
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

541

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

Abstract: With the advancement in technology and

development of High Throughput System (HTS), the amount of

genomic data generated per day per laboratory across the globe is

surpassing the Moore’s law. The huge amount of data generated

is of concern to the biologists with respect to their storage as well

as transmission across different locations for further analysis.

Compression of the genomic data is the wise option to overcome

the problems arising from the data deluge. This paper discusses

various algorithms that exists for compression of genomic data as

well as a few general purpose algorithms and proposes a

LZW-based compression algorithm that uses indexed multiple

dictionaries for compression. The proposed method exhibits an

average compression ratio of 0.41 bits per base and an average

compression time of 6.45 secs for a DNA sequence of an average

size 105.9 KB.

Keywords: Compression, lossless, LZW, DNA, Multiple

Dictionary, Decompression.

I. INTRODUCTION

The past two decades have witnessed huge data evolution in

many areas of science. Among them the most widely

discussed is the discovery of sequencing genomic data. With
the advent of technologies and HTS the data generation has

become overwhelming challenging the scientists in the

biological community to find ways of efficiently managing

the sequences, especially for storing and transmitting it for

further analysis. Data compression has been of interest to

data scientists for a long time. Efficient algorithms for

compression and decompression have been developed for

textual, video and, image types of data. Since genomic

sequence is composed of character set {A, C, G, T}

corresponding to chemical compounds Adenine, Cytosine,

Guanine and Thymine respectively and the data files are

stored with text data, the text data compressions are the best
suited for compression. Among the text compression

techniques, lossy compression does not yield back the

original data. The genomic data cannot afford a loss when

decompressed as every character in the data file has equal

importance and hence for compressing genomic data only

lossless compression can be relied upon. The paper discusses

different lossless compression techniques currently used for

compressing text data as well as methods available for

compressing genomic data.

Revised Manuscript Received on December 15, 2019.

* Correspondence Author

Dr. Keerthy A S
*
, Research Scholar, Department of Computer Science,

Karpagam Academy of Higher Education, Coimbatore (Tamil Nadu) India.

E-mail: keerthysanthosh@gmail.com

Dr. S. Manju Priya, Professor, Department of CS, CA & IT, Karpagam

Academy of Higher Education, Coimbatore (Tamil Nadu) India.

E-mail: smanjupr@gmail.com)

The author [1] identifies dictionary method as the best suited

for lossless compression of data and proposes a modified

version of LZW with multiple dictionaries for efficient

compression. Also, compression ratio achieved is compared

with existing genomic and general purpose 1 compression

algorithms.

II. LITERATURE REVIEW

The need for compressing genomic sequence data was

identified and attempted from the 20th century where most

attempts were made using text-based tools that already

existed. In 1996, Rivals et al. [2] attempted to compress the

genomic sequences by considering the regularities and

approximate tandem repeats that appear in the DNA

sequences. The author proposes an algorithm Cfact, a

two-pass algorithm which locates repeated segments and

measures their quantitative importance based on compression

rate. They also propose a methodology to measure

approximate tandem repeats which are of evolutionary

importance to DNA sequences. GenCompress proposed by

Xin Chen et al. is a one pass algorithm which looks for

complemented palindromes in DNA sequences. When Cfact

looks for global matches, GenCompress[3] searches for the

best approximate match within the text under analysis. It also

identifies regularities in the genomic sequences such as

crossover and mutation. The authors claim that

GenCompress performs better than Cfact. A combination of

parallel dictionary and adaptive Huffman algorithm is

proposed by Lin, Lee and Jan[4] for compressing text data.

The usage of multiple dictionaries of variable length for

compression and decompression is explained with a sample

sequence. The fixed length codewords are converted to

variable length codewords based on approximated AH

algorithm. Variant approaches to AH (Adaptive Huffman)

algorithm are discussed and their performance is evaluated.

The output from Huffman tree is represented as canonical

Huffman code. The authors bring out the advantage of having

better compression with parallel dictionaries instead of a

single dictionary for text data. NML (Normalized Maximum

Likelihood) based model for DNA sequences is detailed and

tested for genomic as well as non-genomic data sets by

Korodi et al. [5]. The compression splits the DNA sequence

into non-overlapping sequences and assigns a search

dictionary for each of the blocks with subsequences collected

from previous data and also complemented palindromes.

