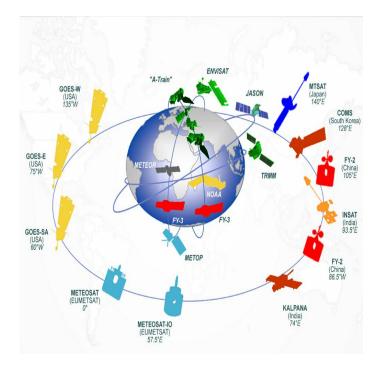
CEOS SST-VC- Status and Issues

Craig Donlon and Kenneth S. Casey on behalf of the SST-VC members

GHRSST XV, Cape Town, South Africa, 2nd – 5th June 2014.



Overview

Progress 2013/14

- ToR and Implementation
- CEOS SST Radiometer
 inter-calibration
- SST-VC Constellation
 Paper
- IDN/CWIC

Membership, composition and leadership

Working Groups	Chair	Vice-Chair	
WGCV	Srivastava (CSA)	Von Bargen (DLR)	
WGISS	Moreno (CNES)	Mitchell (NASA)	
WDCapD	Wood (USGS)	Olwoch (SANSA)	
WGDisasters	Petiteville (ESA)	Chalifoux (CSA)	
WGClimate	Bates (NOAA-CGMS)	Lecomte (ESA-CEOS)	
Virtual Constellations		Co-Leads	
ACC-VC	Eckman (NASA)	Zehner (ESA)	
SST-VC	Donlon (ESA)	Casey (NOAA)	
OST-VC	Lambin (CNES)	Bonekamp (Eumetsat)	
OSVW-VC	Figa (Eumetsat)	Chang (NOAA)	Gohil (ISRO)
OCR-VC	DiGiacomo (NOAA)	Bontempi (NASA)	Regner (ESA)
P-VC	Neeck (NASA)	Oki (JAXA)	
LSI-VC	Dalge (INPE)	Faundeen (USGS)	Diwakar (ISRO)

SST-VC Targets with GHRSST

SST-VC Implementation Targets:

- 1. Wider participation of CEOS Agencies in SST related activities
- 2. Continued **support to an extensive user community** with established and functional systems and services
- 3. Stronger CEOS Agency SST activities through better synergy and communication
- **4. Better SST product and service interoperability** building on the strengths of CEOS Agencies
- 5. Better data access and product applications by CEOS Agencies
- 6. Value for money to CEOS Agencies by capitalising on the already committed investments made to GHRSST
- 7. Reduce duplication of coordinating activities

Objective #4: linking VCs & Science

- Two lines of action aim at establishing and/or improving the linkages between VCs and existing relevant scientific such as GRSST, IOCCG, OSTST, IPWG (Precipitation), etc.
 - Identify gaps and/or hurdles in these linkages
 - Work with the sponsors of the relevant scientific groups with a view to build on complementarity, commonalities, and to improve overall coordination and efficiency
 - $_{\odot}$ We'll hear more about this under agenda item 9
 - This topic will be open for discussion under item 12

SST-VC Status and Issues

- Relatively healthy space segment but:
 - Currently no dual-view IR SST reference capability
 - Future of passive microwave SST capability is not secure
 - Ground-based Fiducial Reference Measurements (FRM) remain a challenge
- International collaboration remains strong within the framework of GHRSST and the CEOS SST-VC
- SST-VC requests participation from CEOS member states having an SST capability (ISRO, CONAE, NRSCC, NSMC/CMA, Roskomos, KARI and others).
- **Collaboration** with WGCV, WG-Climate and WGISS proceeds well
- SST-VC will meet during the Group for High Resolution SST (GHRSST) Annual Science Team Meeting, Cape Town, South Africa June 2-5th 2014. Sponsored by SANSA, ESA and EUMETSAT.

Advancement of the CEOS Virtual Constellations: 2014-2016				
Objective/Deliverable	Projected Completion Date	Background Information	Responsible CEOS Entity	
VC-1: List of Relevant Datasets from VCs		Results of study will be fed into WGISS IDN to ensure coverage of all VC data	VCs with support from WGISS	
VC-17: Documented plan for the SST Virtual Constellation	Q3 2015	Develop a White Paper describing and justifying the SST- Virtual Constellation	SST-VC	

For Information:

- VC-1 is maintained using the GHRSST Regional/Global Task Sharing (R/GTS) Framework documented within a master metadata repository (Lead: NASA/NOAA)
- VC-17: White paper is in draft form and will be consolidated by 2015. It will take a justified requirements-based approach (as was done for the The CEOS Next 15 Years of Satellite Altimetry document) Lead: ESA

