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Hybrid quantum registers, such as electron-nuclear spin systems, have emerged as promising hard-
ware for implementing quantum information and computing protocols in scalable systems. Neverthe-
less, the coherent control of such systems still faces challenges. Particularly, the lower gyromagnetic
ratios of the nuclear spins cause them to respond slowly to control fields, resulting in gate times
that are generally longer than the coherence time of the electron. Here, we demonstrate a scheme
for circumventing this problem by indirect control: We apply a small number of short pulses only
to the electron and let the full system undergo free evolution under the hyperfine coupling between
the pulses. Using this scheme, we realize robust quantum gates in an electron-nuclear spin system,
including a Hadamard gate on the nuclear spin and a controlled-NOT gate with the nuclear spin
as the target qubit. The durations of these gates are shorter than the electron coherence time, and
thus additional operations to extend the system coherence time are not needed. Our demonstration
serves as a proof of concept for achieving efficient coherent control of electron-nuclear spin systems,
such as NV centers in diamond. Our scheme is still applicable when the nuclear spins are only
weakly coupled to the electron.

Spin-based quantum registers have come up as a feasible
architecture for implementing quantum computing [1, 2].
Among them are the hybrid systems consisting of elec-
tron and nuclear spins such as Nitrogen Vacancy (NV)
centers in diamond [3–13]. Specific properties of their
subsystems are the distinct gyromagnetic ratios, which
result, e.g. in the requirement that the frequencies of the
control fields applied to electronic and nuclear spins lie in
the microwave (MW) and radiofrequency (RF) regimes
respectively. The fast gate operation times on the elec-
trons (order of ns) and the long coherence times of the
nuclear spins (order of ms) serve as efficient control and
memory channels. However, the lower gyromagnetic ra-
tios of the nuclear spins result in longer nuclear spin gate
operation times (a few tens of µs), which can exceed the
electron coherence times (≈ 1− 25 µs) at room tempera-
ture, thus posing a major challenge for coherent control
of electron-nuclear spin systems. Techniques like dynam-
ical decoupling (DD) can partly alleviate this issue by
extending the coherence times of the electron [14–19],
but the additional DD pulses increase the control cost.

Previously, one- and two-qubit operations were demon-
strated using RF pulses on the nuclear spin that had
strong hyperfine coupling of ≈ 130 MHz [20–22]. Such
strong couplings enhance the nuclear spin Rabi frequency
allowing fast RF operations (order of ns) and hence di-
rect control of nuclear spins was feasible [21, 23]. How-
ever, scalable quantum computing requires coherent con-
trol of tens to hundreds of qubits and the control of dipo-
lar coupled nuclear spins gets challenging with increasing
distance from the electrons. To avoid these challenges,
indirect control (IC) of the nuclear spins has also been
incorporated [24–30]. In this approach, the control fields
are applied only on the electron, combined with free evo-
lution of the system under the hyperfine couplings. How-
ever, most of the earlier works based on IC required a
large number of control operations, thereby increasing
the control overhead [27, 31].

In this letter, we experimentally implement efficient
quantum gates in an NV center in diamond at room tem-
perature, using IC with minimal control cost of only 2-3
of short MW pulses and delays. Our approach allows
variable delays and pulse parameters. As such, it differs
from earlier work [31] that used many DD cycles with
fixed delays. We use this approach to demonstrate quan-
tum gates that are required for a universal set of gates: a
Hadamard gate on a nuclear spin, and a controlled-NOT
(CNOT) gate with control on the electron and target on
the nuclear spin.
We consider a single NV center that consists of a spin-1
electron coupled to a spin-1 14N and a spin-1/2 13C [see
supplementary material [32]]. We perform the operations
on the electron and 13C by focussing on a subspace of the
system where the 14N is in the mN = 1 state. We then
can write the secular part of the electron-13C Hamilto-
nian in the lab frame as H/(2π) = D(S2

z ⊗ E2) − (νe −
AN )(Sz⊗E2)−νC(E3⊗Iz)+Azz(Sz⊗Iz)+Azx(Sz⊗Ix),
where Sz and Iz/x are the spin operators for electron

and 13C respectively, En is an n × n identity matrix,
D = 2.87 GHz is the zero field splitting, νe = −414 MHz
and νC = 0.158 MHz are the Larmor frequencies of the
electron and 13C in a 14.8 mT field, AN = −2.16 MHz
is the hyperfine coupling with 14N and Azz = −0.152
MHz and Azx = 0.110 MHz are the hyperfine cou-
plings with 13C. The eigenstates of H are |0 ↑〉, |0 ↓
〉, | − 1ϕ−〉, | − 1ψ−〉, |1ϕ+〉, |1ψ+〉, where {|0〉, | ± 1〉} are
the eigenstates of Sz, and

|ϕ±〉 = cos(κ±/2)| ↑〉+ sin(κ±/2)| ↓〉
|ψ±〉 = − sin(κ±/2)| ↑〉+ cos(κ±/2)| ↓〉. (1)

