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Abstract: With the advancement in technology and 

development of High Throughput System (HTS), the amount of 

genomic data generated per day per laboratory across the globe is 

surpassing the Moore’s law. The huge amount of data generated 

is of concern to the biologists with respect to their storage as well 

as transmission across different locations for further analysis. 

Compression of the genomic data is the wise option to overcome 

the problems arising from the data deluge. This paper discusses 

various algorithms that exists for compression of genomic data as 

well as a few general purpose algorithms and proposes a 

LZW-based compression algorithm that uses indexed multiple 

dictionaries for compression. The proposed method exhibits an 

average compression ratio of 0.41 bits per base and an average 

compression time of 6.45 secs for a DNA sequence of an average 

size 105.9 KB. 

 
Keywords: Compression, lossless, LZW, DNA, Multiple 

Dictionary, Decompression.  

I. INTRODUCTION 

The past two decades have witnessed huge data evolution in 

many areas of science. Among them the most widely 

discussed is the discovery of sequencing genomic data. With 
the advent of technologies and HTS the data generation has 

become overwhelming challenging the scientists in the 

biological community to find ways of efficiently managing 

the sequences, especially for storing and transmitting it for 

further analysis. Data compression has been of interest to 

data scientists for a long time. Efficient algorithms for 

compression and decompression have been developed for 

textual, video and, image types of data. Since genomic 

sequence is composed of character set {A, C, G, T} 

corresponding to chemical compounds Adenine, Cytosine, 

Guanine and Thymine respectively and the data files are 

stored with text data, the text data compressions are the best 
suited for compression. Among the text compression 

techniques, lossy compression does not yield back the 

original data. The genomic data cannot afford a loss when 

decompressed as every character in the data file has equal 

importance and hence for compressing genomic data only 

lossless compression can be relied upon. The paper discusses 

different lossless compression techniques currently used for 

compressing text data as well as methods available for 

compressing genomic data. 
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The author [1] identifies dictionary method as the best suited 

for lossless compression of data and proposes a modified 

version of LZW with multiple dictionaries for efficient 

compression. Also, compression ratio achieved is compared 

with existing genomic and general purpose 1  compression 

algorithms. 

II. LITERATURE REVIEW 

The need for compressing genomic sequence data was 

identified and attempted from the 20th century where most 

attempts were made using text-based tools that already 

existed. In 1996, Rivals et al. [2] attempted to compress the 

genomic sequences by considering the regularities and 

approximate tandem repeats that appear in the DNA 

sequences. The author proposes an algorithm Cfact, a 

two-pass algorithm which locates repeated segments and 

measures their quantitative importance based on compression 

rate. They also propose a methodology to measure 

approximate tandem repeats which are of evolutionary 

importance to DNA sequences. GenCompress proposed by 

Xin Chen et al. is a one pass algorithm which looks for 

complemented palindromes in DNA sequences.  When Cfact 

looks for global matches, GenCompress[3] searches for the 

best approximate match within the text under analysis. It also 

identifies regularities in the genomic sequences such as 

crossover and mutation. The authors claim that 

GenCompress performs better than Cfact. A combination of 

parallel dictionary and adaptive Huffman algorithm is 

proposed by Lin, Lee and Jan[4] for compressing text data. 

The usage of multiple dictionaries of variable length for 

compression and decompression is explained with a sample 

sequence. The fixed length codewords are converted to 

variable length codewords based on approximated AH 

algorithm. Variant approaches to AH (Adaptive Huffman) 

algorithm are discussed and their performance is evaluated. 

The output from Huffman tree is represented as canonical 

Huffman code. The authors bring out the advantage of having 

better compression with parallel dictionaries instead of a 

single dictionary for text data. NML (Normalized Maximum 

Likelihood) based model for DNA sequences is detailed and 

tested for genomic as well as non-genomic data sets by  

Korodi et al. [5]. The compression splits the DNA sequence 

into non-overlapping sequences and assigns a search 

dictionary for each of the blocks with subsequences collected 

from previous data and also complemented palindromes.  
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The results, when compared with bzip2, a general purpose 

encoder, showed sufficient advantage in compression. The  

authors further claim a compression ratio of 1.66 bits per 

symbol. The major drawback of LZW (Lempel Ziv Welch) 

based data compression is the size of the dictionary generated 

and that it gets filled up quickly while compressing. 

