
Threat Modeling Knowledge for the
Maritime Community

Bernhard J. Berger
University of Bremen

Bremen, Germany
0000-0001-6093-9229

Christian Maeder
University of Bremen

Bremen, Germany
c.maeder@uni-bremen.de

Salva Daneshgadeh Çakmakçı
University of Bremen

Bremen, Germany
salva@uni-bremen.de

Abstract—Architectural risk analysis is a manual
technique to identify architectural security flaws that
undermine a software system’s security concept. The
Architectural Security Tool Suite ArchSec automates
this process by applying static analyses to automat-
ically extract architectural security views and em-
ploying a knowledge base to automatically detect
application-independent architectural security flaws.
This paper presents how ArchSec was extended
to check existing BPMN diagrams for application-
dependent security flaws. Therefore, a model-driven
approach is used to generate a knowledge base automat-
ically. This generated knowledge base hosts rules check-
ing an authorisation policy raised for a port community
system (PCS). Then, the application-independent and
the application-specific knowledge base were applied
to BPMN diagrams of the mentioned PCS. The check
successfully identified problems within the analysed
system. Nevertheless, the generated knowledge base
is application-specific, but it is transferable to other
software systems interacting with the PCS system,
creating a first domain-specific knowledge base for the
port community.

Index Terms—software architecture, risk analysis,
threat modeling, BPMN

I. Introduction

Attacks on software systems changed over the last
decades. At the beginning of interconnected systems, they
were carried out at the network level and tried to attack
an operating system’s network stack. With more robust
network stacks and firewalls in place, attackers started to
use widespread implementation-level bugs, mainly related
to missing input validation, such as SQL injections, cross-
site scripting, or path traversal attacks. Challenged with
these new kinds of attacks, practitioners developed new
techniques and software libraries that are not vulnera-
ble to these kinds of attacks. Furthermore, static code
analyses have been developed to detect these kinds of
vulnerabilities automatically. Consequently, the attacks
shifted once more. Whilst the previously mentioned at-
tacks were application-independent, attackers nowadays

The German Federal Ministry of Education and Research (BMBF)
supported this work under the grant 16KIS0583 (PortSec project)
and the German Federal Ministry of Transport and Digital Infras-
tructure (BMVI) under the grant 19H18012E (SecProPort project).

focus on application-specific attacks and look for weak-
nesses in an application’s security concept. To mitigate
these kinds of attacks, architectural risk analysis comes
into play. Microsoft’s Threat Modeling is a commonly
used technique here to identify such architectural security
flaws [1].

Microsoft’s Threat Modeling is part of the Secure
Development Lifecycle [2] and aims at hardening the
software architecture’s security. It is a manual attacker-
centric process. During the assessment for each part of the
system is discussed how an attacker may attack it. The
STRIDE approach guides the assessment and encourages
the participants to think about different kinds of attacks,
e.g., spoofing, tampering, and information disclosure. Be-
ing attacker-centric is necessary since attackers usually
think different than regular developers. While Microsoft’s
Threat Modeling is a beneficial tool for securing software
systems, it also has disadvantages. First, the results of
the threat process depend on the people involved in the
assessment. Second, the effort for conducting a threat
assessment is high. Different sources state that automating
the threat process would be very beneficial [3]–[6]. The
Architectural Security Tool Suite1 [7] deals with these
aspects to some degree. Therefore, it automatically ex-
tracts architectural security views in the form of extended
dataflow diagrams and applies different knowledge bases
to identify architectural security flaws. Consequently, it
reduces the time necessary to create architectural views
and makes the result less human-dependent. So far, Arch-
Sec’s knowledge base focuses on general security flaws
applicable to all kinds of applications. Nevertheless, they
do not cover all possible security flaws of an application
since there always are domain- or even application-specific
flaws. This paper presents an approach to specify an
authorisation matrix and automatically generate a knowl-
edge base from the matrix. First, we use this approach
to capture a domain-specific authorisation policy for a
port community system. Then, ArchSec uses the generated
knowledge base to validate a set of given BPMN diagrams
successfully.

1ArchSec is available at https://www.archsec.de.

