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1 UFSC, PPGCC, Florianópolis, Brazil {r.mello,vania.bogorny}@ufsc.br
schreiner.geomar@posgrad.ufsc.br
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Abstract. Trajectories of moving objects are usually modeled as se-
quences of space-time points or, in case of semantic trajectories, as la-
belled stops and moves. Data analytics methods on these kinds of tra-
jectories tend to discover geometrical and temporal patterns, or simple
semantic patterns based on the labels of stops and moves. A recent ex-
tension of semantic trajectories is called multiple aspects trajectory, i.e.,
a trajectory associated to different semantic dimensions called aspects.
This kind of trajectory increases in a large scale the number of discov-
ered patterns. This paper introduces the concept of dependency rule to
represent patterns discovered from the analysis of trajectories with mul-
tiple aspects. They include patterns related to a trajectory, trajectory
points, or the moving object. These rules are conceptually represented
as an extension of a conceptual model for multiple aspects trajectories. A
case study shows that our proposal is relevant as it represents the discov-
ered rules with a concise but expressive conceptual model. Additionally,
a performance evaluation shows the feasibility of our conceptual model
designed over relational-based database management technologies.

Keywords: Multiple aspect trajectory · conceptual model · data ana-
lytics · dependency rule.

1 Introduction

Mobility data modeling is receiving more and more attention in the recent years
due to the increasing easiness to collect data from mobile applications. In the
beginning of the 2000 decade, trajectories of moving objects were modeled as
sequences of points with space and time information (the so-called raw trajecto-
ries) [9]. From 2007, a new view over trajectory data called semantic trajectory
was proposed. It is represented not only in terms of space and time dimensions,
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but also stops and moves, to denote parts of trajectories where the object stayed
for a certain amount of time or changed its position, respectively [15].

More recently, new data models were conceived to represent semantic tra-
jectories not only as stops and moves, but with other predefined semantic di-
mensions, like the goal of the trip, the purpose of a visit, or the transportation
mode [5,8]. This concept further evolved to the general notion of multiple aspects
trajectory (MAT), where the semantic dimensions are not predefined, i.e., it is
possible to associate any kind of enrichment information to a trajectory. The
pioneer work of Mello et al. [11] introduced a conceptual model for MATs, called
MASTER, where the semantic dimensions are called aspects.

As an example of a MAT, imagine the movement of a person during a week-
end day. He/she leaves home, goes to a park and then to a restaurant. The
person has a smart watch that constantly collects blood pressure rate and body
temperature. The park, in turn, have open and close hours. The weather condi-
tion may change during his/her movement (e.g., from sunny to rainy), as well
as the used transportation modes (e.g., train and taxi). This example highlights
how several heterogeneous aspects may coexist in a MAT.

On going to the analysis of MAT data, we may see several challenges related
to knowledge discovery as the behaviour of a moving object may involve several
aspects and, additionally, some aspects may be strongly correlated (or depen-
dent) and may not be analyzed separately. For instance, suppose the restaurant
visited by the person aforementioned has a spatial location, a category, some
reviews, average price, and rating. These last three attributes may hold a depen-
dency stating that ratings equal to 10 have average price higher than U$ 100 and
excellent or good reviews. We call these dependency relationships between at-
tributes as a dependency rule (DR). A DR may be learned through data mining
or machine learning methods, or it may be predefined by the user [12].

Finding, representing and storing these dependencies is therefore an essen-
tial step when analysing MATs. Although there are advances in trajectory data
modeling and mining, there is no consensus among approaches for modeling dis-
covered patterns from trajectory data, and the existing ones have limitations.
One example is the work of Bogorny et. al. [4], which models patterns for tra-
jectories only in terms of stops and moves, and considers a few/fixed aspects.

This paper conceptually define DRs over MATs. For doing that, we extend
the MASTER model [11]. Our main contributions are:

– we define the concept of DR as a pattern related to MAT data;
– we introduce a notation for expressing DRs with a power expression higher

than the traditional association rules [1];
– we propose an extension of MASTER called MASTER DR. With MASTER

DR it is possible to query the entities on which the DR holds or vice-versa;
– we provide an evaluation of our model that comprises a case study over

real MAT data, as well as a performance experiment over relational-based
Database (DB) technologies.

