
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345387390

Simplified Model to Represent the Installation Process of Subsea Equipments

Conference Paper · October 2020

DOI: 10.17648/sobena-2020-122990

CITATIONS

0
READS

24

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Advanced analysis of vortex induced vibration in Subsea Jumpers View project

Investigation the effects of waves on Ship's structure considering the Hydroelasticity effects View project

Emerson Andrade

Federal University of Rio de Janeiro

5 PUBLICATIONS   1 CITATION   

SEE PROFILE

Antonio Carlos Fernandes

Federal University of Rio de Janeiro

174 PUBLICATIONS   1,128 CITATIONS   

SEE PROFILE

Joel Sales Junior

Federal University of Rio de Janeiro

27 PUBLICATIONS   45 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Emerson Andrade on 24 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/345387390_Simplified_Model_to_Represent_the_Installation_Process_of_Subsea_Equipments?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345387390_Simplified_Model_to_Represent_the_Installation_Process_of_Subsea_Equipments?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Advanced-analysis-of-vortex-induced-vibration-in-Subsea-Jumpers?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Investigation-the-effects-of-waves-on-Ships-structure-considering-the-Hydroelasticity-effects?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emerson-Andrade-3?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emerson-Andrade-3?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Rio-de-Janeiro2?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emerson-Andrade-3?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Fernandes-12?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Fernandes-12?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Rio-de-Janeiro2?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Fernandes-12?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joel-Sales-Junior?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joel-Sales-Junior?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Rio-de-Janeiro2?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joel-Sales-Junior?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emerson-Andrade-3?enrichId=rgreq-5e0b1181bc3d39287b1ef6dd6a8b0486-XXX&enrichSource=Y292ZXJQYWdlOzM0NTM4NzM5MDtBUzo5NjE0MzMzNzQyOTgxMjZAMTYwNjIzNDk4NzQ1Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1 

 

28º Congresso Internacional de Transporte Aquaviário, 

Construção Naval e Offshore 

Rio de Janeiro/RJ, 19-21 de outubro de 2020 

Simplified Model to Represent the Installation Process of Subsea 

Equipments 
 

Filipe Salvador Lopes, UFRJ/COPPE, Rio de Janeiro/Brasil, filipe_salvador@oceanica.ufrj.br 

Antonio Carlos Fernandes, UFRJ/COPPE, Rio de Janeiro/Brasil, acfernandes@oceanica.ufrj.br 

Emerson Martins de Andrade, UFRJ/COPPE, Rio de Janeiro/Brasil, mrsonandrade@oceanica.ufrj.br 

Joel Sena Sales Junior, UFRJ/COPPE, Rio de Janeiro/Brasil, joel@oceanica.ufrj.br 

Rodrigo Klim Gomes, UFRJ/COPPE, Rio de Janeiro/Brasil, rklim@oceanica.ufrj.br 

 

 

Abstract 

During the installation of a subsea module it is extremely important to guarantee that the 

structure will not be damaged, as this would imply in elevated costs and hazards to the 

environment. In order to minimize these risks, the installation process can be simulated inside 

software that use numerical modeling by considering different environmental conditions, so that a 

safer procedure with more adequate operational window can be achieved. However, these 

software can be very expensive, and this kind of simulations usually takes a long time, making it 

very convenient when one has access to a simplified model, capable of simulating different 

conditions in a short period of time, while still providing reliable results. This paper presents a 

simplified model developed in Python programming language, which uses a fourth-order Runge-

Kutta method to solve the equation of motions that governs a vertical installation process. The 

installation ship’s motions were applied to the top of the cable, simulating its connection to a crane 

aboard, and then the motions of the suspended equipment and the cable tension could be 

calculated. The results obtained through the use of this simplified model were then compared to 

the ones obtained through the use of a much more complex model using the OrcaFlex® software 

and to experimental data. 

