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Abstract—Traffic monitoring and surveillance form part of the
basic aspects of several maritime applications. The observation
regions around harbours have multiple modern radar sensors
for adequate coverage, and the sensors produce measurements
from potential targets that appear as point clouds. With mea-
surements from multiple sensors, extra information about the
target’s shape can be gained in order to improve monitoring
within the particular observation region. In this paper, we
present a framework for processing radar measurements from
multiple sensors which outputs the extended state estimates of the
vessels over an observation region jointly with their approximate
size range categories. We demonstrate the performance of the
framework based on real-world radar video streams with respect
to its real-time capability, and finally present our implementation
on both, single and multiple targets, showing promising results
accompanied by some discussion.

Index Terms—data association, elliptical target tracking, radar
fusion, size categorisation

I. INTRODUCTION

The main mode of transport for global trade is dominated by
ocean shipping, thereby necessitating the safety and security of
onboard crew and goods [1], [2]. One of the key factors sup-
porting this objective is having a reliable maritime situational
assessment, monitoring, and surveillance. The marine radar is
one of the most widely used sensors in maritime navigation,
usually cooperatively with the Automatic Identification System
(AIS). It provides information about the targets present within
a specific region of interest, also known as the observation
region, as well as the surroundings restricted to a perspective
(line-of-sight). This restriction could be allayed by the use of
multiple radar sensors available at vantage points to gain a
more detailed information about the traffic present within the
observation region.

Target tracking forms an essential part of many maritime
applications to ensure a constant monitoring of vessels at sea
[3]-[7]. Conventionally, it can be defined as the estimation
of a target’s properties of interest, such as its position and
kinematic parameters. The latest radars nowadays are endowed
with fine resolution causing multiple measurements to arise
from the surface of vessels, thus allowing information relating
to the vessel’s shape to be estimated. This problem is known
as Extended Target Tracking (ETT) [8]. The approach can
particularly be beneficial in the maritime context when large
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vessels are equipped with only one or two AIS antennas,
giving limited and sometimes erroneous information about
the vessels, besides being affected by vulnerabilities such as
jamming, spoofing, or extreme weather conditions [9]. When
combined with the radar, traffic monitoring and representation
could be enhanced [10]. We only focus on tracking targets
from radar streams in this work. A vessel’s point cloud-
representation from radar measurements is often dense and
noisy, making it appropriate to being modelled as an ellipse.
The ellipse parameters, orientation and lengths of semi-axes,
correspond approximately to the dimensions and heading of
a vessel. In addition, the states and cardinality of multiple
vessels can be jointly estimated using specific Multiple Target
Tracking (MTT) approaches. Until now, multi-target trackers
have been mostly implemented based on the data association
[11]-[14], multi-hypothesis tracking [15], and random finite
sets methods [16]-[18].

In this paper, we present a framework for vessel detection,
tracking and size categorisation from radar video streaming.
A data association approach is employed to associate a set
of point clouds to a particular vessel, under the assumption
that the point clouds are spatially distributed as Poisson point
processes [19]. Based on this assumption and approach, the
elliptical extent parameters of vessels can be simultaneously
estimated together with their kinematic parameters. When
multiple sensors are available, a vessel’s extent information
could be significantly improved especially when the sensors
cover different perspectives in ports. As the first contribution,
we consider such a setting to apply a multisensor version of
the multi-ETT tracker over radar measurements from the port
of Hamburg in Germany. The measurements are processed
and converted to an appropriate Cartesian coordinate system,
before being input to a target detection algorithm. An elliptical
model based on the Multiplicative Error Model-Extended
Kalman Filter (MEM-EKF)* [20] integrated within a Joint
Probabilistic Data Association (JPDA)-tracker [19] has then
been applied for the state estimation of detected potential tar-
gets, whereby a sequential updating approach has been adopted
for processing measurements from each sensor as soon as they
become available. The estimated extent parameters are used
in the next step, as a second contribution, to categorise the
vessels into specific size categories including a corresponding
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Fig. 1: Functional blocks of the framework.

confidence level based on the estimated semi-axes lengths.
The structure of the paper is as follows. In Sections II and
III, the components in the framework employed are presented
and explained. The results are included and discussed in the
next section. The work is then summarised in Section V.

II. MEASUREMENT PROCESSING

In this section, the first two components of the framework,
shown in Figure 1, are thoroughly covered.

