

Defining South Africa's next EO mission

Michel Verstraete, Chief Scientist, SANSA/EO Directorate GHRSST-15 workshop, Cape Town, 2014-06-02

Historical background and EO heritage in South Africa

- Support to NASA (telemetry and tracking) at HBK since 1960
- GreenSat (1991) and SunSat (L: 1999; F: 2001) from Stellenbosch Univ.
- SA Government Lead User Group work (2004 onwards) resulted in
 - Broad user needs and initial specifications for the National Space Strategy
 - Involvement in the ARMC process
- Sumbandilasat (2006; L: 2009; F: 2011) technology demonstrator
- SANSA Act signed (Dec 2008)
- ARMC agreement signed with Algeria, Nigeria and Kenya (Dec 2009)
- SunSpace defines the specs of an ARMC-compatible satellite (May 2010)
- SANSA launched (Dec 2010) and starts operations (Apr 2011)
- Broad Government and user consultations on needs and expectations (2011-2013) through user surveys and workshops
- SunSpace absorbed in Denel Dynamics (2013), tasked to build EO-SAT1

International context

- ARMC requirements (2009)
 - Pan-chromatic imager: 2.5 m
 - Multi-spectral imager: 4 Vis/NIR bands @ 12 m
- Existing offerings (as of 2014)
 - Landsat-8: Pan (15 m) + 5 Vis/NIR + 3 SWIR + 2 Thermal bands @ 30 m
 - SPOT-6: Pan (1.5 m) + 4 Vis/NIR bands @ 6 m
 - DigitalGlobe WorldView-3: Pan (0.5 m) + 4 Vis/NIR bands @ 2 m
- Planned offerings
 - Sentinel-2: 9 Vis/NIR bands + 3 SWIR @ 10-60 m
 - New commercial ventures?
- Implication: SA needs to propose a satellite that is different, better, and/or cheaper than, and complementary to, what will be available near the end of this decade...

Summary of recent progress

- Oct Nov 2013:
 - Mission Advisory Committee (EO-MAC) prioritized objectives
 - Scientific Subcommittee (EO-MAC-SS) adopted a method to derive the measurements required for a set of priority products
- Jan Feb 2014: SANSA-sponsored Exploratory Studies followed that approach and derived measurement requirements for key deliverables
 - Agriculture (crops and rangelands)
 - Land Cover and Forestry
 - Water Quality
 - Air Quality
 - o Built environment
 - Natural Hazards and Man-made Disasters
- Mar 2014: First EO-SAT1 Science Workshop
- Next step: coordination with Spaceteq, SANSA and DST to evaluate what is technically possible and financially affordable

Prioritization of objectives

- Primary objective:
 - expresses the central, most important goal to be achieved
 - o drives the design of the platform and payload, and
 - serves as the ultimate benchmark to evaluate the overall performance of the entire system
- Secondary objectives:
 - can be achieved with same resources, or
 - can be addressed within budget and without threatening primary objective
- Enabling objectives:
 - Essential to guarantee the performance of the mission and the quality of the products and services
- Ancillary objectives:
 - All other wishes and expectations

EO-SAT1 mission statement

- Primary objective:
 - Characterize the state and evolution of vegetation over selected land areas
- Secondary objectives:
 - Monitor water and air quality
 - Survey the built environment
 - Support the management of natural hazards and man-made disasters
- Enabling objectives:
 - o Instrument calibration (characterization, on-board, Moon, cross/vicarious)
 - Algorithms benchmarking, intermediary and final products validation
 - Atmospheric corrections (gases, aerosols, clouds)
- Sampling versus wall-to-wall acquisitions

SANSA-sponsored exploratory studies

- Study 1: Agriculture (crops and rangelands)
 - Support to DAFF, ARC, agroindustry
- Study 2: Land cover and forestry
 - Support to DEA, DAFF, DHS, UNFCCC
- Study 3: Water Quality
 - Support to DWA, DAFF, fight against invasive species
- Study 4: Air Quality
 - Support to DEA, DH and SAWS
- Study 5: Built environment
 - Support to DHS, DRDLR (land reform), planning and auditing
- Study 6: Natural Hazards and Man-made Disasters
 - Support to NDMC, DWA, DAFF

User communities

- Group 1: Data-based applications
 - Vegetation (crops, rangelands, forests, land cover)
 - Water quality (bacteria and algae, invasive species, sediments)
 - Air quality (clouds, aerosols: dust, smoke, etc.)
 - Focus on biogeophysical properties of the environment
 - Broad swath, medium to high spatial resolution, narrow spectral bands, angular acquisitions, calibration, SNR, etc.
- Group 2: Image-based applications
 - Built environment (infrastructure, informal settlements)
 - Natural hazards and man-made disasters (drought, flood, fire, spills)
 - Focus on geo-spatial organization of the landscape
 - Narrow swath, very high spatial resolution