Parvinder et al.[6] propose a substitution of short sequence by 

long sequences as the dictionary gets filled up. An alternative 

suggestion is to use two dictionaries – a primary dictionary 

and a secondary dictionary. The primary dictionary will 

maintain frequently used entries. When it gets filled up, the 

entries would be moved to the secondary dictionary so that 

there will be more space in the primary dictionary to add new 

code words. XM (eXpert Model)[7] is a statistical 

methodology for compressing biological sequences such as 

genomic sequences and protein sequences. The method 

consists of using statistical properties and repetition within 

sequences for compression. The compressor calculates the 

probability of each symbol based on the observations from 

previous occurrences of the symbol, identifies the probability 

distribution of the symbol and compresses it using a general 

purpose method like arithmetic coding. A comparative 

analysis of different compression algorithms is presented, 

where XM claims to have an average compression rate of 

1.69 bits per symbol. DNAEncodeWG[8] (DNA Encode for 

Whole Genome) is a reference-based compression method 

for Whole Genome sequences. The method identifies the 

presence of query sequence in the whole genome sequence 

and records the properties of the region and the differences 

identified between reference sequence and query sequence. 

The method claims to have an average compression of 0.19 

bits per symbol. Heath et al. [9] proposes a four-stage 

algorithm for compression of genomic sequences, which also 

provides random accession of subsequences. The first step in 

the four-step compression strategy is preprocessing the target 

sequences, where the sequences are grouped based on 

segments or chromosomes, and then multiple sequence 

alignment is performed with the reference genome. In the 

second stage the difference between the target and reference 

sequences is identified. In the third step the differences are 

compressed with Huffman coding. In the last step the 

differences are used to identify mutations in the target 

genome. The authors claim a compression ratio of 0.98 for 

mitochondrial sequences. DNABIT[10] compress uses two 

phases of compression. In the first phase all single bases in 

non-repetitive regions are assigned two bit codes. In the 

second phase based on the number of bases repeated in each 

region, four different coding methods are used, namely 3 bit, 

5 bit, 7 bit and 9 bit. For two or three similar bases 3 bit 

coding is used, for three to eight repeats of same base 5 bit 

coding is used, for two base repeat upto 8 times 7 bit coding is 

used, and if the consecutive 4 bases are the same in the 

subsequence under consideration, 9 bit coding is used. The 

authors conclude on an average compression ratio of 1.53 bits 

per symbol.  Nishad and Chezian[11] proposes a two-stage 

dictionary-based compression technique for DNA sequence 

compression. In the first stage, a fragment of four characters 

is fetched from the sequence and converted to corresponding 

binary sequence. For conversion to binary sequence, each 

character is mapped to binary code as follows: A= 00, C= 01, 

G= 10 and T = 11. The binary string generated is added to the 

dictionary. In the second phase, a binary tree is constructed 

for the dictionary, where a child node is designed as a path 

taken from a parent node. New binary codes are generated for 

members of dictionary. Corresponding to each fragment in 

the sequence the new binary code is written to the output file. 

In their subsequent works, [12, 13], Nishad and Chezian, 

introduced compression based on dictionary. They described 

an implementation of LZW with binary searching that 

reduced the time complexity for searching a string later and 

also proposed to use multiple dictionaries in the place of 

single dictionary which would reduce the search complexity. 

The methodology is proposed for general purpose 

compression. The implementation is tested with genomic 

data as well. The decompression is also performed using 

multiple dictionaries and the authors claim a 94% 

compression for text data. 