A. Measurement Fusion

Measurements from different radars are acquired separately
based on the All Purpose Structured Eurocontrol Surveillance
Information Exchange (ASTERIX) [21] protocol which is a
standard protocol for data definition that supports transmission
and exchange of surveillance related data. In the implemen-
tation, an ASTERIX video of category 240, corresponding
to radar video transmission, is used. Since the radar-specific
measurements have their individual local coordinate systems,
an arbitrary point close to the centre of the observation region
is chosen as the reference point, given that the geodetic
positions of all the radars are known in advance. The mea-
surements are then converted to an equivalent East North Up
(ENU) Cartesian coordinate system from their original polar
representation and are registered to a common frame.

B. Target Detection

To detect the potential targets (vessels) automatically, a blob
detection algorithm is employed. Blob detection methods are
typically used at detecting those regions in an image that have
different properties, such as intensity or colour, taking into
consideration their surrounding regions. A blob would ideally
represent a specific region within an image so that all points
within the blob share approximately similar properties.

The Determinant of Hessian (DoH) approach [22] is one
of the common blob detection algorithms that detects blobs
of different dimensions by computing the local maxima of
the second derivatives’ determinants of an image matrix. The

approach has been chosen due to its fast computation and
additionally, its detection speed being independent of the size
of blobs. Points belonging to the detected blobs are extracted
and these are the measurements that are fed to the MTT
tracker.

III. MTT AND S1ZE CATEGORISATION

This section describes the estimation and the categorisation
processes, respectively.

A. State Estimation

At every observation step k, the kinematic state and the
shape parameters of the target(s) are estimated simultaneously
from the sensor measurements. The kinematic state x of a
specific target ¢ is represented as

Xz; = [tevtnvieat-n:lT € R4 (1)

where (t.,t,) are the ENU coordinates, ., f, are the corre-
sponding velocity components and, 7" is the transpose operator.
The shape parameter vector p is represented as

pi = [l 1o]" €R? ©)

where « is the orientation and /; and [, are the major and
minor axes respectively.

The temporal evolution of the kinematic state is modelled
based on a nearly constant velocity model (omitting the target
indices ¢ for simplicity) as follows:

Xpy1|k = FxXpx 3)
C)li+1|k = Fxcyli\k (FX)T + C’L “)
Similarly, that of the shape parameter vector is given by
Pit1k = FoPrk (5)
T
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where Fy = 14 and F}, = I3 are the respective system matrices

such that I; is an identity matrix of state dimension d. C}, =

diag (ofe,afn,ag o? ) and CP, = diag(o2,07 , 07,

P00 ) are the
covariances of the kinematic state and shape parameter vector
with zero-mean additive process noise.

The state updates are carried out based on the MEM-EKF*
model while the JPDA filter tackles the measurements-to-
vessel data association [19]. We further adopt a central-level
tracking mechanism as the differently-sourced measurements
are already on a common frame. Thus, the states were updated
sensor-wise in a sequential manner to account for the different
sensor uncertainties.

B. Track Management

The track management is implemented separately from the
tracking based on a construct similar to the so-called M/N
logic [23]. For a predefined N number of observation steps, the
number of detections M determines the creation, confirmation
and termination of a track. In the current implementation, track
confirmation requires an 8/10 constraint. Tracks are dropped
when no measurements have been validated for 8/8 constraint.



TABLE I: Size categories from estimated axis length

Category Dimension [m]

Small (S) < 50
Medium (M) 50-100

Large (L) > 100

C. Size Categorisation

In the final step, the vessels are categorised on the basis of
their estimated lengths while factoring in their uncertainties.
Depending on the vessels present in the period of the stream-
ing considered, three different categories were as defined in
Table I.