Genomic Sequence Data Compression using

Lempel-Ziv-Welch Algorithm with Indexed

Multiple Dictionary

Keerthy A. S., S. Manju Priya

mailto:keerthysanthosh@gmail.com
mailto:smanjupr@gmail.com

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

542

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

The results, when compared with bzip2, a general purpose

encoder, showed sufficient advantage in compression. The

authors further claim a compression ratio of 1.66 bits per

symbol. The major drawback of LZW (Lempel Ziv Welch)

based data compression is the size of the dictionary generated

and that it gets filled up quickly while compressing.

Parvinder et al.[6] propose a substitution of short sequence by

long sequences as the dictionary gets filled up. An alternative

suggestion is to use two dictionaries – a primary dictionary

and a secondary dictionary. The primary dictionary will

maintain frequently used entries. When it gets filled up, the

entries would be moved to the secondary dictionary so that

there will be more space in the primary dictionary to add new

code words. XM (eXpert Model)[7] is a statistical

methodology for compressing biological sequences such as

genomic sequences and protein sequences. The method

consists of using statistical properties and repetition within

sequences for compression. The compressor calculates the

probability of each symbol based on the observations from

previous occurrences of the symbol, identifies the probability

distribution of the symbol and compresses it using a general

purpose method like arithmetic coding. A comparative

analysis of different compression algorithms is presented,

where XM claims to have an average compression rate of

1.69 bits per symbol. DNAEncodeWG[8] (DNA Encode for

Whole Genome) is a reference-based compression method

for Whole Genome sequences. The method identifies the

presence of query sequence in the whole genome sequence

and records the properties of the region and the differences

identified between reference sequence and query sequence.

The method claims to have an average compression of 0.19

bits per symbol. Heath et al. [9] proposes a four-stage

algorithm for compression of genomic sequences, which also

provides random accession of subsequences. The first step in

the four-step compression strategy is preprocessing the target

sequences, where the sequences are grouped based on

segments or chromosomes, and then multiple sequence

alignment is performed with the reference genome. In the

second stage the difference between the target and reference

sequences is identified. In the third step the differences are

compressed with Huffman coding. In the last step the

differences are used to identify mutations in the target

genome. The authors claim a compression ratio of 0.98 for

mitochondrial sequences. DNABIT[10] compress uses two

phases of compression. In the first phase all single bases in

non-repetitive regions are assigned two bit codes. In the

second phase based on the number of bases repeated in each

region, four different coding methods are used, namely 3 bit,

5 bit, 7 bit and 9 bit. For two or three similar bases 3 bit

coding is used, for three to eight repeats of same base 5 bit

coding is used, for two base repeat upto 8 times 7 bit coding is

used, and if the consecutive 4 bases are the same in the

subsequence under consideration, 9 bit coding is used. The

authors conclude on an average compression ratio of 1.53 bits

per symbol. Nishad and Chezian[11] proposes a two-stage

dictionary-based compression technique for DNA sequence

compression. In the first stage, a fragment of four characters

is fetched from the sequence and converted to corresponding

binary sequence. For conversion to binary sequence, each

character is mapped to binary code as follows: A= 00, C= 01,

G= 10 and T = 11. The binary string generated is added to the

dictionary. In the second phase, a binary tree is constructed

for the dictionary, where a child node is designed as a path

taken from a parent node. New binary codes are generated for

members of dictionary. Corresponding to each fragment in

the sequence the new binary code is written to the output file.

In their subsequent works, [12, 13], Nishad and Chezian,

introduced compression based on dictionary. They described

an implementation of LZW with binary searching that

reduced the time complexity for searching a string later and

also proposed to use multiple dictionaries in the place of

single dictionary which would reduce the search complexity.

The methodology is proposed for general purpose

compression. The implementation is tested with genomic

data as well. The decompression is also performed using

multiple dictionaries and the authors claim a 94%

compression for text data.

COMRAD[14] works iteratively to compress a set of DNA

sequences using the length of substring and a minimum

frequency threshold as parameters for first iteration. In each

subsequent iteration, a frequency dictionary is created and

substitutions are done. In the first iteration, frequency

dictionary creation step calculates the frequency of each

substring of pre-specified length. In the first substitution step,

the substrings that are repeated most frequently are replaced

by symbols. The result from first iteration would be a mix of

nucleotides and symbols used in the substitution. In the

subsequent iterations, these steps are repeated with frequency

dictionary generation and substitution. The iterations

terminate when no further substitution is possible. From the

final frequency dictionary, all those substitutions with

frequency of less than a threshold value are eliminated by

replacing the substitution with the original string in the

sequence. The frequency dictionary generated and the

substitution strings are encoded using Huffman coding as a

final step. The compression cost of the method depends on

the number of iterations performed. The decompression

works in the reverse order, the first step being Huffman

decoding and the second step COMRAD decoding.