1. Introduction 
An equipment such as an offshore manifold is a 

very expensive module, composed by a set of 

valves and accessories, which is responsible for 

directing the production of different oil wells to a 

pipeline that conducts all the production to the 

Production Unit. This equipment is also responsible 

for distributing water and gas injection from the 

Production Unit to the wells.  

Its installation process must be very well planned 

in order to avoid any damage to the structure, as 

this would imply in elevated costs.  There are 

different ways to install it, as examples, the pencil 

buoy method (Mork & Lunde, 2007) or the 

pendular method (Roveri et al., 2005) for ultra-

deep waters. This work focuses in an installation 

process in which the manifold is installed vertically 

from a ship by a crane. Regardless of the chosen 

method, simulating the installation process usually 

requires the use of complex and expensive 

software, resulting in simulations that take a long 

time to be completed. 

Moreover, at the stage of definition of the 

installation procedure, one may find that the safe 

operational window is too tight for the chosen 

procedure (Roveri et al., 2005). 

mailto:filipe_salvador@oceanica.ufrj.br
mailto:acfernandes@oceanica.ufrj.br
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This kind of issue could be avoided or diminished if 

one considered installation characteristics during a 

sooner stage of the design of the equipment, so 

that some of the mechanical and hydrodynamic 

variables could still be tunable in order to improve 

installation characteristics. Having this in mind, a 

tool that allowed fast and precise simulations 

could be used on design stage to help on the 

screening of parameters such as added mass, 

damping and cable stiffness, so that safety 

operation windows could be enlarged. 

So, this work aimed to develop a simplified, but 

still reliable, model to simulate the dynamics of the 

installation under different environmental 

conditions. 

The simplified model was developed on Python 

programming language, and uses a fourth order 

Runge-Kutta method to solve the equation of 

motions that governs the installation process. The 

results obtained by the simplified model are then 

compared to results obtained by a complete model 

constructed on OrcaFlex software and also to 

experimental data obtained on model tests 

(Andrade et al., 2020). The following sections show 

the theoretical background of the model and the 

comparison results obtained so far. 

2. Physical Background 

2.1. Equation of Motions 
The first step to make the simplified model is to 

understand the physics behind the problem. It is 

being considered that there is no excitation force 

being applied directly to the manifold. Instead, 

there are waves exciting the ship responsible for 

the installation process. For the sake of simplicity, 

it was considered that the ship’s motions are the 

same of the crane. There is a cable connected to 

the manifold and to the crane, which will act as a 

spring whenever it is stretched. Therefore, this 

problem can be modeled as a mass-spring-damper 

system in which the manifold and its added mass 

represent the mass, the cable is the spring and the 

damping is due to the viscous and drag effects of 

the interaction between the equipment and the 

water. The waves can be represented as causing a 

harmonic movement on the base of the system, 

which is the top of the cable, connected to the 

crane. The problem can be modeled as shown in 

Figure 1. 

 
Figure 1 – Free Body Diagram of the problem 

 

It is important to notice that the weight does not 

appear in the free body diagram because it is 

considered that the problem starts in a static 

equilibrium position, in which the cable is already 

stretched, resulting in an initial elastic force with 

the same intensity and direction, but opposite 

sense, of the weight. Applying Newton’s second 

law and rearranging the terms, it is possible to 

obtain Equation 1, as presented by Rao (2009). 

 

 𝑚�̈� + 𝑐(�̇� − �̇�𝑏) + 𝑘(𝑧 − 𝑧𝑏) = 0 (1) 
 

Where 𝑚 is the mass, 𝑐 is the damping coefficient 

and 𝑘 is the spring stiffness. The velocity �̇� is 

represented as the first derivative of the position 

𝑧, and the acceleration �̈� as the second derivative 

of the position 𝑧. The index 𝑏 represents the 

baseline motions. 

2.2. Hydrodynamic Forces 
Equation 1 is a good way to represent the problem, 

however, this work focuses on simulating 

conditions in which the manifold is underwater. 