The contributions made by the research presented in
this paper are:

1) An approach to automatically generate knowledge
bases for detecting authorisation-related security
flaws.

2) An evaluation of the approach using an existing port
community system.

3) A domain-specific but transferable knowledge base
for port community systems.

Section II first describes the background of this work.
Afterwards, Section III presents the approach used to
specify and generate the knowledge base. Next, Section IV
describes the results of the security flaw detection. Con-
tinuing, Section V relates this work to other publications.
Finally, Section VI discusses the approach and concludes
the paper.

II. Background

Microsoft’s Threat Modeling uses dataflow diagrams
for modelling a software system’s architecture. The main
reason for employing them is their ease of use due to their
informal nature, which allows creating them in assess-
ments using a whiteboard. A dataflow diagram is a graph
structure consisting of five node types, edges representing
dataflows, and trust areas. However, a downside of their
informality is a lack of expressiveness which complicates
automatic security flaw detection. To overcome this prob-
lem, ArchSec introduced extended dataflow diagrams,
which are very similar to traditional ones. However, while
the different node types are pre-defined in traditional
diagrams, extended dataflow diagrams support a dynamic
schema. The schema allows defining hierarchical types for
nodes, edge, data, and trust areas. Additionally, it is pos-
sible to define attribute types for the elements mentioned
above. Each of the elements allows binding scalar values to
attribute types. Furthermore, the element’s types provide
means to imply attribute bindings. ArchSec’s default
schema provides types for different computers, software
systems, software components, interacting users, intra-
process communication, and inter-process communication.
At the same time, attributes for the different protection
goals of information security exist, such as confidential-
ity, reliability, and non-repudiation. Additionally, there
are attribute types focusing on security measures, e.g.,
encryption, authorisation, and authentication. The default
schema, for instance, defines the data type credentials,
which implies the attribute binding from confidentiality
to the value true. A second example is the edge type
HTTPS, which implies a binding of the transport en-
cryption attribute to the value true. Consequently, data
of type credentials can be transferred using an HTTPS
connection since the data is encrypted.

ArchSec has two key features. First, it automatically
extracts extended dataflow diagrams, and second, it auto-
matically searches for security flaws [8]. The extraction

mechanism uses different static analyses to extract ar-
chitectural views of component-based software systems,
such as JavaEE-based or Android-based software. Thus,
it divides the implementation into several architectural
components, detects the interface of these components and
the usage of other components. Furthermore, it identifies
the use of security libraries and APIs, extracts the em-
ployed features, and maps them to the architecture. The
extracted extended dataflow diagrams allow the automatic
detection of security flaws.

Knowledge bases capture information on architectural
security flaws in ArchSec. There are three groups of se-
curity rules. The first group contains transferable security
rules since they deal with aspects like the unprotected
submission of sensitive information. While identifying sen-
sitive information is a manual and system-specific task, the
security flaw looks the same in all systems. The second
group of rules applies to a specific domain since all appli-
cations belonging to this domain must adhere to the same
rules, such as legal rules. Lastly, the third group contains
application-specific rules. ArchSec reduces the actual
security flaw detection to the subgraph isomorphism prob-
lem. Consequently, the threat and mitigations patterns are
subgraphs that ArchSec looks for. Each of the patterns
is described using the graph query language Cypher. Since
the graph query language works on property graphs, con-
sisting of typed and attributed nodes and edges, ArchSec
first lowers the extended dataflow diagrams to property
graphs. Afterwards, it locates matches of the patterns. The
matches, in turn, form the resulting threat model for the
software under investigation.

While this approach is flexible and allows adding new
patterns very quickly, it requires the security expert to
create Cypher queries by hand, which can be compli-
cated depending on the pattern. Adding custom patterns
is necessary for different reasons. First, many security
aspects are application-specific, such that they require
some security policy. Second, there are even domain-
and application-specific security properties that cannot be
foreseen.

III. Approach
While ArchSec focuses on reverse engineering ar-

chitectural views from a software’s implementation, the
situation was different in the research projects PortSec
and SecProPort. Here, architectural views in the form of
large business process model notation (BPMN) diagrams
were present. One research topic, among others, in these
projects, was whether these models adhere to an authorisa-
tion policy or if there are policy violations. Figure 1 shows
the outline of our approach to check the authorisation
policy.