COMRAD permits random access across the sequence that is

compressed. Though it assures pretty good compression, the

algorithm is memory intensive. SCALCE (Sequence

Compression Algorithm using Locally Consistent

Encoding)[15] is a boosting method that works based on local

parsing method that rearranges the reads to improve

compression rate and speed with or without a reference

sequence. SCALCE is combined with Arithmetic coding for

compressing quality scores and gzip to achieve considerable

compression on read names resulting in a good compression

rate and improved running time.

Giancarlo, Rombo and Utro[16] have listed various methods

of compression used widely based on research areas as

collection of sequences, collection of HTS (High

Throughput Sequence) reads and compressive sequence

analysis. The compression techniques are compared based on

the type of compression, the method of compression and

availability of random access.

 Huffman coding and arithmetic coding are identified as

statistical methods of

compression. Lempel-Ziv

data compression is a

dictionary-based one, which

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

543

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

is used along with Huffman coding by COMRAD. For an

analysis of relative compression, the authors compare GRS,

GReEN and many other techniques that use reference

sequence for accomplishing compression. The growth of raw

sequence data over the years has been analyzed by

Deorowicz and Grabowski [17], along with the various

methods of data compression techniques available for

genomic data, comparing the existing general purpose

methods of compression using genomic sequences.

Reference-based compression using FASTQ files and SAM

files is performed. As data deluge is becoming a fact in the

biological scientific community, the authors discuss the need

for compression techniques. They look into the available

compression methods and their suitability with respect to

genomic sequence data. They also discuss different file

formats for data storage.

Zhu et al.[18] selected a set of genomes from different

species with respect to origin, length and repeat content. The

performance evaluation of various compression techniques,

both reference-based and reference-free, was performed

based on compression ratio, memory usage and compression

and decompression time. The author suggests CRAML,

which is a lossy compression method to give the best

compression ratio and the best compression and

decompression time and memory. The authors also point out

that high throughput sequencing has made personalized

genomic sequencing affordable, and that encryption

techniques must be deployed to protect the privacy of

personalized data.

Wandelt et al.[19] discuss the key methods of genomic data

compression. Naïve bit manipulation replaces every base by a

two bit code. Dictionary-based method adds the entry of a

codeword to dictionary when encountered. These

book-keeping details are further used for the decompressing

purpose. Since high amounts of repetition of bases are the

prominent features of genomic data, statistical methods are

also employed in compressing genomic information.

Huffman coding or arithmetic encoder works based on the

principle of statistical algorithms. Referential algorithms are

used only when there is a standard sequence that can be kept

as reference for compressing similar genomes. The authors

discuss the usage of each of these techniques in whole

genome compression as well as read compression. The lack

of benchmark datasets as well as metrics for comparing

performance of different methods has been pointed out. They

suggest rate of compression, time taken for compression and

decompression and memory usage while compressing and

decompressing as metrics of performance analysis.

Pratas and Pinho[20] propose an asymmetric compressor for

genomic data sequences which parallelize the tasks using two

FCMs. The sequences are preprocessed by calculating

probability estimates using symbol counts. The

preprocessing helps in identifying low complexity areas in

the sequence. Two finite context models (FCMs) of high and

low order are run parallel to compete with each other. The

outputs from each of the FCMs are stored and processed

separately. The higher order FCM is used to compress

regions with low information content. The higher order FCM

also considers the possible inverted repeats (IRs). The high

FCM consists of a regular chain and an IR chain. The authors

point out that preprocessing can substantially improve the

memory usage, especially while decompressing.

Parallelization assures faster compression. GeCo (Genomic

Compression)[21], a statistical method for genomic data

compression, uses FCM based on Markov models. Patras,

Pinho and Ferreira extend the FCMs as XFCM, where the

probability estimate varies as the conditioning context is

different. They use the most probable symbol as the

conditioning context. A pseudo-random synthetic sequence is

generated and used as reference sequence. It is mutated with a

predefined substitution rate and genomic sequence with

several degrees of mutation generated. These resulting

sequences are compressed using the synthetic reference

sequence generated. A cache-has memory approach, which

keeps only the last hashed entries in memory, is used so that

memory usage is further reduced.