The rest of this paper is organized as follows. Section 2 provides a background
about MAT as well as the MASTER model. Section 3 presents the related work
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and Section 4 introduces the concept of DR and its representation. Section 5
describes MASTER DR, Section 6 presents some evaluations and Section 7 is
dedicated to the conclusion.

2 Multiple Aspect Trajectory and the MASTER Model

A MAT is a trajectory that may be enriched with an unlimited number of
semantic information called aspects [11]. An aspect is a real-world fact that is
relevant for trajectory data analysis, and it is characterized by an aspect type.
For instance, the aspect subway belongs to an aspect type transportation, and an
aspect rainy belongs to an aspect type weather. An aspect type act as a metadata
definition for an aspect. It holds a set of attributes and it may also be a subtype
of a more general aspect type, allowing an aspect type subtypeOf hierarchy, like
POI←accommodation←hotel. We consider time and space as possible aspects.
So, an aspect can be specialized into Spatial Aspect or Temporal Aspect. The first
one holds position attributes (x,y), and the second one a timestamp attribute.

A MAT, in turn, is represented by a set of points that denotes the movement
of a moving object, i.e., a real-world entity that moves along space and time.
This object is always associated to a type, which can be a person, a drone, an
animal, a car, or even a natural phenomenon, like a hurricane.

The MASTER conceptual model combine simplicity and expressive power
for representing aspects. The intention is to represent any semantic dimension,
independent of the application domain. Figure 1 shows the last version of the
MASTER model (the yellow entities inside the MASTER package).

An aspect is associated to a point when it changes frequently during the
object movement. One example is a visited place (a POI). When an aspect does
not vary during an entire MAT, it is associated to the MAT as a whole. An
example could be the weather condition. When an aspect holds during the entire
life or a long period of a moving object, it is associated to the moving object.

Finally, MASTER introduces the moving object relationship. A moving object
may maintain any type of relationship with other moving objects, and these
relationships may also be characterized by different aspects such as the type of
relationship (e.g., friendship, professional, family).

3 Related Work

Previous approaches in the literature introduced the notion of semantically en-
riched trajectories, as the pioneer work of Spaccapietra et al. [15], as well as
the CONSTANT [5] and MASTER [11] data models. It is worth also mention-
ing works that represent semantic trajectories and associated patterns. Some of
them base their novelty in exploiting ontologies to represent both (semantic)
trajectories and patterns [8, 14]. However, none of them consider dependencies
among semantic data and how to represent them.

Some other works propose conceptual models for data mining patterns [2,
4, 7, 13, 15, 16]. On compared to our proposal, these works do not necessarily
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focus on trajectories, or represent trajectories as only spatio-temporal points or
sequences of stops and moves, not including complex aspects, or considering a
single semantic point of view. Due to it, the modeled patterns are limited.

Fig. 1. The MASTER conceptual model and the dependency rule extension

This paper introduces DR as a pattern that is able to represent complex
dependencies among trajectory aspects. DRs for MATs has not been considered
in the literature so far as MATs is a relatively new trajectory concept, and in
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previous definitions of semantic trajectories the enrichment component is just a
label, being not suitable to discovery dependencies among aspects.

4 Dependency Rule

A DR is a pattern4 that specifies complex dependencies among values of at-
tributes belonging to one or more real-world entities. Our reasoning for a DR is
based on the concepts of rule [1] and functional dependency [3]. A rule is a com-
mon formalism for representing knowledge discovered through the application
of data mining methods, like frequent itemset or association rule algorithms. A
functional dependency is considered in the design of a relational DB schema in
order to avoid redundancy and update anomalies. Both of them allow the defi-
nition of a set of attributes whose values determine the values of another set of
attributes, and are usually specified as follows: {atti, ..., attk} ⇒ {attm, ..., attp}.