Domain experts created the access control list (ACL)
using a custom web tool during the PortSec project. The
ACL encodes which subjects of the port community sys-
tem are allowed to access which information. For example,

BPMN

M2M

M2T

ACL

EDFD

Knowledge
Base

ArchSec
Threat
ModelMapping

Fig. 1. Transformation and checking process

a subject may be customs or a hauler. Additionally, the
passed messages are mapped to assets, which may be
sensitive. Therefore, it is possible to automatically extract
the subjects and the assets of the ACL from the given
BMPN diagrams.

In the first step, a model-to-model transformation con-
verts the given BPMN diagrams into an extended dataflow
diagram. The diagrams exist in the form of bizagi Mod-
eler files, which are XML-based model files and therefore
computer processable. During this mapping, the trans-
formation encodes different assumptions of the BMMN
diagram’s structure, such as pools correspond to subjects
and swimlanes represent different programs running under
the control of the subject. Besides the extended dataflow
diagram, this step also produces a mapping of the BPMN
diagram elements to the extended dataflow diagram ele-
ments.

During the second step, a model-to-text transformation
converts the access control list (ACL) to a knowledge
base suitable for ArchSec. Therefore, it reads the access
control list and the mapping generated during the first
step. Next, the transformation generates two knowledge
base rules for each asset present in the ACL. The first
marks any element processing the asset as a possible threat
to the system’s security, and the second does the same for
every channel transporting the asset to another process.
Then, a corresponding mitigation rule is generated for
both rules that mark the threat as mitigated. For the first
rule, it is sufficient that the process is allowed to process
the asset, and for the second rule, the target process of
the communication channel needs permission to access the
asset. Otherwise, the data is sent to a process that is not
allowed to access the asset.

In a final step, we refined the generated extended
dataflow diagram. In this step, additional knowledge of the
domain experts was used to make the diagram more pre-
cise, e.g., by changing the channel types to proper types,

such as HTTPS, SSL connection, or e-mail. Unfortunately,
this information is not present in the BPMN diagrams and,
therefore, it is not possible to extract it automatically.

Listing 1. Query pattern for channel-based threats

1 MATCH

2 (d : Data {"uid" : "«unique-data-id»"}),

3 (src: Element {type : subtypeof("Process")})

4 -[c : Channel {type : "inter-process communication",

data : contains(d)} * 1]->↪→

5 (tgt: Element {type : subtypeof("Process")})

6 WHERE

7 src <> tgt

8 RETURN

9 d AS host, src AS source, tgt AS target

Listing 1 shows a generated query that identifies chan-
nels that transport specific data between two processes.
Please note that data is the extended dataflow diagram
term for assets. The query matches the particular asset
by its unique identifier in line 2 of the query. Lines 3
to 5 search for a subgraph of the extended dataflow
diagram that consists of two elements of type Process
and a connecting channel of length one that transports
the data matched in line 2. The concluding where-clause
filters out all channels that start and end at the very same
process. As a result, ArchSec marks all channels that
transport the specific asset as a threat.

Listing 2. Mitigation pattern for channel-based threats

1 RETURN

2 target.uid IN ["«unique-element-id-1»",

"«unique-element-id-2»"] AS mitigated↪→

3

At this point, the mitigation pattern gets crucial since
not all transmissions of the asset are a potential threat.
Listing 2 shows the used mitigation query. The pattern
essentially checks if the target’s unique identifier is in the
list of unique identifiers allowed to access the information.
If the unique identifier is found, the query returns true and
ArchSec marks the threat as mitigated.

Please note that the given unique identifiers in the
shown listings are placeholders for the actual identifiers of
the extended dataflow diagram elements. The generated
rule and mitigation for processes are similar to the given
listings. Therefore, we omit them here. Besides detect-
ing the threats, ArchSec generates descriptions of the
threats. Table I shows the description template for the
shown example.

The shown description template contains different infor-
mation. First of all, the rule has a name and a description.