Here {| ↑〉,| ↓〉} are the eigenstates of Iz, and κ± =
arctan[Azx/(Azz ∓ νC)] is the angle between the quanti-
zation axis of the 13C and the NV axis.
We implement the quantum gates UT in the mS =
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{0,−1} and mN = 1 manifold and refer to it as the
system subspace.This choice of subspace is realized by
using MW pulses with a Rabi frequency of ≈ 0.5 MHz
(� AN ), which covers all ESR transitions in the system
subspace but leaves states untouched where the 14N is in
a different state. For the system subspace, the Hamilto-
nian is Hs/(2π) = |0〉〈0| ⊗H0 + | − 1〉〈−1| ⊗H−1, where
H0 = −νCIz and H−1 = −(νC +Azz)Iz −AzxIx are 13C
spin Hamiltonians when the electron is in |0〉 or | − 1〉
respectively.
We implement two examples of UT :

UH = E2 ⊗
[
1 1
1 −1

]
/
√

2

UCNOT = |0〉〈0| ⊗ E2 + | − 1〉〈−1| ⊗ e−iπIx . (2)

The first is a Hadamard gate while the second is a CNOT
gate, both targeting 13C, in a basis defined in Ref. [33].
To check the implementation of UT , we initialize the sys-
tem into a pure state, apply UT and then perform a
partial tomography of the final state by recording free
precession signals (FIDs).
For practical applications, it is useful to allow additional
degrees of freedom, such as variable pulse rotation an-
gles and finite pulse durations. These degrees of free-
dom allow us to compensate experimental errors via nu-
merical optimization of the pulse sequence parameters.
As shown in Fig. 7, we consider a pulse sequence con-
sisting of delays τi and MW pulses with durations ti
and phases φi where i = 1 · · ·n, n is the number of
pulses. We fix the frequency of the pulses to be res-
onant with the ESR transition 0 ↔ −1 and the Rabi
frequency ω1/2π to 0.5 MHz. During τi, the system

freely evolves under Hs such that Ufi = e−iHsτi . The
control Hamiltonians during the MW pulse segments are
HMW
i = ω1[cosφi(sx⊗E2)+sinφi(sy⊗E2)]+Hs, where

sx/y denote the spin-1/2 operators for the electron, and

the corresponding operators are UMW
i = e−iH

MW
i ti . The

total propagator U is the time ordered product of Ufi and
UMW
i . The overlap between U and UT is defined by the

fidelity F = |Tr(U†UT )|/4. We maximize F numerically,
using a MATLABR© subroutine implementing a genetic
algorithm [34]. The solution returns the pulse sequence
parameters ti, τi and φi. The sequences were made ro-
bust against fluctuations of the MW pulse amplitude by
optimizing F over a range ω1/(2π) = [0.48, 0.52] MHz.
Table I summarizes the optimized pulse parameters for
UH and UCNOT , and the average gate fidelities are> 96%
and > 97% respectively. The resulting trajectories of the

τ1 τ2 τ3 τ4 t1 t2 t3 φ1 φ2 φ3

UH 0.74 0.22 0.43 0.89 0.23 1.26 1.50 3π/2 3π/2 π/2

UCNOT 3.78 2.11 2.15 0.63 1.88 3.96 1.90 0 π/5 π/2

TABLE I: MW pulse sequence parameters for UH and
UCNOT . The time durations and phases are in units of µs
and radians respectively.

τ1 τ2 τ3 τ4t1 t2 t3
ϕ1 ϕ2 ϕ3

MW
FIG. 1: MW pulse sequence to realize UT by IC, at a fixed
ω1. The delays τi, MW pulse durations ti and phases φi are
the free variables to be optimized.

electron and 13C on the Bloch-sphere is shown in the SM
[32].

Our experiments started with an initial laser pulse with
a wavelength of 532 nm, a duration of 5 µs, and a power
of ≈ 0.5 mW which initialized the electron to |0〉 but left
the 13C in a mixed state. To initialize 13C to | ↑〉, we
resorted to the IC method [32, 35, 36]. Starting from
ψ0 = |0 ↑〉, we implemented the circuits shown in Figs.
(2, 3). Depending on the experiment, we either observed
the electron or the 13C state via FID measurements. The
readout process consisted of another laser pulse with the
same wavelength and 400 ns duration and was used to
measure the population of mS = 0.