ERGC (Efficient Referential Genome Compression) [22]

algorithm works by keeping a sequence as referential

sequence and the sequence to be compressed as target

sequence. The algorithm works by splitting the reference

sequence and target sequence into equal-sized strings. A

greedy algorithm generates k-mers one at a time, and hashes

it to a hash table. If no match is found, k-mer is extended by

one, otherwise it aligns the reference sequence and target

sequence and extends the alignment until there is a mismatch.

The mutations and insertions in reference and target sequence

are also taken care of.

Though general purpose compression techniques like gzip

can compress and assist in efficient storage and transmission

of genomic data, they do not take into advantage the general

features of genome sequence such as tandem repeats,

microsatellites, etc., whose presence increases the possibility

of compression even better. Hence, the scientific world is

interested in identifying special purpose software that are

tailored for genomic data compression. Mince’s

algorithm[23] works by grouping similar sequences. The

compression is carried out in multiple phases. In the local

bucketing phase, Mince places similar reads into a bucket.

All k-mers of a read of length r are checked to see if any of

the k-mer or its reverse complement has a label matching the

existing ones. If none matches a new bucket is created. If it

matches, the read of length ‘r’ is assigned to that bucket using

an encoding transformation. Comparison with the existing

methods assures a better compression ratio. The k-mer

redundancy check exploits the possible sequence similarity

between the reads, and the read order is chosen randomly

while compressing.

The literature review extensively studies various

methodologies used in compressing genomic sequence data.

It is evident from a comparative analysis of the existing

general purpose methods that they do not efficiently

compress genomic data. Statistical methodologies reap the

advantages of high degree of repetition of bases in the data,

but they are mostly memory intensive. Reference-based

methods claim to produce maximum compression, but it is

possible only if a valid reference sequence is available.

Dictionary-based methods are fast and prompt in

compression as well as decompression, but size and

maintenance of dictionary are drawbacks. Parallel

dictionaries claim to ease the

time complexity in

compression procedure with

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

544

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

reduced number of shifts and comparisons. Also, the

methodologies discussed are experimented in different

datasets due to lack of benchmark dataset. A quantitative

comparison of different methods is restricted to a few

sequences that overlap different methodologies.

III. METHODS AND METHODOLOGY

An analysis of different compression techniques brings out

the pros and cons of the various techniques used. Most of the

methods described for compression are laid down for

compressing text data. Of the methods discussed for text data

compression usage of multiple dictionary in compression

claims to be of less overhead and lossless. Since lossless

compression is unquestionable LZW is the best option for

compression. The LZW with single dictionary [24] is laid

down for compressing text data. Since the character set is

smaller for genomic data, the basic algorithm is modified to

suit the character set. Also, for faster search and retrieval of

data, multiple dictionaries[25] are used in compression and
decompression, which facilitate faster and efficient storage

and transmission of genomic data.

A. Compression

Each character read from the input file is concatenated with
the previous char or subsequence; its presence is verified in

the corresponding dictionary. If the string is present in the

dictionary DL where L is the length of the previous substring

and the character read from the input file, the subsequence is

extended by reading in the next character from the file.

Otherwise, a new entry corresponding to the subsequence is

made in the dictionary DL with the index calculated using the

subsequence. The procedure is laid down in following steps:

1. Set dictionary D1 with initial character set A, G, C and T

and assign to them CODE 1, 2, 3 and 4 respectively.

2. Read first character from input file to STRING

3. Initialize M:= 2, CODE := 5

4. Repeat the following steps till end of file

5. Assign CHAR := Next character from input file

6. Assign

L:= Lengthof(STRING+CHAR)

7. Assign

INDEX:=CALCULATE_INDEX(STRING+CHAR, M)

8. Search for INDEX in Lth dictionary

a. If INDEX found

AssignFLAG:= Search(STRING+CHAR, L)

b. OTHERWISE

i. Create INDEX in Lth dictionary

9. If FLAG is TRUE

a. STRING := STRING+CHAR

10. ELSE

a. Write CODE to output file

b. Add CODE. STRING+CHAR to Lth dictionary

c. CODE:= CODE+1

d. STRING:=CHAR

11. Repeat from step 5

12. STOP

13. Function CALCULATE_INDEX(X,M)

Return(
)

The codes are written in the output file as ascii characters

corresponding to their values. This eliminates the possibility

of wrongly reading the codes while decompressing.