Spatial and temporal measurement requirements of Group 1

- Motivation for data-based applications:
 - Dynamics of vegetation and land cover, surface water, cloud and aerosol properties
- Swath (area):
 - As broad as possible to observe targets frequently: at least 150 km
- Spatial resolution (GSD):
 - Best achievable given the swath
- Revisit frequency:
 - 5 to 10 days for large areas (e.g., 10,000 km²)

Spatial and temporal measurement requirements of Group 2

- Motivation for image-based applications:
 - Spatial organization of target areas
- Spatial resolution (GSD):
 - As fine as possible to distinguish small details, no more than 10 m
- Swath (area):
 - Best achievable given the spatial resolution
- Revisit frequency:
 - 2 to 6 months for limited areas (e.g., 100 km²)

Spectral measurement requirements (VIS/NIR) for Group 1

- Motivation:
 - Quantitative estimation of biogeophysical properties of vegetation, soil, surface waters, aerosol properties, as well as target identification
- Vegetation: 4 spectral bands: red (665), red edge 1 (705), red edge 2 (740), NIR (779)
- Chlorophyll fluorescence: 1 very narrow spectral band: red (681)
- Land cover, veg. properties, bacteria: 1 spectral band: yellow (610)
- Vegetation properties, water turbidity: 1 spectral band: green (560)
- Aerosol effects: 2 spectral bands: deep blue (440) and blue (490)
- Water vapour effects: 2 spectral bands: NIR (865) and NIR (900)
- Emphasis on narrow bands (≤ 20 nm) and high SNR

Spectral measurement requirements (SWIR) for Group 1

- Motivation:
 - More and better land surface quantitative products
- Atmospheric correction (thin cirrus cloud detection): 1380 nm
- Forest properties, pest damage, dry/irrigated land: 1610 nm
- Live/dead vegetation, land cover, fractional cover: 2190 nm
- Live/dead vegetation, land cover, fractional cover: 2400 nm

Spectral measurement requirements (Sprites)

- Motivation:
 - Observations of lightning, sprites and auroras
- UV and NIR bands: 215, 240 and 777 nm
- Slanted observations (height discrimination)

Directional measurement requirements

- Motivation:
 - Stereo acquisitions for Digital Elevation Model (DEM, if small enough GSD)
 - Better atmospheric corrections (aerosols, clouds)
 - Surface anisotropy (vegetation/built environment structure, land cover classification)
 - Height of objects in the scene (airborne, dependent on size and spatial resolution)
- Number of angles:
 - At least 2 for stereo photogrammetry
 - 3 or more for atmospheric corrections
 - 5 or more for surface anisotropy
- Number of spectral bands at those angles:
 - At least 4 within (blue, green, red, NIR) + UV (for sprites)

Other measurement requirements

- Motivation:
 - Quantitative applications based on a low signal: forests, water
- Band-specific high Signal to Noise Ratio (SNR); quantization: 12 bits
- Low out-of-band contributions: < 1%
- Polarization sensitivity: < 1%
- Accurate knowledge of geolocation, pointing and time of acquisition
- Calibration of the instruments
 - Full characterization before launch
 - On-board calibration mechanism
 - Periodic deep space and Moon observations
 - Cross-calibration with other instruments
 - Vicarious calibration

Associated requirements and opportunities from EO-SAT1

- Motivation:
 - Specific measurements are only useful if they are effectively analysed, promptly delivered, over extended periods, and at an acceptable cost
- Reliability: lifetime of 5+ years; follow-up instruments (continuity)
- Latency: Near-real time (NRT) access for some applications
- Human Capacity Development needs, especially with respect to innovative aspects (University courses, User-centred training)
- Algorithms and tools: porting, adapting, upgrading, inventing
- National and international collaborations (e.g., SADC, ESA, NASA)
- Products validation: standards, benchmarking, concurrent airborne and field campaigns
- Clear data policy

Outlook: EO-SAT1

- Measurement requirements need to be confronted to engineering capabilities and financial affordability
- If a payload can be designed to address these expectations, it will
 - o meet the original requirements of ARMC expressed in 2009,
 - o meet the more advanced requirements of the user community today,
 - allow the generation of a broad range of products and services that fulfil the expectations of the various Government Departments,
 - boost the awareness and competencies of the national space industry, and promote it to world-class,
 - contribute greatly to HCD by stimulating interest in, research on, and applications using remote sensing data that will be state of the art
- Stay tuned for further announcements by the end of this year...