A DR also allows the specification of determinant and determined attribute
sets, complex predicates involving these attribute sets, and the real-world entity
type on which the DR holds (target entity type). Our contribution with the
DR modeling on MASTER is to represent discovered patterns for the main real-
world entities based mainly on the analysis of the aspects that surround them, as
the aspects represent the relevant features of the trajectories, including spatial
and temporal information. Suppose we had discovered a pattern in a MATs
dataset stating that retired people in a small city usually move on foot when
it is not raining. This pattern involves three aspects (occupation, transportation
and weather) and could be specified by the following DR:

DRx: MAT | owner.is-a[description =’Person’] AND MAT Aspect

[description =’retired’].is-a[description =’occupation’] AND

MAT Aspect[NOT(description =’rainy’)].is-a[description =’weather’]

⇒ MAT Aspect[description = ’foot’].is-a[description =

’transportation’]

It shows that the DR is a pattern for a MAT (the target entity type). It also
holds a pre-condition (before the implication) and a discovered data behaviour
based on this pre-condition (after the implication).

We define a simple notation for a DR. It represents the DR three components
(target entity type, determinant and determined), being similar to an associa-
tion rule and a functional dependency. Therefore, this formalism tends to be
easy to understand. In fact, we could adopted a rule specification language, like
SWRL [10] and RIF [6]. However, they are verbose languages and would generate
complex rule definitions. We now formally define a DR as well as its components.

Definition 1. (Filter). A filter is a data restriction with the form att operator
operand, where att is a required entity type attribute name that may be followed
by an operator and an operand, with operator ∈ {=, 6=, >, >=, <, <=, IS

NULL, IS NOT NULL}, and operand is a required constant value, or another entity
type attribute name if operator /∈ {IS NULL, IS NOT NULL}.
4 By pattern we mean an implicit (or hidden) regularity in the data.
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Definition 2. (Predicate). A predicate is a boolean expression with the form of
a path expression prk = e1.e2...en−1.en, n > 0, where each element ei ∈ prk is a
MASTER relationship type that may be restricted by a filter optionally enclosed
by a NOT logical operator and defined between brackets (’[’, ’]’), and e1 is a
relationship type connected to the MASTER target entity type.

When a predicate has a filter with only the att part, we have an existence
constraint w.r.t. the attribute. For example, the predicate MO Aspect[endTime]

states that the relationship MO Aspect must hold the endTime attribute.

Definition 3. (Condition). A condition is a boolean expression with the form
pr1 AND|OR pr2 AND|OR ... AND|OR prm, m > 0, i.e., a non-empty set of predicates
{pr1, pr2, ..., prm} connected by the logical operators AND and OR.

Definition 4. (Dependency Rule). A DR drf is an expression with the form
tex | ci => cj, where tex is a MASTER target entity type, with tex ∈ {MO, MAT,
POINT, MOR}, ci is the pre-condition (or determinant), and cj is the condition
regarding the discovered data regularity (or determined), and a drf specification
means that if ci is TRUE for a tex instance ix, then cj is also TRUE for ix.

The aforementioned DRx is an example of DR specified according to Def-
inition 4. We focus on semantic behaviours discovered for the aspects related
to the main entity types (target entity types) of the MASTER model: moving
objects (MO), multiple aspects trajectory (MAT), trajectory point (POINT), and
moving object relationship (MOR). Because of this, a predicate must start with a
relationship type connected to one of these entities.

A DR may also hold an existence constraint w.r.t. relationship types if their
predicates have no filters. One example is DRy: MO | source OR target =>

MO Aspect. It states that when a moving object participates in a moving object
relationship, it must be related to an aspect.

5 MASTER DR

This paper regards DRs for MAT data. As several patterns can be found over
MATs, they can be valuable or not depending on their accuracy and temporal
lifetime. Thus, we associate a confidence [1] and a validity time to each DR.

Figure 1 shows our MASTER extension to provide the representation of
DRs and related concepts (the blue entities): the MASTER DR. The DR entity
includes the aforementioned attributes. In the following, we define the DR entity.