COMRAD[14] works iteratively to compress a set of DNA 

sequences using the length of substring and a minimum 

frequency threshold as parameters for first iteration. In each 

subsequent iteration, a frequency dictionary is created and 

substitutions are done. In the first iteration, frequency 

dictionary creation step calculates the frequency of each 

substring of pre-specified length. In the first substitution step, 

the substrings that are repeated most frequently are replaced 

by symbols. The result from first iteration would be a mix of 

nucleotides and symbols used in the substitution. In the 

subsequent iterations, these steps are repeated with frequency 

dictionary generation and substitution. The iterations 

terminate when no further substitution is possible. From the 

final frequency dictionary, all those substitutions with 

frequency of less than a threshold value are eliminated by 

replacing the substitution with the original string in the 

sequence. The frequency dictionary generated and the 

substitution strings are encoded using Huffman coding as a 

final step. The compression cost of the method depends on 

the number of iterations performed. The decompression 

works in the reverse order, the first step being Huffman 

decoding and the second step COMRAD decoding. 

COMRAD permits random access across the sequence that is 

compressed. Though it assures pretty good compression, the 

algorithm is memory intensive. SCALCE (Sequence 

Compression Algorithm using Locally Consistent 

Encoding)[15] is a boosting method that works based on local 

parsing method that rearranges the reads to improve 

compression rate and speed with or without a reference 

sequence. SCALCE is combined with Arithmetic coding for 

compressing quality scores and gzip to achieve considerable 

compression on read names resulting in a good compression 

rate and improved running time.  

Giancarlo, Rombo and Utro[16] have listed various methods 

of compression used widely based on research areas as 

collection of  sequences, collection of HTS (High 

Throughput Sequence) reads and compressive sequence 

analysis. The compression techniques are compared based on 

the type of compression, the method of compression and 

availability of random access. 

 Huffman coding and arithmetic coding are identified as 

statistical methods of 

compression.  Lempel-Ziv 

data compression is a 

dictionary-based one, which 
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is used along with Huffman coding by COMRAD. For an 

analysis of relative compression, the authors compare GRS, 

GReEN and many other techniques that use reference 

sequence for accomplishing compression. The growth of raw 

sequence data over the years has been analyzed by 

Deorowicz and Grabowski [17], along with the various 

methods of data compression techniques available for 

genomic data, comparing the existing general purpose 

methods of compression using genomic sequences. 

Reference-based compression using FASTQ files and SAM 

files is performed. As data deluge is becoming a fact in the 

biological scientific community, the authors discuss the need 

for compression techniques. They look into the available 

compression methods and their suitability with respect to 

genomic sequence data. They also discuss different file 

formats for data storage. 

Zhu et al.[18] selected a set of genomes from different 

species with respect to origin, length and repeat content. The 

performance evaluation of various compression techniques, 

both reference-based and reference-free, was performed 

based on compression ratio, memory usage and compression 

and decompression time. The author suggests CRAML, 

which is a lossy compression method to give the best 

compression ratio and the best compression and 

decompression time and memory. The authors also point out 

that high throughput sequencing has made personalized 

genomic sequencing affordable, and that encryption 

techniques must be deployed to protect the privacy of 

personalized data. 

Wandelt et al.[19] discuss the key methods of genomic data 

compression. Naïve bit manipulation replaces every base by a 

two bit code. Dictionary-based method adds the entry of a 

codeword to dictionary when encountered. These 

book-keeping details are further used for the decompressing 

purpose. Since high amounts of repetition of bases are the 

prominent features of genomic data, statistical methods are 

also employed in compressing genomic information. 

Huffman coding or arithmetic encoder works based on the 

principle of statistical algorithms. Referential algorithms are 

used only when there is a standard sequence that can be kept 

as reference for compressing similar genomes. The authors 

discuss the usage of each of these techniques in whole 

genome compression as well as read compression. The lack 

of benchmark datasets as well as metrics for comparing 

performance of different methods has been pointed out. They 

suggest rate of compression, time taken for compression and 

decompression and memory usage while compressing and 

decompressing as metrics of performance analysis. 