Therefore, there will be hydrodynamic forces that 

must be considered in order to properly represent 

the installation process. These forces will be 

represented through the use of Morison’s 

equation, as presented by Journée and Massie 

(2001), which is a combination of an inertial term 

and a drag term. 

 

 𝐹(𝑡) =  𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑡) + 𝐹𝐷𝑟𝑎𝑔(𝑡) (2) 

 𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎(𝑡) = 𝜌𝐶𝑎𝑉𝑃 �̈�(𝑡) (3) 
 

𝐹𝐷𝑟𝑎𝑔(𝑡) =
1

2
𝜌𝐶𝑑𝐴𝑃|�̇�(𝑡)|�̇�(𝑡) 

(4) 

   
Where 𝜌 is the density of water, 𝐶𝑎 is the added 

mass coefficient, 𝑉𝑃  is the prismatic volume of the 

manifold, 𝐶𝑑 is the drag coefficient and 𝐴𝑃 is the 

projected area. Applying Equations 3 and 4 in 

Equation 1, it is possible to obtain the following 

equation. 
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 (𝑚 + 𝜌𝐶𝑎𝑉𝑃)�̈�  
 

+
1

2
𝜌𝐶𝑑𝐴𝑃|�̇� − �̇�𝑏|(�̇� − �̇�𝑏) 

(5) 

 +𝑘(𝑧 − 𝑧𝑏) = 0  
   
Equation 5 is the equation of motions of the 

manifold, in which the hydrodynamic forces of 

added mass and drag are considered due to the 

fact that the manifold is underwater. This is the 

equation that will be solved by the fourth order 

Runge-Kutta method, presented in the next 

section. 

3. Simplified Model 

3.1. Assumptions 
The fourth order Runge Kutta method is applied to 

Equation 5 in order to obtain the variation of the 

position and the velocity of the manifold for each 

time step. However, this is only possible if every 

other term of the equation is known. 

In order to precisely predict the motions on the top 

of the cable, connected to the crane, it would be 

necessary to have the ship’s Response Amplitude 

Operators (RAO). As this is usually not the case at 

very early design stages, the present model works 

only with frequency and amplitude ranges for the 

vertical motions on the cable top, due to the ship’s 

heave, as the heave motion’s amplitude varies with 

the wave frequency. Depending on the frequency, 

the motions can be amplified, lessened or even the 

same as the wave amplitude. The heave motion’s 

amplitude and frequency are then assumed to be 

equal to the wave amplitude and frequency, 

respectively. Therefore, the motions on the top of 

the cable are modeled as a sine function, and the 

velocity as its first time-derivative, as shown in 

Equations 6 and 7. 

 

 𝑧𝑏(𝑡) = 𝐴𝑤 sin(𝜔𝑡) (6) 
 �̇�𝑏(𝑡) = 𝜔𝐴𝑤 cos(𝜔𝑡) (7) 
   
In which 𝐴𝑤 is the wave amplitude (or heave 

amplitude) and 𝜔 is the wave frequency. A time 

ramp is applied to the motion, by considering the 

motion’s amplitude at the beginning of the 

simulation as 10% of the final amplitude and after 

each full cycle it increases by another 10%, until it 

reaches the same value of the wave amplitude, 

which is kept until the end of the simulation. A full 

cycle is considered to have the same length of time 

as the wave period. 

It is also assumed that the cable will work as a 

spring whenever it is stretched, i.e. whenever its 

instantaneous length is larger than its initial length. 

The cable axial stiffness is calculated as shown in 

Equation 8. 

 

 
𝑘 =

𝐸𝐴

𝐿
 

(8) 

   
In which 𝐸 is the elastic modulus, 𝐴 is the cross-

sectional area and 𝐿 is the cable’s length, which 

are all given data. As explained in Section 2.1, the 

manifold’s weight does not appear in the equation 

of motions because it is assumed that the 

simulation begins in a static equilibrium condition, 

in which the cable is already stretched to 

compensate the manifold’s underwater weight, as 

can be seen in Equation 9. 