Definition 5. (DR Entity). A DR Entity dre = (desc, startTime, endTime,
confidence, EXT, PRE, POST, DS) is a discovered data pattern in a set of MAT
datasets DS, with a description desc, a confidence and a validity time (startTime
and endTime), as well as sets of predicates PRE = {pr1, ..., prn} and POST =
{pr1, ..., prm} that specifies, respectively, its determinant and determined parts,
and the set of sets EXT = {MOR | MO | MAT | POINT}, which are the sets of
occurrences of MASTER entities on which the DR holds, being MOR = {mor1,
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..., mori} the set of moving object relationships, MO = {mo1, ..., morj} the set
of moving objects, and so on.

The dre.EXT sets are represented in MASTER DR as specialized entities
(see Figure 1) that hold specific relationships with original MASTER entities tej
that are the target of the DR. They are modeled as many-to-many relationships
because the DR may be valid for several tej occurrences. The DR entity spe-
cializations are not exclusive as a same DR may serve, for example, as a pattern
for a whole MAT in one context and a pattern for some MAT points in another
context. A same pattern related to weather, for example, may occur during all
the trajectory long or only for some of its points.

A DR may raise in several MAT datasets. We define a dataset as follows.

Definition 6. (Dataset Entity). A Dataset Entity dse = (desc, URL, DR) is
a source of MAT data with a description desc, an URL with its location, and a
set of discovered DR over it.

As shown in Figure 1, a DR is composed of the determinant and determined
conditions, which are sets of predicates. Thus, we also define a predicate entity.

Definition 7. (Predicate Entity). A Predicate Entity pe = (desc, owner, con-
dition type, path, order, ASP, ASPT, parenthesisType, parenthesisAmount, log-
icalOperator) is part of a DR determinant or determined condition with a de-
scription desc, the DR the owns it (owner), the type of DR condition where it is
inserted (determinant - 0; determined - 1) (condition type), the path expression
that defines it, its order inside the condition, the optional sets of aspects (ASP)
and aspect types (ASPT) occurrences on which the predicate holds, and optional
attributes denoting whether the predicate is preceded or not by an open parenthe-
sis (0) or succeeded by a close parenthesis (1) (parenthesis type), the amount of
this parenthesis type (parenthesis amount), and whether the predicate is preceded
by a logical operator: OR (0) or AND (1).

For sake of understanding of the Predicate Entity definition suppose the
following predicates that could be part of a determinant of a DR named DRz:

...((a.b.c[x = 1] OR d.e[y = ’q’]) AND ...) ...

This condition fragment has two predicates (a.b.c[x = 1] and d.e[y =

’q’]), where the first one is preceded by two open parenthesis, and the second
one is preceded by the OR logical operator and succeeded by one close parenthesis.
In order to keep track of all the condition structure, we represent the first predi-
cate as pr1 = (’predicate1’, ’DRz’, 0, ’a.b.c[x = 1]’, 1, NULL, {’aspectTypei’},
0, 2, NULL), and the second predicate as pr2 = (’predicate2’, ’DRz’, 0, ’d.e[y =
’q’]’, 1, {’aspectj’, ’aspectk’}, {’aspectTypel’}, 1, 1, 0). We are also supposing
that pr1 is valid to an aspect type ’aspectTypei’, and pr2 holds to the aspects
’aspectj ’ and ’aspectk’, which belong to the aspect type ’aspectTypel’.

This strategy to model predicates allows the representation of a DR condition
composed of an arbitrary number of logical operators and parenthesis levels. We
also associate a predicate with an aspect and/or an aspect type in order to allow
queries like ”what MATs have patterns that enclose the aspect X?” and ”what
aspect types are more frequent in patterns for the moving object Y?”.



8 R. S. Mello et al.

6 Evaluation

We first present a case study with real trajectory data from the SoBigData
Consortium, an European Union funding project related to Big Data social min-
ing. We got a grant to access a repository with 8392 trajectories describing the
movement of 129 users into Tuscany, Italy5. We analyzed two datasets of this
repository as they provide more aspects associated to the trajectories:

– Diaries dataset: distance, average speed, day of the week, duration, day
period and trajectory purpose (goal).

– MP dataset: goal, mean of transportation and duration.