TABLE I
Description template of the shown rule

Rule Violation of authorisation Policy
Severity High Exploitability Likely

Categories Information disclosure

Spoofing

Tampering

Description Process “«source.name»” sends data protected by the authorisation policy to process “«tar-
get.name»” using a channel. Since data “«data.name»” is part of the authorisation policy,
process “«source.name»” can leak sensitive data. However, the threat might be mitigated if
the channel’s target is permitted to access the data, which is checked by a corresponding
mitigation rule.

The description is a template that ArchSec expands. The
expressions between an opening and a closing guillemet are
evaluated using the actual match in the extended dataflow
diagram. Furthermore, the description template assigns a
severity and an exploitability category to the threat. The
severity of these threats is high, and it is very likely that
the threat is exploited since the data are transmitted by
the application’s design. The threatened protection goals
are information disclosure, spoofing, and tampering.

IV. Findings
We used the presented approach to check a business

process model notation diagram that matched the as-
sessed authorisation policy. We successfully transformed
the diagrams and the policy could into an extended
dataflow diagram and a knowledge base. ArchSec was
then successfully able to check the knowledge base within
several seconds. The result showed that there were some
minor problems, which turned out to be problems with the
authorisation policy. The domain experts did not have all
aspects in mind while creating the policy. After refining
the policy accordingly, there were no policy violations left
threatening the system’s security.

Nevertheless, it turned out that ArchSec’s built-in
knowledge base could identify threats based on the refined
extended dataflow diagrams. It correctly identified com-
munication channels transmitting sensitive information
which did not employ channel or message encryption to
protect the transmitted data. In particular, customs sent
some export-related information to the port community
systems using e-mails. These e-mails are neither encrypted
nor digitally signed. Consequently, an attacker can read,
discard, or manipulate the sent information.

V. Related Work
There are different publications on automating threat

modelling. Abi-Antoun et al. use static analysis to ex-
tract object-ownership graphs, which can be compared
to dataflow diagrams. They use these graphs to detect
information flows within software systems that violate
a given authorisation policy [9]–[11]. However, their ap-
proach is not as flexible as the presented approach since it
requires the developers to annotate the source code with
additional information to provide hints for analysing which

trust areas exist and to which trust area a created object
belongs. Furthermore, the approach is not easily extensible
to new rules and to sources different from source code.

Antonino et al. presented an early research prototype
for indicator-based architecture-level security evaluation
for service-oriented architectures, called SiSOA, in 2010.
Their approach consists of three steps. First, the extrac-
tion phase uses reverse-engineering techniques to create a
system model that comprises static class-level information
from the source code and configuration information. Sec-
ond, the identification phase employs a knowledge base
to tag the system model. The tag rules can either add
abstract information on the program, such as identified
SOA components, or security information. Finally, a sever-
ity and a credibility value are calculated and assigned to
the tag added. These metrics quantify the quality and
correctness of the placed tags. The calculated tags are
then used to check the conformance to manually defined
security goals, such as message integrity [12].

Lastly, Tuma et al. automate the detection process of
threats in dataflow diagrams, as well. Their early papers
focused on a guided way of manually creating threat
models and reducing the size of the resulting threat
model. Therefore, the authors used a guide to make the
threat modelling process easier for non-security experts.
Later, they started to automate the detection of some
threats, similar to the way ArchSec does. Instead of
using graph queries, they use VIATRA queries. However,
their work does not focus on authorisation-related security
problems [13], [14].

VI. Conclusions

The findings for the analysed port community sys-
tem showed that the system architecture conforms to
the defined authorisation policy. While this means that
the analysis could not detect authorisation policy-related
vulnerabilities, it was able to validate the re-documented
authorisation policy successfully. Thus, it verified that
only permitted participants could access sensitive infor-
mation within the port community system. Nevertheless,
the detection of threats using the built-in knowledge base
shows the usefulness of the automated threat modelling
approach.

Additionally, the generated knowledge base provides
a more significant benefit. I stores architectural security
knowledge for the maritime community and can be reused
to analyse other system parts. It is even possible to
transfer the knowledge to other port community systems
since the communication with customs is the same for all
port community systems. Furthermore, it is possible to
use the knowledge base when checking concrete applica-
tions. Consequently, it is necessary to extract a dataflow
diagram for the application and identify the processed and
transmitted sensitive information. Extracting dataflow di-
agrams from an application’s source code allows verifying
if the implementation, which might differ from the planned
architecture, conforms to the rules.