 

 
∆𝐿 =

𝑚𝑔 − 𝜌∇𝑔

𝑘
 

(9) 

   
In which ∇ is the manifold’s real volume and 𝑔 is 

the gravity’s acceleration. It is the possible to 

recalculate the cable’s axial stiffness due to its new 

length, as shown in Equation 10.  

 

 
𝑘′ =

𝐸𝐴

(𝐿 + ∆𝐿)
 

(10) 

   
During the simulations, the cable length will vary 

due to the motions on the top of the cable and on 

the manifold. Therefore, its axial stiffness can be 

recalculated in each time step considering its 

instantaneous length at that given time. This 

correction is usually negligible, but it is calculated 

in order to ensure a better representation of the 

problem. 

As previously stated, the cable is assumed to work 

as a spring whenever it is stretched. However, 

when its instantaneous length is lesser than its 

initial length the cable will not work as a 

compressed spring, as it is assumed that its force 

will be equal to zero, as shown in Equation 22. It is 

also important to notice that the cable’s mass, 

added mass and drag were not considered in the 

model. 

3.2. Model 
With the assumptions presented in Section 3.1, it is 

then possible to apply the fourth order Runge-

Kutta method to solve Equation 5. As presented by 

Mariano (1998), it is necessary to calculate four 

coefficients in order to obtain the increment in 
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position and another four to calculate the 

increment in velocity. Rearranging Equation 5, 

considering that the acceleration is the first 

derivative of the velocity and applying the Runge-

Kutta method, the following equations are 

obtained. 

 

 𝑘1 = �̇�𝑑𝑡 (11) 
 

𝑙1 =
𝑑𝑡

(𝑚 + 𝜌𝐶𝑎𝑉𝑃)
(−

1

2
𝜌𝐶𝑑𝐴𝑃|�̇�

− �̇�𝑏|(�̇� − �̇�𝑏)

− 𝑘(𝑧 − 𝑧𝑏)) 

(12) 

 
𝑘2 = (�̇� +

𝑙1

2
) 𝑑𝑡 

(13) 

 

𝑙2 =
𝑑𝑡

(𝑚 + 𝜌𝐶𝑎𝑉𝑃)
(−

1

2
𝜌𝐶𝑑𝐴𝑃 |(�̇�

+
𝑙1

2
) − �̇�𝑏| ((�̇� +

𝑙1

2
)

− �̇�𝑏)

− 𝑘 ((𝑧 +
𝑘1

2
) − 𝑧𝑏)) 

(14) 

 
𝑘3 = (�̇� +

𝑙2

2
) 𝑑𝑡 

(15) 

 

𝑙3 =
𝑑𝑡

(𝑚 + 𝜌𝐶𝑎𝑉𝑃)
(−

1

2
𝜌𝐶𝑑𝐴𝑃 |(�̇�

+
𝑙2

2
) − �̇�𝑏| ((�̇� +

𝑙2

2
)

− �̇�𝑏)

− 𝑘 ((𝑧 +
𝑘2

2
) − 𝑧𝑏)) 

(16) 

 
𝑘4 = (�̇� +

𝑙3

2
) 𝑑𝑡 

(17) 

 

𝑙4 =
𝑑𝑡

(𝑚 + 𝜌𝐶𝑎𝑉𝑃)
(−

1

2
𝜌𝐶𝑑𝐴𝑃 |(�̇�

+
𝑙3

2
) − �̇�𝑏| ((�̇� +

𝑙3

2
)

− �̇�𝑏)

− 𝑘 ((𝑧 +
𝑘3

2
) − 𝑧𝑏)) 

(18) 

   
In which 𝑑𝑡 is the time step adopted for the 

simulation. After calculating the coefficients shown 

in Equations 11 through 18, it is then possible to 

calculate the position and velocity increment, as 

shown in Equations 19 and 20. 