Pratas and Pinho[20] propose an asymmetric compressor for 

genomic data sequences which parallelize the tasks using two 

FCMs. The sequences are preprocessed by calculating 

probability estimates using symbol counts. The 

preprocessing helps in identifying low complexity areas in 

the sequence. Two finite context models (FCMs) of high and 

low order are run parallel to compete with each other. The 

outputs from each of the FCMs are stored and processed 

separately. The higher order FCM is used to compress 

regions with low information content. The higher order FCM 

also considers the possible inverted repeats (IRs). The high 

FCM consists of a regular chain and an IR chain. The authors 

point out that preprocessing can substantially improve the 

memory usage, especially while decompressing. 

Parallelization assures faster compression. GeCo (Genomic 

Compression)[21], a statistical method for genomic data 

compression, uses FCM based on Markov models. Patras, 

Pinho and Ferreira extend the FCMs as XFCM, where the 

probability estimate varies as the conditioning context is 

different. They use the most probable symbol as the 

conditioning context. A pseudo-random synthetic sequence is 

generated and used as reference sequence. It is mutated with a 

predefined substitution rate and genomic sequence with 

several degrees of mutation generated. These resulting 

sequences are compressed using the synthetic reference 

sequence generated. A cache-has memory approach, which 

keeps only the last hashed entries in memory, is used so that 

memory usage is further reduced.  

ERGC (Efficient Referential Genome Compression) [22] 

algorithm works by keeping a sequence as referential 

sequence and the sequence to be compressed as target 

sequence. The algorithm works by splitting the reference 

sequence and target sequence into equal-sized strings. A 

greedy algorithm generates k-mers one at a time, and hashes 

it to a hash table. If no match is found, k-mer is extended by 

one, otherwise it aligns the reference sequence and target 

sequence and extends the alignment until there is a mismatch. 

The mutations and insertions in reference and target sequence 

are also taken care of. 

Though general purpose compression techniques like gzip 

can compress and assist in efficient storage and transmission 

of genomic data, they do not take into advantage the general 

features of genome sequence such as tandem repeats, 

microsatellites, etc., whose presence increases the possibility 

of compression even better. Hence, the scientific world is 

interested in identifying special purpose software that are 

tailored for genomic data compression. Mince’s 

algorithm[23] works by grouping similar sequences. The 

compression is carried out in multiple phases. In the local 

bucketing phase, Mince places similar reads into a bucket. 

All k-mers of a read of length r are checked to see if any of 

the k-mer or its reverse complement has a label matching the 

existing ones. If none matches a new bucket is created. If it 

matches, the read of length ‘r’ is assigned to that bucket using 

an encoding transformation. Comparison with the existing 

methods assures a better compression ratio. The k-mer 

redundancy check exploits the possible sequence similarity 

between the reads, and the read order is chosen randomly 

while compressing.  

The literature review extensively studies various 

methodologies used in compressing genomic sequence data. 

It is evident from a comparative analysis of the existing 

general purpose methods that they do not efficiently 

compress genomic data. Statistical methodologies reap the 

advantages of high degree of repetition of bases in the data, 

but they are mostly memory intensive. Reference-based 

methods claim to produce maximum compression, but it is 

possible only if a valid reference sequence is available.  

Dictionary-based methods are fast and prompt in 

compression as well as decompression, but size and 

maintenance of dictionary are drawbacks. Parallel 

dictionaries claim to ease the 

time complexity in 

compression procedure with 
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reduced number of shifts and comparisons. Also, the 

methodologies discussed are experimented in different 

datasets due to lack of benchmark dataset. A quantitative 

comparison of different methods is restricted to a few 

sequences that overlap different methodologies.  

III. METHODS AND METHODOLOGY 

An analysis of different compression techniques brings out 

the pros and cons of the various techniques used. Most of the 

methods described for compression are laid down for 

compressing text data. Of the methods discussed for text data 

compression usage of multiple dictionary in compression 

claims to be of less overhead and lossless. Since lossless 

compression is unquestionable LZW is the best option for 

compression. The LZW with single dictionary [24] is laid 

down for compressing text data. Since the character set is 

smaller for genomic data, the basic algorithm is modified to 

suit the character set. Also, for faster search and retrieval of 

data, multiple dictionaries[25] are used in compression and 
decompression, which facilitate faster and efficient storage 

and transmission of genomic data. 