References
[1] F. Swiderski and W. Snyder, Threat Modeling. USA: Microsoft

Press, 2004.
[2] M. Howard and S. Lipner, The Security Development Lifecycle:

SDL: A Process for Developing Demonstrably More Secure
Software. Microsoft Press, May 2006.

[3] S. Rehman and K. Mustafa, “Research on Software Design
Level Security Vulnerabilities,” SIGSOFT Softw. Eng. Notes,
vol. 34, no. 6, pp. 1–5, Dec. 2009. [Online]. Available:
https://doi.org/10.1145/1640162.1640171

[4] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated
Software Architecture Security Risk Analysis Using Formalized
Signatures,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13.
IEEE Press, 2013, pp. 662–671. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606612

[5] E. Khalaj, R. Vanciu, and M. Abi-Antoun, “Is There Value
in Reasoning about Security at the Architectural Level:
A Comparative Evaluation,” in Proceedings of the 2014
Symposium and Bootcamp on the Science of Security, ser.
HotSoS ’14. New York, NY, USA: Association for Computing
Machinery, 2014. [Online]. Available: https://doi.org/10.1145/
2600176.2600206

[6] A. Shostack, Threat Modeling: Designing for Security, 1st ed.
Wiley Publishing, 2014.

[7] B. J. Berger, K. Sohr, and R. Koschke, “The Architectural
Security Tool Suite — ARCHSEC,” in 19th International

Working Conference on Source Code Analysis and
Manipulation, SCAM 2019, Cleveland, OH, USA, September
30 - October 1, 2019. IEEE, 2019, pp. 250–255. [Online].
Available: https://doi.org/10.1109/SCAM.2019.00035

[8] ——, “Automatically Extracting Threats from Extended Data
Flow Diagrams,” in Engineering Secure Software and Systems
- 8th International Symposium, ESSoS 2016, London, UK,
April 6-8, 2016. Proceedings, ser. Lecture Notes in Computer
Science, J. Caballero, E. Bodden, and E. Athanasopoulos,
Eds., vol. 9639. Springer, 2016, pp. 56–71. [Online]. Available:
https://doi.org/10.1007/978-3-319-30806-7_4

[9] M. Abi-Antoun and J. M. Barnes, “Analyzing Security
Architectures,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10.
New York, NY, USA: Association for Computing Machinery,
2010, pp. 3–12. [Online]. Available: https://doi.org/10.1145/
1858996.1859001

[10] R. Vanciu and M. Abi-Antoun, “Finding Architectural Flaws in
Android Apps is Easy,” in Proceedings of the 2013 Companion
Publication for Conference on Systems, Programming, &
Applications: Software for Humanity, ser. SPLASH ’13. New
York, NY, USA: Association for Computing Machinery,
2013, pp. 21–22. [Online]. Available: https://doi.org/10.1145/
2508075.2514574

[11] ——, “Finding Architectural Flaws Using Constraints,” in
Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE’13. IEEE Press,
2013, pp. 334–344. [Online]. Available: https://doi.org/10.1109/
ASE.2013.6693092

[12] P. Antonino, S. Duszynski, C. Jung, and M. Rudolph,
“Indicator-Based Architecture-Level Security Evaluation in a
Service-Oriented Environment,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion
Volume, ser. ECSA ’10. New York, NY, USA: Association for
Computing Machinery, 2010, pp. 221–228. [Online]. Available:
https://doi.org/10.1145/1842752.1842795

[13] K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato,
“Inspection Guidelines to Identify Security Design Flaws,”
in Proceedings of the 13th European Conference on Software
Architecture - Volume 2, ser. ECSA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 116–122.
[Online]. Available: https://doi.org/10.1145/3344948.3344995

[14] L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen,
“Towards Automated Security Design Flaw Detection,” in
2019 34th IEEE/ACM International Conference on Automated
Software Engineering Workshop (ASEW), 2019, pp. 49–56.
[Online]. Available: https://doi.org/10.1109/ASEW.2019.00028

