers
and σ(·) is the GELU activation function. The output of the
final mixer layer is passed on to a global average pooling layer
and then a fully connected layer.

U = X + f2(σ(f1(Norm(X)T )))T (3a)
Y = U + f4(σ(f3(Norm(U)))) (3b)

A similar architecture called ResMLP [10] is shown in
Figure 2 (b). Each ResMLP layer consists of a cross-patch
sublayer and a cross-channel sublayer, which are formulated
as Equations (4a) and (4b). In ResMLP, normalization is
carried out using an affine transformation instead of layer
normalization, as shown in Equation (4c) where α and β are
learnable vectors that scale and shift the input. Similarly, the
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Fig. 2. (a) MLP-Mixer architecture; and (b) ResMLP architecture.

output of the final ResMLP layer is passed on to a global
average pooling layer and then a fully connected layer.

U = X +Norm(f1(Norm(X)T )T ) (4a)
Y = U +Norm(f3(σ(f2(Norm(U))))) (4b)
Norm(X) = Aff α,β(X) = Diag(α)X + β (4c)

III. MULTI-EXIT VISION TRANSFORMER

We assume a high-performing ViT backbone is available
for the problem at hand, and the goal is to convert this
backbone to a multi-exit architecture in order to allow for
dynamic inference. We propose seven different architectures
for the early exit branches added after intermediate layers of
a ViT backbone. The most intuitive approach, which we call
MLP-EE, is to add an MLP to the classification token of the
intermediate layer, similar to the classification head in the ViT
backbone. Even though MLP-EE is very lightweight, it may
not contain enough parameters and layers to extract useful
features, particularly for exits placed early. Moreover, it does
not process tokens other than the classification token.

Another approach is to convert the sequence of token
vectors in the intermediate layers of the ViT backbone to a
2D grid and further process them using convolutional filters,
leading to 3 different architectures we call CNN-Ignore-EE,
CNN-Add-EE and CNN-Project-EE, each handling the classi-
fication token in a different way. Note that even though the
intermediate layer is in the form of a sequence, each vector
in the sequence corresponds to a patch of the input image,
therefore putting the vectors back in a 2D grid simulates their
original neighborhood which is essential when using convolu-
tional filters that have a local receptive field. The motivation
behind this approach is that convolutional filters are the current
approach in the literature for early exiting [3], [11], [12] and
can act as a baseline for the other proposed architectures.
Furthermore, convolutional filters introduce low overhead in
terms of parameters and computation. Additionally, a fusion
of CNNs that can capture local structure very well but can not
handle long range interactions, with ViTs which can process
long range interactions, seems natural and may combine the
advantages of both [8].

On the other hand, the local receptive field of CNN-based
early exits may prove to be a drawback. An alternative that
can overcome this limitation is using the Transformer encoder
layer instead of the convolutional filters, which we call ViT-EE.
Indeed, it has been shown that Transformer encoder layers can
create superior early exits for CNN backbones by introducing
a global receptive field [13]. However, since the layers of ViT
backbones already have a global receptive field, it is not clear
whether ViT-EE will have the same advantage over CNN-
based early exits in ViT backbones as well. Another advantage
of using Transformer encoder is the simplicity of its structure,
which means it can handle various other data types such as
point-clouds and even cross-modal data [8], [13]. The main
drawback of ViT-EE is its high overhead, however, the building
blocks of the recently proposed attention-free MLP-based
architectures can serve as more lightweight alternatives that
still maintain a global receptive field and structure simplicity,
leading to ResMLP-EE and MLP-Mixer-EE.

Formally, the output of Transformer encoder b, denoted by
P b, consists of patch embeddings pb1, . . . , p

b
N corresponding

to the input image patches, as well vector pb0 corresponding
to the classification token. Since the shape of the intermediate
representations is the same for all of the hidden layers, without
loss of generality, we assume that the early exit branch is to
be placed after Transformer encoder b. In MLP-EE, shown in
Figure 3 (a), P b is normalized to obtain P̄ b = Norm(P b).
Subsequently, an MLP consisting of three dense layers with
two dropout layers in between takes p̄b0 as input, where P̄ b =
(p̄b0, . . . , p̄

b
N ), and outputs the early result. The MLP layers

in all our proposed architectures have the same three layers.
In ViT-EE, shown in Figure 3 (b), P b is given as input to a
Transformer encoder layer [13]. The output of the Transformer
encoder is then normalized and passed on to an MLP, similar
to the previous architecture.