G Ca 2^r

Get as Excel (Dataset with granules)

Get as Excel (Dataset with 0 granule)

Get as Excel (Dataset with exception)

Datasets with granules:

EntryId	Testing request	Testing response	Number of Granule	CWIC response time (millisecond)
ABOM-L4HRfnd-AUS-RAMSSA_09km	request link	response link	1816	1610
OSDPD-L2P-GOES15	request link	response link	13656	2316
JPL_OUROCEAN-L4UHfnd-GLOB-G1SST	request link	response link	1264	2016
DMI-L4UHfnd-NSEABALTIC-DMI_OI	request link	response link	2212	1430
NCDC-L4LRblend-GLOB-AVHRR_AMSR_OI	request link	response link	4090	2025
EUR-L4UHRfnd-NWE-ODYSSEA	request link	response link	501	1804
NEODAAS-L2P-AVHRR17_L	request link	response link	3328	2154
EUR-L2P-AVHRR17_L	request link	response link	3124	1593
OSDPD-L2P-MTSAT2	request link	response link	9058	2607
REMSS-L4HRfnd-GLOB-mw_ir_rt_OI	request link	response link	2414	2548
NAVO-L2P-AVHRR18_L	request link	response link	58140	2005
OSDPD-L2P-GOES12	request link	response link	36367	2437
EUR-L2P-AMSRE	request link	response link	36367	1421
EUR-L2P-AVHRR_METOP_A	request link	response link	10397	1522
JPL-L4UHblend-NCAMERICA-RTO_SST_Tn	request link	response link	299	1621
REMSS-L2P-AMSRE	request link	response link	80074	2379
NAVO-L2P-AVHRR19_G	request link	response link	13610	2078
NEODAAS-L2P-AVHRR19_L	request link	response link	9229	2306
REMSS-L4HRfnd-GLOB-mw_ir_OI	request link	response link	5560	2417
REMSS-L2P_GRIDDED_25-WSAT	request link	response link	3155	2452
EUR-L3P-NAR_AVHRR_METOP_A	request link	response link	374	1813
REMSS-L2P_GRIDDED_25-AMSRE	request link	response link	4851	2356
JPL-L4UHblend-NCAMERICA-RTO_SST_Td	request link	response link	271	1548
NEODAAS-L2P-AVHRR18_L	request link	response link	2611	2290
NAVO-L2P-AVHRR18_G	request link	response link	34943	1868
EUR-L4UHFnd-MED-v01	request link	response link	981	1573
UKMO-L4HRfnd-GLOB-OSTIA	request link	response link	2251	2622
EUR-L2P-AVHRR16_G	request link	response link	7519	1432
EUR-L2P-NAR17_SST	request link	response link	2344	1519
OSDPD-L2P-MSG02	request link	response link	6861	2487
NAVO-L2P-AVHRR19_L	request link	response link	55180	2048
NAVO-L2P-AVHRR17_G	request link	response link	14704	1790
EUR-L2P-AVHRR17_G	request link	response link	9734	1689
EUR-L2P-AVHRR16_L	request link	response link	1018	1451
JPL-L4UHfnd-GLOB-MUR	request link	response link	4111	1759
JPL-L4UHblend-NCAMERICA-RTO_SST_An	request link	response link	298	1617
EUR-L2P-NAR16_SST	request link	response link	581	1552
REMSS-L2P_GRIDDED_25-TMI	request link	response link	7292	2379
JPL-L2P-MODIS_A	request link	response link	79317	1889
OSDPD-L2P-GOES13	request link	response link	62643	2199
EUR-L3P-GLOB_AVHRR_METOP_A	request link	response link	2125	1533
EUR-L4UHRfnd-MED-ODYSSEA	request link	response link	506	1801
		10 A	20200	7670