A. Compression 

Each character read from the input file is concatenated with 
the previous char or subsequence; its presence is verified in 

the corresponding dictionary. If the string is present in the 

dictionary DL where L is the length of the previous substring 

and the character read from the input file, the subsequence is 

extended by reading in the next character from the file. 

Otherwise, a new entry corresponding to the subsequence is 

made in the dictionary DL with the index calculated using the 

subsequence. The procedure is laid down in following steps: 

1. Set dictionary D1 with initial character set A, G, C and T 

and assign to them CODE 1, 2, 3 and 4 respectively. 

2. Read first character from input file to STRING 

3. Initialize M:= 2, CODE := 5 

4. Repeat the following steps till end of file 

5. Assign CHAR := Next character from input file 

6. Assign  

L:= Lengthof(STRING+CHAR) 

7. Assign 

INDEX:=CALCULATE_INDEX(STRING+CHAR, M) 

8. Search for INDEX in Lth dictionary 

a. If INDEX found 

AssignFLAG:= Search(STRING+CHAR, L) 

b. OTHERWISE 

i. Create INDEX in Lth dictionary 

9. If FLAG is TRUE  

a. STRING := STRING+CHAR 

10. ELSE 

a. Write CODE to output file 

b. Add CODE. STRING+CHAR to Lth dictionary 

c. CODE:= CODE+1 

d. STRING:=CHAR  

11. Repeat from step 5 

12. STOP 

13. Function CALCULATE_INDEX(X,M) 

Return(                             
   ) 

The codes are written in the output file as ascii characters 

corresponding to their values. This eliminates the possibility 

of wrongly reading the codes while decompressing. 

B. Decompression 

The decompression starts by reading in codes from the 

compressed file. An initial dictionary D1 is created with 

character set A, G, C, T assigned with codes 1, 2, 3, 4 

respectively. For each code read from the compressed file, if 

it is updated in the dictionary, write the corresponding 

character or subsequence to the output file. Otherwise assign 

the previous subsequence value to the dictionary and update 

the code value.  

1. Set dictionary D1 with initial character set A, G, C and T 

and assign to them CODE 1, 2, 3and 4 respectively. 

2. Initialize M: = 2, CODE:= 4, L: = 1 

3. Assign OCODE:= Character(First character read from 

compressed file) 

4. Write OCODE to output file. 

5. Repeat the steps till end of file 

a. Assign NCODE := Next character from input file 

b. Assign FLAG:= Search Dictionary(L, NCODE) 

i. If FLAG is FALSE 

Assign STRING:= OCODE + CHAR 

ii. ELSE 

1. Assign STRING := NCODE 

2. L=L+1 

3. Write STRING to output file 

c. Assign CHAR=STRING[1] 

d. CODE = CODE+1 

e. Assign L = Lengthof(OCODE+CHAR) 

f. Update Lth dictionary with CODE,  

OCODE+CHAR 

g. OCODE = NCODE 

6. STOP 

14. Function CALCULATE_INDEX(X,M) 

Return (                             
   ) 

IV. RESULTS AND DISCUSSION 

The proposed algorithm is implemented on Intel® Core™ i7 

(2.40GHz 8GB RAM) running on Windows 10 with Python 

3.6. The experimental analysis was carried out on Nvidia 

GeForce GTX 1060 GPU (Intel Core i7, 32GB RAM). A set 

of standard DNA sequences that were tested with other 

compressing algorithms were compressed and compared with 

available compression ratio of WinZip and CTW, which are 

general purpose compression algorithms, and CTW+LZ, 

BIOCOMPRESS, GENCOMPRESS, DNACOMPRESS, 

XM and DNAEncodeWG which are genomic compression 

algorithms. The test data includes five human gene sequences 

(HUMDYSTROP, HUMGHCSA, HUMHBB, 
HUMHDABCD AND HUMHPRTB) that are commonly 

used in most of DNA compression publications. Along with 

these MOUSE CHROMOSOME2 and BAKER’s YEAST 

CHROMOSOME 2 were also compressed, for which 

comparative values for other algorithms were unavailable. 