In CNN-based early exits, the N patch embeddings
pb1, . . . , p

b
N can be reshaped into a tensor Cb ∈ R

√
N×

√
N×dv ,
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Fig. 3. (a) MLP-EE; (b) ViT-EE; (c) MLP-Mixer-EE; and (d) ResMLP-EE
early exit branch architectures.

akin to an intermediate representation in a CNN backbone,
with height and width of

√
N and dv channels, and then

passed on to a convolution layer, a max pooling layer and
an MLP to obtain the early result. However, it is not clear
what should be done with classification token p̄b0. A similar
situation arises in dense prediction using Vision Transformers,
where three ways for dealing with the classification token are
proposed [14]. In CNN-Add-EE, the classification token is
added to every patch embedding, leading to C̄b = (pb1 +
pb0, p

b
2+pb0, . . . , p

b
N+pb0); in CNN-Project-EE, the classification

token is concatenated to every patch embedding, leading to
C̄b = (concat(pb1, p

b
0), concat(p

b
2, p

b
0), . . . , concat(p

b
N , pb0));

and in CNN-Ignore-EE, the classification token is ignored
and discarded, leading to C̄b = Cb. These three alternative
architectures are depicted in figure 4.

As previously mentioned, the building blocks of attention-
free MLP-based architectures can be low-overhead alternatives
for ViT-EE which uses a Transformer encoder layer. Figure 3
(c) and (d) shows the MLP-Mixer-EE and ResMLP-EE early
exit branch architectures, respectively. Note that similar to the
original MLP-Mixer and ResMLP architectures, the output of
the mixer layer and the ResMLP layer are passed on to a
global average pooling layer.

IV. RESULTS

For the image classification experiments, we use CIFAR-10,
CIFAR-100 and Fashion MNIST datasets [15], [16]. We use
ViT-B/16 architectures with the original pre-trained weights
provided by the authors [5] as backbones, and we train them on
our target datasets using a cross-entropy loss function. For the
regression experiments, we investigate crowd counting, which
is the problem of counting the total number of people present
in a given image [17]. We use DISCO [18] as the dataset
and TransCrowd [19] which is a ViT-based architecture as the
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Fig. 4. (a) CNN-Add-EE; (b) CNN-Project-EE and (c) CNN-Ignore-EE early
exit branch architectures.

backbone. Mean absolute error (MAE) is commonly used to
evaluate the accuracy of crowd counting models [20]. All three
backbones have 12 Transformer encoder layers.

All our models were trained using the Adam optimizer [21]
with learning rates of {10−3, 10−4, 10−5} and the best result
is selected. The learning rate is reduced by a factor of 0.6 on
plateau with a tolerance of 2 epochs, and an early stopping
mechanism with a tolerance of 5 epochs is used.

Note that while early exits have been recently attached to
high-performing CNN backbones [13], [22], [23], there is
no prior work for early exits on Vision Transformer back-
bones. Since the performance obtained by Vision Transformer
backbones is improved by a large margin, we omit listing
the comparison with early exits on CNN backbones in the
following results.

A. Classifier-Wise

With the classifier-wise training strategy, since the branches
do not affect each other or the backbone, we place and train
early exit branches with each of our proposed architectures
at every single layer in the backbone. For each early exit
branch, we record the accuracy of its early results as well as
the total FLOPs up to and including the branch. The results are
depicted in Figure 5, where all practical early exits are circled.
In addition, the accuracy of the final exit of the backbone is
shown in these figures.



These results can be used to select a collection of
lightweight high-performing branches. With dynamic infer-
ence, it is desirable for the model to be as fine-grained as
possible, therefore, with the classifier-wise strategy where
placing more branches does not affect other branches or the
backbone, it is desirable to place as many branches as possible
on the backbone. To make this more clear, imagine a scenario
where only two exit options are available: option A with 80%
accuracy and 3B FLOPS, and option B with 90% accuracy
and 6B FLOPS. If the computation budget at hand is 5B
FLOPS, the only possible option to choose is A, resulting
in 80% accuracy. However, with a finer-grained model that
also includes option C with 85% accuracy and 4B FLOPS,
choosing option C leads to 85% accuracy. Hence we examine
all possible branch locations: if there exists a single practical
branch at a location, that branch should be added at that
location; if there are no practical branches at a location, then
no branches should be added there, since more accurate and
more lightweight exits are available; and if there are more
than one practical branches at a location (for instance, with
the DISCO dataset in Figure 5 (a), both CNN-Ignore-EE and
CNN-Project-EE make practical branches at layer 2) it means
that there is a trade-off between accuracy and computation at
that location, and the proper branch should be selected based
on the particular application. Alternatively, it is possible to
deploy multiple branches at the same location simultaneously,
and exit the one that fits the budget during inference. Note that
with the classifier-wise strategy, there can be different branch
types on the same backbone, for instance, there can be a CNN-
Add-EE branch at location 1 and a ViT-EE branch at location
2.