The first dataset comprises people moving by car. In the second one, people
had moved using different means of transportation. As both of them are stored
into relational databases, we defined SQL grouping queries (queries with the
GROUP BY a1, ..., an clause) to group data by sets of attributes’ values (a1, ..., an)
and verify whether a DR raises when they are viewed together (e.g., to group
trajectory data by duration and goal). We defined a group query for each in-
cremental combination of the attributes’ values that correspond to aspects, like
(goal, mean of transportation), (goal, duration), ... , (goal, mean of transporta-
tion, duration) for the MP dataset. The result sets were analyzed manually.

Table 1 shows some discovered DRs on both datasets with high confidence,
highlighting relevant patterns to be stored. All of these DRs can be represented
by MASTER DR, demonstrating its usefulness in real data scenarios.

We also analyze query performance over MASTER DR when designed over
open-source relational-based DB technologies: a traditional DB management sys-
tems (DBMSs) (PostgreSQL), and a NewSQL DB (VoltDB). We chose them be-
cause relational DBs is a dominant technology, and NewSQL is a emerging one.
We run the experiments on a host of IntelR CoreTM i5-8200 processor with 8
GB RAM (DDR4 1333Mhz), 240GB SSD and Xubuntu 20.04 Server LTS OS 64
bits. The generated relational schema for MASTER DR is shown in Figure 2.

We define five queries over the DBMSs covering the main MASTER DR
entities and relationships, with different levels of complexity (from 3 to 10 table
joins). We emulate 20 users randomly run each one of the queries over synthetic
data in a DB with three sizes for each table: 10K, 50K and 100K rows.

For the smallest DB size, PostgreSQL got a throughput of 3, 613.88 TPS
(transactions per second), and VoltDB reached 6, 146.41 TPS. VoltDB has al-
most 100% more throughput than PostgreSQL for the smallest DB size. For the
largest one, the difference falls to 14%. In short, the performance for querying
the MASTER DR relational schema sounds good for both DBMSs, as they were
able to consume hundreds of requests even for the largest DB size, with a light
advantage of VoltDB. Despite the dataset sizes are not large, they were sufficient
to evaluate the behavior of relational DBMSs in order to suggest appropriated
DB technologies to support MASTER DR, as is the case of NewSQL DBs.

5 https://sobigdata.d4science.org/web/cityofcitizens/catalogue
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Table 1. Some discovered dependency rules.

Dataset Dependency Rule Confidence

goal = ′Supermarket′ ⇒ day period = ′6-12′ OR day

Diaries period = ′12-18′ 99 %

goal = ′Work′ OR goal = ′Service′ OR goal = ′Study′ ⇒
Diaries NOT(day of the week = ′Sunday′) 87 %

average speed > 80 AND (day of the week = ′Saturday′

OR day of the week = ′Sunday′) AND (day period = ′0-6′

Diaries OR day period = ′18-24′) ⇒ goal = ′Leisure′ 72 %

goal = ′Leisure′ OR goal = ′Carburator Fixing′

⇒ mean of transportation = ′Motorcycle′ OR

MP mean of transportation = ′Automobile′ 100 %

goal = ′Pick up or drop out′ ⇒ mean of

MP transportation = ′Automobile′ 100 %

goal = ′Shopping′ ⇒ mean of transportation =

MP ′Automobile′ 80 %

Fig. 2. A relational schema for MASTER DR

7 Conclusion

Proposals regarding trajectory pattern modeling are able to find out a limited
set of (and simple) patterns as they consider only spatio-temporal attributes or
limited semantic dimensions. This paper novels by proposing a conceptual model
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for DRs and a formalism to specify data patterns in the context of mobility data
that are very rich in terms of semantics (MATs). We represent DRs as an ex-
tension of a conceptual model for MATs, thus enabling queries on trajectories
and DRs in a joint way. This extended conceptual model combines simplicity
by adding few entities to the original model, as well as the capability to rep-
resent patterns with different levels of complexity. A case study and a query
performance analysis show that our conceptual model is useful and practicable.
Future works include the analysis of other MAT datasets to better evaluate per-
formance, expressiveness and limitations of MASTER DR. We also intend to
simulate data insertions and updates over several DB technologies.
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