B. Decompression

The decompression starts by reading in codes from the

compressed file. An initial dictionary D1 is created with

character set A, G, C, T assigned with codes 1, 2, 3, 4

respectively. For each code read from the compressed file, if

it is updated in the dictionary, write the corresponding

character or subsequence to the output file. Otherwise assign

the previous subsequence value to the dictionary and update

the code value.

1. Set dictionary D1 with initial character set A, G, C and T

and assign to them CODE 1, 2, 3and 4 respectively.

2. Initialize M: = 2, CODE:= 4, L: = 1

3. Assign OCODE:= Character(First character read from

compressed file)

4. Write OCODE to output file.

5. Repeat the steps till end of file

a. Assign NCODE := Next character from input file

b. Assign FLAG:= Search Dictionary(L, NCODE)

i. If FLAG is FALSE

Assign STRING:= OCODE + CHAR

ii. ELSE

1. Assign STRING := NCODE

2. L=L+1

3. Write STRING to output file

c. Assign CHAR=STRING[1]

d. CODE = CODE+1

e. Assign L = Lengthof(OCODE+CHAR)

f. Update Lth dictionary with CODE,

OCODE+CHAR

g. OCODE = NCODE

6. STOP

14. Function CALCULATE_INDEX(X,M)

Return (
)

IV. RESULTS AND DISCUSSION

The proposed algorithm is implemented on Intel® Core™ i7

(2.40GHz 8GB RAM) running on Windows 10 with Python

3.6. The experimental analysis was carried out on Nvidia

GeForce GTX 1060 GPU (Intel Core i7, 32GB RAM). A set

of standard DNA sequences that were tested with other

compressing algorithms were compressed and compared with

available compression ratio of WinZip and CTW, which are

general purpose compression algorithms, and CTW+LZ,

BIOCOMPRESS, GENCOMPRESS, DNACOMPRESS,

XM and DNAEncodeWG which are genomic compression

algorithms. The test data includes five human gene sequences

(HUMDYSTROP, HUMGHCSA, HUMHBB,
HUMHDABCD AND HUMHPRTB) that are commonly

used in most of DNA compression publications. Along with

these MOUSE CHROMOSOME2 and BAKER’s YEAST

CHROMOSOME 2 were also compressed, for which

comparative values for other algorithms were unavailable.

The compressions were compared using compression ratio

calculated as number of bits/base. Table 1 gives the

comparison of sequence size before and after compression,

and the time taken for compression.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

545

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

Table 1: Comparing sequence size before and after compression using multiple dictionaries based on LZW

Name of Sequence

Uncompressed size (in

KB)

Compressed Size(in

KB) Compression Ratio Exec time (in sec)

MOUSECHR2 218.1 86 0.394314535 6.342

BAKERSYEASTCHR1 231 94 0.406926407 6.898

HUMDYSTROP 38.77 16 0.412690224 6.283

HUMGHCSA 64.495 24 0.37212187 6.139

HUMHBB 73.323 31 0.422786847 6.408

HUMHDABCD 58.864 25 0.424707801 7.15

HUMHRPTB 56.737 24 0.423004389 5.917

Average 105.9 42.86 0.41 6.45

The compression time (in secs) for seven sequences are presented graphically as follows:

Figure 1: Graph presenting compression time (in secs) for the seven sequences compressed

A. Comparing the proposed implementation (MDLZW) with the existing algorithms:

Table 2: Compression ratios given by different general purpose and genomic compression algorithms for compressing

five human genes.