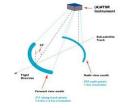
Capacity Building, Data Access, Availability and Quality Objectives/Deliverables: 2014-2016						
Objective/Deliverable	Projected Completion Date	Background Information	Responsible CEOS Entity			
CV-1: SST Comparison Campaign Plan	Q2 2014	Set up a multi-agency comparison project to ensure international consistency in post-launch Cal/Val of satellite derived Earth surface temperatures for climate data records. The proposal will encompass two projects: Phase 1 – Laboratory 'radiometric comparison'; Phase 2 – Field comparison of validation parameter, with two independent activities: Phase 2A – Ocean, and Phase 2B – Land. ESA has agreed to provide funding for an SST calibration campaign, to be held end 2014 and in 2015.	WGCV with support from SST-VC			
CV-2: SST Comparison Campaign Implementation	Q4 2015	ESA has already providing funding for the implementation of the SST comparison campaign but funding is required from additional agencies.	WGCV with support from SST-VC			
CV-3: SST Operational Validation White Paper		The White Paper is being developed now which includes the plan for the project and costing.	WGCV			

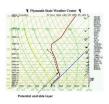
For Information:

 Requirements fed to WGCV. ESA provides funding to coordinate project

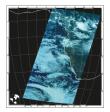
CEOS Virtual Constellation for Sea Surface Temperature (SST-VC)

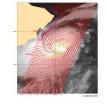
Providing best quality SST data for wide application through international collaboration, scientific innovation, and rigor

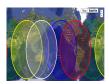

2015 status: With launch of Sentinel-3, many core elements will be operational and major requirements met


Essential elements of the Future SST Satellite Constellation

Ocean in situ SST system


Dual view polar orbit infrared high fidelity SST reference sensor


Atmospheric parameters (satellite, model and in situ)


Wide swath polar orbit passive microwave imager

2 wide-swath high polar orbit Infra red imagers (1km, <0.3K)

Wide swath ocean surface vector winds (<25 km, <0.2m/s)

Global constellation of geostationary infrared imagers (1-3 km, <0.3K)

Donlon, et al, (2010). "Successes and Challenges for the Modern Sea Surface Temperature Observing System" in *Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Vol. 2),* Venice, Italy, 21-25 September 2009, Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.24

SST-VC scope: GHRSST White Paper

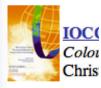
Table 1. Ideal plan for a global high resolution SST integrated observing system: 2009-2025. T

Dual view SST reference sensor#	Baseline global coverage high accuracy SST retrieval with long term stability <0.1K decade ⁻¹ for the SST CDR. Maintaining accuracy of SST/climate observing system during periods of volcanic stratospheric aerosol. T Used as a reference data source other satellite SST data #	At least one LEO satellite with a dual view radiometer in an 10.00-10.30 LST orbit to continue the (A)ATSR CDR. ¶ ¶ One LEO asynchronous satellite for use as a reference sensor for other satellite data streams.#	Thermal IR channels within the ~3.7-12 up waveband for SST measurement, near-IR and visible channels for cloud flagging, each with dual view along track scanning capability.#	0.1·K¤	0.5-1 km (Target 0.25km)¤	>500∙ km¤	Global-coverage.#
Wide swath passive microwave imager¤	Baseline-global-coverage moderate-resolution-SST- observing-system.♯	Two-satellites carrying microwave radiometers optimized for SST retrieval	For global coverage 7GHz is needed. Other channels are required for corrections for wind, precipitation etc. The AMSR2 channels should be considered minimum baseline. ²¹	<0.5·K· (Target·0.3· K)¤	~25km (target: 10km)¤	>1500 km¤	Earth-coverage-in-1 days≭
Geostationary constellation of infrared imagers≭	Baseline non-polar SST observing system providing high temporal resolution SST.#	6-spacecraft equi-spaced in- longitude to ensure full- coverage from ~70°S to ~70°N∺	Thermal IR channels within the ~3.7-12 up waveband for SST measurement, near-IR and visible channels for cloud flagging.#	<0.5·K·#	1-5 km ^{-¶i} (target 1 km)¤	Earth disk from 36000 km altitude#	Sample-interval.≺-30- min≭
Wide swath ocean surface winds¤	Required to characterise the state of the ocean surface for emissivity and skin temperature deviation and diurnal heating and cooling parameterizations #	Two-satellites carrying- passive and/or active- microwave systems.#	Various#	<1 ms ⁻¹ (Target: 0.25 ms ⁻¹ between 2- 10 ms ⁻¹)#	<25 km (target:10 km)¤	>2000- km ^µ	Several samples per day. Target: 4hirs?#
Sea lce imaging ⊭	Required to determine sea ice concentration and sea ice edge, #	At least one LEO sun- synchronous satellite carrying microwave radiometers "! optimized for sea ice retrieval. ¶ i At least one LEO sun- synchronous satellite carrying Synthetic Aperture Radar (SAR). ¶ At least one LEO sun- synchronous satellite carrying a visible imager #	Passive Microwave: SAR High-resolution - scatterometer Vis-imager#	Ħ	PM < 10km SAR: 10 m Sar: 10 m Scatt: 2.5 km Vis < 1km Vis < 1km	>:1500 km ¹²	Polar region coverage in at least 1 day (Target: 6 hours) [#]