The current major axis of target 4, [; from p}, and its
corresponding variance 0121 from C}, are taken into account in
order to categorise the vessel size. The probabilities O(z;). of
having target ¢ assigned to a suitable category c are evaluated
utilising a normalised exponential function [24]
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O(z;)c = S0 e (7
where C' = 3 represents the number of categories. The input
vector z; is a target-specific incremental counter that stores the
number of occurrences of categorical assignments to the target
throughout its existence. The categorical assignments, calcu-
lated at every k, are obtained by summing up the occurrences
of the categories from a temporary vector defined as,

h—oy]" ®)

For example, consider an estimated extent of 48m having a
variance of 5°m, yielding A = [48, 53, 43]7, and being
processed at the current observation step. If it is an existing
target with its z;;,_; counter at [30, 5, 0]7 (representing
S, M and L), the current counter z;);, will then be incremented
to [32, 6, 0]T before being input to (7). The target would
be assigned to both small (S) and medium (M) size categories
(see Table I), with their associated probability values ©(z;)s
and ©(z;) -

This categorisation process is carried out at every observa-
tion step and for every target that has been estimated at that
step. It is to be noted that the probabilities are henceforth used
interchangeably as confidence levels in the remaining sections.

Xii=[l, hL+oy,

IV. RESULTS

The whole framework was applied on two different
ASTERIX streams covering the same observation region:
the first one of a single target and the second one of two
targets. The results obtained are presented and discussed in
the following subsections.

A. Single Target

The stream comprises a target navigating in a Western
direction. A sample image of the transformed and registered
multisensor radar measurements is illustrated over a light
background in Figure 2.

I
i
il

Fig. 2: Overlaid measurements from multiple sensors, where
each colour corresponds to a specific sensor. The detected tar-
get (also labelled “Target 1) is enclosed within a rectangular
box. The ellipse represents the estimated extended state.

Fig. 3: Two labelled targets as detected and estimated from
the multisensor measurements.

Measurements from three sensors are shown in different
colours, each corresponding to a particular sensor. Note that
the true sensor locations lie outside the frame of the obser-
vation region in the Northeast, North and South directions
approximately. The acquired target is enclosed within a rect-
angular box and an ellipse has been constructed from the
estimated shape parameters. Figure 4 shows the estimated
extent of the target throughout its trajectory together with the
variation of its axes length, plotted at an interval of every 15s.

Due to the absence of reference (ground truth) trajectories,
it is not possible to determine the exact performance of the
filter. However, as it can be seen in Figure 4, the estimations
were clear and consistent, especially in the first half of the
trajectory as the target had adequate coverage from the sensors.
The decrease in size accounts for the sensors’ perspectives as
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the target moves away from them.

B. Multiple Targets

A sample image of two vessels moving in opposite di-
rections from the second radar stream considered is shown
in Figure 3, under a dark background setting. Similar to the
former stream, the measurements are colour-coded according
to their respective sensors.

The tracking and categorisation results throughout the ves-
sels’ trajectories within the observation region are shown in
Figure 5, also plotted within regular intervals of 15s. Mea-
surements for the green target were quite occluded, noisy and
affected by buoys in the vicinity, especially in the second part
of its trajectory. Nonetheless, the estimates held up throughout
the vessel’s visibility in the observation region. The red target
was consistent owing to its clearer visibility throughout. The

300 400

Time [s]

elliptical axes. The blue line corresponds to the
width.

s of a single target.

estimated categories were also consistent for the vessels in
both steams.

The framework was also tested for real-time capability on a
Linux-based 1.9GHz Quad Core system, using a Python im-
plementation. The average performance for the second stream
is as follows: for 500s of data stream, the framework took
510s for execution. In general, the performance was influenced
by the number of vessels and also the vessels’ dimensions,
as larger vessels would yield higher number of measurement
points.

V. SUMMARY

In this paper, a framework for multiple extended target
tracking from multiple sensors along with vessel size cate-
gorisation has been presented and described. Measurements
from multiple radars are captured and put together before
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Fig. 5: Extent estimates of the two targets shown in green and red as they navigate in opposite directions, marked by the
arrows. The extent parameters, size categorisations having the highest of the confidence levels are included.

the detection and tracking processes are carried out. A JPDA
tracker based on the MEM-EKF* measurement model has
been employed for the vessels’ extended state estimation. In
addition, the estimated axes lengths and variances are used
to determine a vessel’s size categorisation accompanied by its
confidence level.

The framework has been implemented and tested on scenar-
ios involving both single and multiple targets, and the results
shown were realistic and promising. Despite this, due to the
sequential updates of the filter combined with the sequential
accounting of multisensors, the computational load increases
with increase in the number of targets. Another factor that
influences the performance would be the size of the vessels.
Nevertheless, with three radars and up to five medium sized
vessels, the framework performs close to real-time. In the
next steps, we aim to optimise the current performance by
improving on the measurement model used for the extent
estimation.
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