DNA

SEQUENCE

Win

Zip

BIO

COMPRESS

GEN

COMPRESS

Normal

CTW

CTW

+

LZ

DNA

COMPRESS
XM

DNA

Encode

WG

MDLZW

HUMDYSTROP 2.38 1.9262 1.9231 1.92 1.9175 1.9116 1.9031 0.1729 0.4069

HUMGHCSA 2.34 1.3074 1.0969 1.3638 1.0972 1.0272 0.9828 0.2732 0.4127

HUMHBB 2.33 1.88 1.8204 1.8928 1.8082 1.7897 1.7513 0.2744 0.3721

HUMHDABCD 2.29 1.877 1.8192 1.8973 1.8218 1.7951 1.6671 0.1422 0.4247

HUMHRPTB 2.32 1.9066 1.8466 1.9132 1.8433 1.8165 1.7361 0.1111 0.423

Figure 22: Comparing compression ratio (bits per base) obtained by different algorithms on five human genes

6.342 6.898 6.283 6.139 6.408
7.15

5.917

0
1
2
3
4
5
6
7
8

Ti
m

e
in

 s
ec

s

SEQUENCES

Compression time(in secs) for DNA sequences

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

546

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

The comparative analysis of compression ratio by different

algorithms is presented in the Figure 2. The compression

rates in Figure 2 are obtained from existing literature[8]

except the last column, which gives the experimental results

in the proposed method. The general purpose compression

algorithms give the highest compression ratio. The best

compression among the compared algorithms is given by

DNAEncodeWG with an average compression ratio of

0.1948 bits per base, which is a reference-based algorithm. A

reference-based algorithm works well only if a valid

reference is available. Hence, it cannot be considered as a

convincing method for compressing sequences resulting from

experiments. Hence, the proposed algorithm gives a better

compression ratio than other compression algorithms

discussed and compared. Also, it is evident that general

purpose algorithms are not suitable for compressing the

genomic sequences as they do not take in to account the high

amount of repetitiveness in the sequence data.

V. CONCLUSION

The paper presents an efficient compression algorithm based

on LZW with the modification of using multiple dictionaries.

LZW has been proven as the best among the compression

algorithms for lossless compression. For compressing DNA

sequence data, lossless compression is mandatory and hence

LZW is the basic methodology chosen. The main drawback

of LZW is the dictionary size as well as time consumption in

searching the dictionary. This is overcome by using multiple

dictionaries that are indexed. Also, the dictionaries are

created dynamically during compression as well as

decompression, and the dictionary is not stored for later use.

Hence, memory overhead of dictionary storage is overcome.

Only the compressed file is stored and transmitted. The

proposed method MDLZW for Genomic Sequence data has

an average compression rate of 0.41bits per base, which is the

best among the compression rates compared. The

decompression algorithm performs a lossless decompression

in comparable time.

REFERENCES

1. Keerthy A S, Manju Priya S, 2016, Comparative analysis of Data

Compression and Pattern Matching Techniques for Biological Big

Data. International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), 5(1).

2. Rivals, E., Dauchet, M., Delahaye, J.P. and Delgrange, O., 1996.

Compression and genetic sequence analysis. Biochimie, 78(5),

pp.315-322.

3. Chen, X., Kwong, S. and Li, M., 1999. A compression algorithm for

DNA sequences and its applications in genome comparison. Genome

informatics, 10, pp.51-61.

4. Lin, M.B., Lee, J.F. and Jan, G.E., 2006. A lossless data compression

and decompression algorithm and its hardware architecture. IEEE

TRANSACTIONS on very large scale integration (vlsi) systems,

14(9), pp.925-936.

5. Korodi, G., Rissanen, J. and Astola, J., 2007. DNA sequence

compression-Based on the normalized maximum likelihood model.

IEEE Signal Processing Magazine, 24(1), pp.47-53.

6. Singh, P. and Duhan, M., 2006, September. Enhancing LZW

Algorithm to Increase Overall Performance. In 2006 Annual IEEE

India Conference (pp. 1-4). IEEE.

7. Cao, M.D., Dix, T.I., Allison, L. and Mears, C., 2007, March. A

simple statistical algorithm for biological sequence compression. In

2007 Data Compression Conference (DCC'07) (pp. 43-52). IEEE.

8. Do Kim, H. and Kim, J.H., 2009. DNA data compression based on

the whole genome sequence. Journal of Convergence Information

Technology, 4(3), pp.82-85.

9. Heath, L.S., Hou, A.P., Xia, H. and Zhang, L., 2010, August. A

genome compression algorithm supporting manipulation. In Proc

LSS Comput Syst Bioinform Conf (Vol. 9, pp. 38-49).

10. Rajarajeswari, P. and Apparao, A., 2011. DNABIT

compress–genome compression algorithm. Bioinformation, 5(8),

p.350.