Several observations can be made from these results. First,
all of our proposed architectures create at least one practical
branch. As expected, MLP-EE does not contain enough param-
eters and layers to extract useful features in early locations on
its own, and thus performs poorly, while it catches up in the
later locations where the features extracted by the intermediate
layers can compensate. Furthermore, MLP-EE only processes
the classification head, which contains only low-level features
in very early layers. However, MLP-EE always creates the
first practical branch as it is the most lightweight. Secondly,
CNN-based branches outperform other types in the first few
locations. This is likely because the fusion of convolutional
layers that capture local interactions well, with the global
attention of the backbone, combines the best of both worlds.
However, this effect seems to fade in later locations, perhaps
since several layers of the backbone are able to capture both
local and global interactions fairly well. In addition, CNN-
Ignore-EE outperforms other CNN-based early exits in most
of these early cases, as the classification token in the very early
layers contains only low-level features. Thirdly, aside from
the very early locations where CNN-based branches dominate,
ResMLP-EE performs better in classification problems, while
ViT-EE performs better in crowd counting. Evident from the
use of visual attention mechanisms and dilated convolutions in
many high-performing models for crowd counting [17], global

information such as perspective plays an important role in
crowd counting, therefore, ViT-EE which can capture multiple
types of attention through the use of the multi-head attention
layer in Transformer encoder, outperforms ResMLP-EE which
does not include a mechanism for handling multiple types of
attention. Fourthly, observe that MLP-Mixer-EE outperforms
ResMLP-EE in most locations in the crowd counting cases.
This is because the affine transformation in ResMLP can be
used instead of normalization when the training is stable [10],
however, with crowd counting, the training process is not as
stable as image classification.

Note that in the last six locations in CIFAR-10 and Fashion
MNIST cases, the differences between the performance of
different branch types are minuscule, and therefore less infor-
mative. Moreover, observe that unlike multi-exit architectures
with CNN backbones, branches placed later on a ViT backbone
do not necessarily provide a higher accuracy compared to
previous branches. This is because in CNN backbones, the
network has a very local receptive field in the early layers, and
the receptive field gradually increases throughout the network,
whereas ViTs have a global receptive field from the very first
layer. This means that the accuracy of later branches of CNN
backbones is expected to increase since the receptive field has
increased, whereas in ViT backbones, later intermediate layers
do not have any advantages in terms of the receptive field, thus
their branches may obtain a lower accuracy. Finally, note that
in the DISCO experiments, some of the very late early exit
branches achieve a lower MAE compared to the final exit. This
is because the MLP in our proposed architectures consists of
three layers while the MLP in the ViT-B/16 backbone has one.

B. End-to-End and Layer-Wise

Unlike the classifier-wise training strategy, it is not possible
to conduct a comprehensive study of the end-to-end and layer-
wise strategies, since there are 2L−1 − 1 possible branch
placements. In addition, the end-to-end strategy can have
infinitely many weight values for each of the placements.
Therefore, for these training strategies, we only investigate
two cases; one where a single early exit branch is placed after
the sixth layer; the other where three branches are placed after
the third, sixth and ninth layers. In both cases, the contribution
of the final exit to the loss is double the contribution of the
early exits.

Results are summarized in Tables I and II. In all image
classification cases, final accuracy is decreased compared to
the backbones without early exits, which have an accuracy of
98.31% for CIFAR-10, 91.24% for CIFAR-100 and 95.00%
for Fashion MNIST. However, in crowd counting, the final
MAE is improved from the original 11.07 when a single
MLP-EE, ViT-EE or MLP-Mixer-EE branch is used. Sim-
ilar to the classifier-wise strategy, in both cases involving
the DISCO dataset, MLP-Mixer-EE outperforms ResMLP-EE
for the same reason explained above. Furthermore, ViT-EE
outperforms other branch types in most cases, particularly
when there are 3 exit branches, and performs very high
in others. Since the end-to-end training strategy affects the
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Fig. 5. Performance of different multi-exit architectures on (a) DISCO; (b) CIFAR-10; (c) CIFAR-100 and (d) Fashion MNIST datasets trained with classifier-
wise strategy. Practical early exit branches are circled. In order to highlight the differences, early exits with MLP-EE architecture are removed in (b) and (d)
and branches 1 to 6 and 6 to 11 are separated.



Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. Fasion MNIST Acc. DISCO MAE FLOPS
Early@6 Final Early@6 Final Early@6 Final

MLP-EE 94.90% 96.73% 81.12% 87.45% 94.47% 94.85% 11.04 10.72 28.04
CNN-Ignore-EE 95.95% 97.10% 77.97% 85.90% 94.43% 94.67% 21.88 11.09 28.10
CNN-Add-EE 94.94% 96.87% 75.75% 86.96% 94.22% 94.77% 18.46 11.24 28.10

CNN-Project-EE 94.66% 96.80% 77.95% 86.89% 94.33% 94.69% 18.23 11.29 28.16
ViT-EE 95.89% 96.99% 85.23% 89.44% 94.39% 94.84% 11.06 11.01 32.65

MLP-Mixer-EE 95.78% 97.07% 81.72% 87.53% 94.41% 94.88% 13.03 10.93 31.11
ResMLP-EE 95.44% 97.35% 82.41% 87.57% 94.38% 94.95% 16.99 11.36 31.02

TABLE I
PERFORMANCE OF MULTI-EXIT ARCHITECTURES WITH ONE BRANCH,

TRAINED WITH END-TO-END STRATEGY. THE LAST COLUMN SHOWS THE
FLOPS UP TO AND INCLUDING THE BRANCH.

Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. DISCO MAE
Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final

MLP-EE 87.21% 94.48% 95.64% 96.19% 61.00% 79.83% 84.42% 86.46% 13.77 11.54 11.55 11.44
CNN-Ignore-EE 91.44% 95.68% 96.55% 96.56% 65.08% 79.35% 84.74% 86.32% 20.99 23.65 20.88 11.42
CNN-Add-EE 90.27% 95.63% 96.80% 96.94% 62.66% 78.86% 85.11% 87.01% 18.33 19.25 18.92 11.77

CNN-Project-EE 91.19% 95.77% 96.81% 96.99% 64.26% 78.63% 84.47% 86.19% 21.25 21.46 17.99 11.49
ViT-EE 92.35% 96.01% 97.25% 97.33% 74.73% 84.31% 87.43% 87.88% 12.76 11.27 11.59 11.18

MLP-Mixer-EE 91.16% 95.99% 96.96% 96.99% 66.24% 81.84% 86.68% 87.29% 12.24 13.95 15.29 11.46
ResMLP-EE 92.53% 95.87% 96.76% 96.86% 70.45% 82.61% 87.36% 87.85% 14.15 14.71 17.05 11.09

TABLE II
PERFORMANCE OF MULTI-EXIT ARCHITECTURES WITH 3 BRANCHES,

TRAINED WITH END-TO-END STRATEGY.

parameters of the backbone, perhaps ViT-EE branches have
the least negative impact on the backbone due to the similarity
of their architecture with the layers of the backbone. This
is further supported by the fact that CNN-based branches
whose architectures differ the most from that of the backbone,
typically perform much worse.

With the layer-wise strategy, we encounter a problem. Since
Vision Transformers are data-hungry [6], they need to be pre-
trained on very large datasets. For the first step of the layer-
wise strategy where all layers up to and including the first early
exit branch are trained, pre-trained weights exist, therefore,
the training procedure achieves results with a high accuracy
on par with their end-to-end counterpart. For instance, in the
case of CIFAR-10, CNN-Ignore-EE achieves 95.97% accuracy
at the sixth layer. However, for subsequent steps, the original
pre-trained weights can not be used since the weights of
earlier layers have changed. We tested the training process with
no pre-trained weights, with the original pre-trained weights
as well as pre-trained weights from the end-to-end strategy,
however, neither achieved a high accuracy.

V. CONCLUSION AND FUTURE DIRECTION

We proposed seven architectures for early exiting Vision
Transformer backbones, provided the motivations behind each
of these architectures, and showed that depending on the
branch locations, training strategy and the problem at hand,
any of our proposed architectures can prove useful. Further-
more, we provided recommendations on selecting lightweight
high-performing branches based on the results of our exper-
iments. We discussed the role of architectural elements such
as local and global interactions, receptive field, classification
token, support for multiple types of attention, normalization
and similarity of branch architecture with the backbone layers,
on the performance of multi-exit ViT architectures.

A potential future research direction would be to check
whether other recent architectures for computer vision that
operate on a sequence of image patches such as Perceiver
[24], gMLP [25] and FNet [26] produce suitable early exits
for Vision Transformer backbones.
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