The compressions were compared using compression ratio 

calculated as number of bits/base. Table 1 gives the 

comparison of sequence size before and after compression, 

and the time taken for compression. 
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Table 1: Comparing sequence size before and after compression using multiple dictionaries based on LZW 

Name of Sequence 

Uncompressed size (in 

KB) 

Compressed Size(in 

KB) Compression Ratio Exec time (in sec) 

MOUSECHR2 218.1 86 0.394314535 6.342 

BAKERSYEASTCHR1 231 94 0.406926407 6.898 

HUMDYSTROP 38.77 16 0.412690224 6.283 

HUMGHCSA 64.495 24 0.37212187 6.139 

HUMHBB 73.323 31 0.422786847 6.408 

HUMHDABCD 58.864 25 0.424707801 7.15 

HUMHRPTB 56.737 24 0.423004389 5.917 

Average 105.9 42.86 0.41 6.45 

The compression time (in secs) for seven sequences are presented graphically as follows: 

Figure 1: Graph presenting compression time (in secs) for the seven sequences compressed 

A. Comparing the proposed implementation (MDLZW) with the existing algorithms: 

Table 2: Compression ratios given by different general purpose and genomic compression algorithms for compressing 

five human genes. 

DNA 

SEQUENCE 

Win

Zip 

BIO 

COMPRESS 

GEN 

COMPRESS 

Normal 

CTW 

CTW

+ 

LZ 

DNA 

COMPRESS 
XM 

DNA  

Encode  

WG 

MDLZW 

HUMDYSTROP 2.38 1.9262 1.9231 1.92 1.9175 1.9116 1.9031 0.1729 0.4069 

HUMGHCSA 2.34 1.3074 1.0969 1.3638 1.0972 1.0272 0.9828 0.2732 0.4127 

HUMHBB 2.33 1.88 1.8204 1.8928 1.8082 1.7897 1.7513 0.2744 0.3721 

HUMHDABCD 2.29 1.877 1.8192 1.8973 1.8218 1.7951 1.6671 0.1422 0.4247 

HUMHRPTB 2.32 1.9066 1.8466 1.9132 1.8433 1.8165 1.7361 0.1111 0.423 

 

 
Figure 22: Comparing compression ratio (bits per base) obtained by different algorithms on five human genes 
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The comparative analysis of compression ratio by different 

algorithms is presented in the Figure 2. The compression 

rates in Figure 2 are obtained from existing literature[8] 

except the last column, which gives the experimental results 

in the proposed method. The general purpose compression 

algorithms give the highest compression ratio. The best 

compression among the compared algorithms is given by 

DNAEncodeWG with an average compression ratio of 

0.1948 bits per base, which is a reference-based algorithm. A 

reference-based algorithm works well only if a valid 

reference is available. Hence, it cannot be considered as a 

convincing method for compressing sequences resulting from 

experiments. Hence, the proposed algorithm gives a better 

compression ratio than other compression algorithms 

discussed and compared. Also, it is evident that general 

purpose algorithms are not suitable for compressing the 

genomic sequences as they do not take in to account the high 

amount of repetitiveness in the sequence data. 

V. CONCLUSION 

The paper presents an efficient compression algorithm based 

on LZW with the modification of using multiple dictionaries. 

LZW has been proven as the best among the compression 

algorithms for lossless compression. For compressing DNA 

sequence data, lossless compression is mandatory and hence 

LZW is the basic methodology chosen. The main drawback 

of LZW is the dictionary size as well as time consumption in 

searching the dictionary. This is overcome by using multiple 

dictionaries that are indexed. Also, the dictionaries are 

created dynamically during compression as well as 

decompression, and the dictionary is not stored for later use. 

Hence, memory overhead of dictionary storage is overcome. 

Only the compressed file is stored and transmitted. The 

proposed method MDLZW for Genomic Sequence data has 

an average compression rate of 0.41bits per base, which is the 

best among the compression rates compared. The 

decompression algorithm performs a lossless decompression 

in comparable time.  
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