 

 
𝑑𝑧 =

(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

6
 

(19) 

 
𝑑�̇� =

(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

6
 

(20) 

   
This process is repeated in each time step in order 

to obtain the new values of the manifold’s position 

and velocity. 

In the end of each cycle, the tension on the cable is 

calculated as shown in Equations 21 and 22. 

 

 𝑇 = 𝑘(𝐿(𝑡) − 𝐿𝑖) 𝑖𝑓 𝐿(𝑡) > 𝐿𝑖 (21) 
 𝑇 = 0 𝑖𝑓 𝐿(𝑡) < 𝐿𝑖 (22) 
   
In which 𝐿(𝑡) is the instantaneous length and 𝐿𝑖 is 

the initial length. Equation 22 will be used 

whenever 𝐿(𝑡) is larger than 𝐿𝑖 to avoid non-

physical negative tensions. 

4. Case Study 
In order to run the simulation, it is necessary to 

first possess the manifold’s characteristics. These 

are given or reference data, and may be also 

treated as screened data inside an optimization 

process. On this work, the hydrodynamic 

coefficients were obtained through experiments 

previously performed by Andrade et al. (2020). 

These characteristics are shown in Table 1. 
Table 1 – Manifold’s Characteristics 

Mass [Kg] 910903 

Length [m] 29.00 

Width [m] 17.80 

Height [m] 5.70 

Ca 2.2 

Cd 1.6 

Cable’s EA [N] 630000000 

Submerged Volume [m³] 150 

Every simulation run has a total length of 240 

seconds and the time step is 0.1 second. 

4.1. Test Matrix 
A total of six cases representing different 

combinations of environmental conditions and 

cable lengths were simulated using the simplified 

model. All of these six cases were previously 

simulated using the OrcaFlex software and were 

run as experiments at LOC, as presented by 

Andrade et al. (2020). The cases are shown in Table 

2. 
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Table 2 – Test Matrix 

Condition Amp [m] T [s] Depth [m] 

C1 1 6 100 
C2 1 12 100 

C3 1 8 200 

C4 1 12 200 

C5 1 8 460 

C6 1 12 460 

Where Amp is the motion’s amplitude on the top 

of the cable, T is the wave period and Depth is the 

distance between the manifold and the top of the 

cable, which is effectively the cable’s initial length. 

5. Verification and Validation 
After running all the analysis, the results are then 

compared to the ones shown by Andrade et al. 

(2020) in order to validate them. 

5.1. Verification 
The simplified model provides the position, 

velocity, and cable’s tension time series to the user 

after each case is run. An interval between 150 and 

200 seconds is chosen in order to calculate 

statistical parameters of the time series. This 

interval is chosen because the series are already in 

the steady state by this point of the simulation. 

The acceleration values are calculated as the first 

time-derivative of the velocity. The results are 

shown in Table 3. 

 

Table 3 – Simplified Model Results 

 C1 C2 C3 C4 C5 C6 

Mean Force [kN] 7762 7492 7264 7513 7378 7318 

σ Force [kN] 7697 2221 5740 4239 1340 2597 

Max Force [kN] 19556 11129 15641 13511 9321 11090 

Min Force [kN] 0 3813 0 1239 5524 3740 

Mean Acc [m/s²] 0.05 0.01 -0.01 0.01 0.00 -0.02 

σ Acc [m/s²] 1.04 0.29 0.77 0.56 0.18 0.35 

Max Acc [m/s²] 1.62 0.49 1.10 0.81 0.26 0.49 

Min Acc [m/s²] -1.31 -0.48 -1.03 -0.83 -0.26 -0.49 

 

5.2. Validation 
Andrade et al. (2020) presents three different 

results for each of these six cases. These results are 

obtained by different methods. The first method is 

a model developed using hydrodynamic 

derivatives, which is called the Maneuver Model by 

the authors. The second method is the internal 

native model of the OrcaFlex software. The third 

set of results was obtained through experiments 

performed at LOC. These comparisons are 

graphically shown in Figures 2 through 9. 