Proposal for a GHRSST Technical Reference Series

Dr. Craig Donlon

Presented at the 13th GHRSST Science Team Meeting, Tokyo, Japan June 4-8, 2012



Minimum Requirements for an Operational, Ocean-Colour Sensor for the Open Ocean

Report of an IOCCG working group held in Villefranche-sur-Mer, France, October 6-7, 1997. Chaired by Prof. André Morel.

Published by the International Ocean-Colour Coordinating Group (IOCCG), an Affiliated Program of the Scientific Committee on Oceanic Research (SCOR).

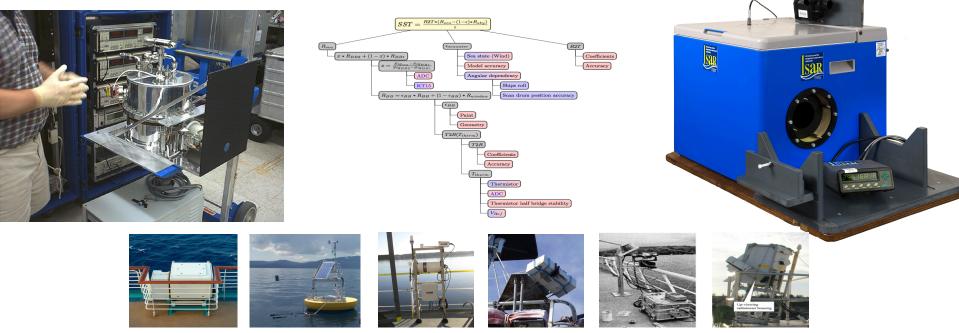
ISSN: 1098-6030

Propose a GHRSST Publication

- IOCCG reports are extremely successful GHRSST can do the same
- The SST-VC has an action to develop a Constellation Paper
- The achievements of GHRSST over the last 10 years
- Or
- Development of satellite SST: 10 years past and present through GHRSST
- Journal or separate volume (IOCCG like)?
- Scientific content complemented by users
- Cover each area of GHRSST
- Act as a "reference document" or a "Handbook"
- If interested please contact craig.<u>donlon@esa.int</u>
- Papers/contributions in next 12 months
- Publish in 2013/14

SST-VC: SST ship borne radiometer Inter-comparison requirements

- GHRSST/SST-VC Collaboration with WGCV
- Aim:
 - Establish and maintain S.I. traceability for ship borne radiometers used as Fiducial Reference Measurements (FRM) for Satellite SST validation.
- Passed Requirements to WGCV.
- Includes Land Surface Temperature (LST) radiometers
- Implementation building on previous CEOS Radiometer inter-calibration and validation activities (Miami Experiments)



FRM4-CEOS

esa

- FRM4-CEOS: ESA ITT for FRM TIR radiometer validation and investigation of routes to SI traceability for other SST measurements
- ~400K ITT in Summer 2014

SST-VC: SST calibration and validation requirements for other SST infrastructure

- Aim:
 - Establish and maintain S.I. traceability for infrastructure providing Fiducial Reference Measurements (FRM) for Satellite SST calibration and validation.
- **REQ-1:** Define an approach and methodology to establish, as far as possible, a means to trace drifting buoy, ARGO and other in situ SST measurements to S.I standards accurate to 0.05K or better and of known stability (including time and space definition e.g. stable to <X> K per <time> over <Y>km on <region>).
- **REQ-2:** Maintain pre-deployment (and if possible) post-deployment calibration verification of drifting buoy, ARGO and other in situ SST measurements following the defined methodology and procedures set out under REQ-1.

Summary

- CEOS SST-VC is in good shape with some solid and useful activities
- It has taken time to develop and mature
- Implementation of IDN/CWIC (evolution of the R/GTS for GHRSST?)
- Coming year will see writing of SST-VC White paper (Journal Article)
- Development and implementation of the CEOS-4FRM project and SI traceability of Ship-borne TIR FRM Radiometers prior to S3 SLSTR launch
 - Development of SBRN (Wimmer)
 - Development of standard format for SBRN (Nightingale)
- Start to tackle SI traceability for other SST measurements

Thank you any Questions?