11. Nishad, P.M. and Chezian, R.M., 2012. A vital approach to compress

the size of DNA sequence using LZW (Lempel-Ziv-Welch) with

fixed length binary code and tree structure. International Journal of

Computer Applications, 43(1), pp.7-9.

12. Nishad, P. M. and R. Manicka Chezhian, 2012, Optimization of LZW

(Lempel-Ziv-Welch) Algorithm to Reduce Time Complexity for

Dictionary Creation in Encoding and Decoding, AJCSIT, 114-118.

13. Nishad, P. M., and Manicka Chezian R., 2012, Enhanced lzw

(lempel-ziv-welch) algorithm by binary search with multiple

dictionary to reduce time complexity for dictionary creation in

encoding and decoding, IJARCSSE 2.3,192 -198.

14. Kuruppu, S., Beresford-Smith, B., Conway, T. and Zobel, J., 2012.

Iterative dictionary construction for compression of large DNA data

sets. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 9(1), pp.137-149.

15. Hach, F., Numanagić, I., Alkan, C. and Sahinalp, S.C., 2012.

SCALCE: boosting sequence compression algorithms using locally

consistent encoding. Bioinformatics, 28(23), pp.3051-3057.

16. Giancarlo, R., Rombo, S.E. and Utro, F., 2013. Compressive

biological sequence analysis and archival in the era of

high-throughput sequencing technologies. Briefings in

bioinformatics, 15(3), pp.390-406.

17. Deorowicz, S. and Grabowski, S., 2013. Data compression for

sequencing data. Algorithms for Molecular Biology, 8(1), p.25.

18. Zhu, Z., Zhang, Y., Ji, Z., He, S. and Yang, X., 2013.

High-throughput DNA sequence data compression. Briefings in

bioinformatics, 16(1), pp.1-15.

19. Wandelt, S., Bux, M. and Leser, U., 2014. Trends in genome

compression. Current Bioinformatics, 9(3), pp.315-326.

20. Pratas, D. and Pinho, A.J., 2014, September. Exploring deep Markov

models in genomic data compression using sequence pre-analysis. In

2014 22nd European Signal Processing Conference (EUSIPCO) (pp.

2395-2399). IEEE.

21. Pratas, D., Pinho, A.J. and Ferreira, P.J., 2016, March. Efficient

compression of genomic sequences. In 2016 Data Compression

Conference (DCC) (pp. 231-240). IEEE.

22. Saha, S. and Rajasekaran, S., 2015. ERGC: an efficient referential

genome compression algorithm. Bioinformatics, 31(21),

pp.3468-3475.

23. Patro, R. and Kingsford, C., 2015. Data-dependent bucketing

improves reference-free compression of sequencing reads.

Bioinformatics, 31(17), pp.2770-2777.

24. Ziv, J., and Lempel A., 1977, "A universal algorithm for sequential

data compression, IEEE Trans. Inf. Theory, 23.3, 337-343.

25. Keerthy, A. S., and S. Manju Priya, 2017, Lempel-Ziv-Welch

Compression of DNA Sequence Data with Indexed Multiple

Dictionaries. IJAER, 12.16, 5610-5615

AUTHORS PROFILE

Keerthy A. S. is currently pursuing Ph D in Karpagam

Academy of Higher Education, Coimbatore, India,

under the guidance of Dr. S Manju Priya. She has

completed MPhil in Bioinformatics from Kerala

University and MCA from Calicut University. Her area

of interests include Data Mining, Graph Theory,

Artificial Intelligence, Bioinformatics and Machine

Learning. She has more than 8 years of teaching experience in post graduate

level. She has published 4 Scopus indexed papers and presented papers in

multiple conferences.She has also guided project students in post graduate

level.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

547

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP

DOI: 10.35940/ijeat.B3278.129219

 Dr. S. Manju Priya is working as a Professor in Dept

of CS, CA & IT, Karpagam Academy of Higher

Education, Coimbatore, India for the past 15 years. She

has completed Ph D in 2014 in Karpagam Academy of

Higher Education. She has attended various conferences

and has published 42 papers in various National and

International Journals. She has published on book on

wireless sensor network. Under her guidance she has

produced 5 Ph D scholars and 4 M Phil scholars. Currently 6 scholars are

under her guidance. She is one of the associate Editor in Karpagam Journal

of Computer Science. Her research areas are like Sensor Network, IOT,

Data mining and Big Data Analytics.