 

 

 

 

 

 

 

 

 

 
Figure 2 – Mean Force Results Comparison 
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Figure 3 – Standard Deviation Force Results Comparison 

 

 
Figure 4 – Maximum Force Results Comparison 

 

 
Figure 5 – Minimum Force Results Comparison 

 

 
Figure 6 – Mean Acceleration Results Comparison 

 
Figure 7 – Standard Deviation Acceleration Results 

Comparison 

 

 
Figure 8 – Maximum Acceleration Results Comparison 

 

 
Figure 9 – Minimum Acceleration Results Comparison 

 

Figure 2 shows that the Mean Force values 

obtained by the simplified model are very close to 

the ones obtained by the Maneuver Model and by 

the OrcaFlex native model. All these results are 

slightly higher than the ones obtained by 

experiments. 

The standard deviation values of the force on the 

cable by the simplified model are also very close to 

the reference values, as can be seen in Figure 3. 

Case 4 is the only one in which the values obtained 
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by the simplified model are noticeably higher than 

the results obtained through the other methods. 

The maximum force on the cable is an important 

result because it can indicate if the cable will break 

due to elevated tension values. Figure 4 indicates 

that the results obtained by the simplified model 

are closer to the experimental results than the 

numerical OrcaFlex results for most cases, the only 

exception being Case 4 again. 

Figure 5 shows that the minimum force results of 

the simplified model are also usually closer to the 

experimental results than the OrcaFlex results, 

Case 5 being the only exception this time. 

Considering the order of magnitude of the 

acceleration values, Figures 6 and 7 indicate that 

the mean acceleration and standard deviation are 

very similar for the three numerical procedures 

and for the experimental data. 

Figure 8 shows that the maximum acceleration 

values obtained by the simplified model are usually 

lower than the reference values. On the other side, 

Figure 9 indicates that the minimum acceleration 

values are usually higher when using the simplified 

model. However, these values are still very close to 

the reference values. 

6. Fast Fourier Transform Results 
In order to compare the frequencies of the results 

obtained by the simplified model with those 

obtained by Andrade et al. (2020), the Fast Fourier 

Transforms of the force and acceleration time 

series were calculated. These results are shown in 

Figures 10 to 15. 

 

 
Figure 10 – FFT Case 1 

 

 
Figure 11 – FFT Case 2 

 

 
Figure 12 – FFT Case 3 

 

 
Figure 13 – FFT Case 4 
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Figure 14 – FFT Case 5 

 
Figure 15 – FFT Case 6 

 

The components identified for the simplified 

model results are close to the numerical results 

obtained by Andrade et al. (2020) which are also 

similar to the experimental components, except for 

Case 2 (shown in Figure 11), in which the second 

frequency peak appears slightly displaced to the 

left. This may have occurred due to the 

assumptions adopted during the development of 

the simplified model. Another important point is 

that the main force and acceleration frequencies 

components are equal to the excitation frequency 

for each case. 

7. Conclusion 
Good adherence was found when comparing the 

results obtained by the use of the simplified model 

to those obtained by the native OrcaFlex Model, 

the Maneuver Model and experimental data. 

However, the simplified model still has limitations. 

A future implementation of more degrees of 

freedom in the model tends to result in lesser force 

values, because this implies that there is more 

energy dissipation. 

In addition, as presented by Faltinsen (1990), there 

is a possibility that the drag and added mass 

coefficients change according to the Keulegan-

Carpenter (KC) number, so they would not be 

constant values. These studies do not consider any 

geometry similar to the manifold’s geometry, so it 

is necessary to make further studies in order to 

determine that this effect also happens for this 

kind of geometry. If proven to be true, then it will 

be necessary to implement variable drag and 

added mass coefficients to the model in order to 

obtain better results. 
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