Fig. 2(a) shows the pulse sequence for implementing
and detecting the effect of UH . The first UH generates
|0〉 ⊗ (| ↑〉 + | ↓〉)/

√
2. The 13C coherence is then al-

lowed to evolve for a variable time t after which we apply
another UH to convert one component of the coherence
to population. Lastly, a clean-up operation, with MW
pulse sequence (90x − τc − 90y), where 90x/y are pulses
with rotation angle 90◦ about the x/y-axis applied to the
mS = 0↔ 1 transition with 0.5 MHz Rabi frequency and
τc = 1/(2|Azz|) is the delay, represented by the dotted
box transfers the population from |0 ↓〉 to |1 ↓〉. The
final read-out operation thus detects only the population

(a)
UH t (90 x-τ c-90 y)|0〉

|↑〉(b)
| 0 ↑ 〉
|-1φ- 〉|-1�- 〉
| 0 ↓ 〉

UH
0

0.5

1
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FIG. 2: (a) Quantum circuit to test UH . The MW pulse se-
quence parameters for UH are given in Table. I. The clean-up
operation is represented by the dotted box. (b) Populations
(solid circles) and coherences (zig-zag arrows) at each stage
of the pulse sequence in (a). (c, d) 13C spin spectra obtained
by the pulse sequence in (a). (c) Without the first UH . (d)
With both UH . Inset: Final population of |0 ↑〉 as a function
of t.
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(a)θy 90x 90ϕ
(b)t tUCNOT 180y

| 0 ↑〉|-1φ-〉|-1�-〉| 0 ↓〉180y 180yUCNOT

(90 x-τ c-90 y)

 �1

(c)
|↑〉
|0〉  �1

 �1
FIG. 3: Quantum circuits to test UCNOT . The MW pulse se-
quence parameters for UCNOT indicated by red empty boxes
are given in Table. I. θx/y/φ denote operations with rota-
tion angles θ about the x/y/φ axes that are resonant with
the transition 0 ↔ −1 and with Rabi frequencies of 8 MHz.
(a) Pulse sequence to demonstrate the effect of UCNOT on
different input states via electron spin detection. φ is the de-
tuning phase. In the presence (absence) of the 180y operation
indicated by the dashed box, the FID measurement is used
to determine the population of the mS = −1 (mS = 0) af-
ter UCNOT . (b) Pulse sequence to demonstrate the effect of
UCNOT via 13C spin detection. (c) Pictorial representation of
state ψ1.

of |0 ↑〉, which depends on t as [1+cos(2πνCt)]/2. In the
frequency domain, this corresponds to a peak at νC .
Using the pulse sequence in Fig. 2(a), we performed two
experiments to compare the effect of UH : (1) without
the first UH (i.e, no operation, also known as NOOP)
and (2) with both UH . In the case of NOOP, the system
was in ψ0 during the free evolution period. Since ψ0

does not contain 13C coherence the resulting frequency
domain signal does not contain a resonance at νC , as
shown in Fig. 2(c). With both UH present, we observe
in Fig. 2(d) a resonance peak at νC as expected. We
numerically simulated the pulse sequence in Fig. 2(a)
without and with the first UH , and then calculated the
final populations of |0 ↑〉 as a function of t. To match the
theoretical signal with the experimental one, we had to
scale it by a factor 0.9 for NOOP and 0.8 for UH (i.e, with
two UH), and estimated the infidelity of the experimental
UH as ≈ 10%.
The schemes to demonstrate UCNOT are shown in Fig. 3.
Using the pulse sequence in Fig. 3(a), we demonstrated
the effect of UCNOT in mS = −1 by measuring electron
spin spectra. Choosing for the flip-angle θ of the initial θy
operation [37, 38] a value of π, we exchanged the popula-

tions of the |0 ↑〉 ↔ |−1 ↑〉 ≈ |−1〉⊗(|φ−〉−|ψ−〉)/
√

2 ac-
cording to Eq. (1). The subsequent UCNOT transformed

| − 1 ↑〉 to −i| − 1 ↓〉 ≈ −i| − 1〉 ⊗ (|φ−〉 + |ψ−〉)/
√

2,
since by definition of Eq. (2), UCNOT flips the 13C state
when the electron is in | − 1〉. To measure the state after
UCNOT , we transferred the population of |− 1 ↓〉 to |0 ↓〉
using a hard 180y operation. The readout process, which
measures the population of mS = 0, can then be used
to determine the population left in | − 1 ↓〉 by UCNOT .
The sequence (90x − t − 90φ) in Fig. 3(a) implements
the electron spin FID measurement, where the 90x pulse
creates electron coherence and the 90φ pulse converts one
component of the evolved coherence to population [6, 36].
Here we incremented the phase φ(t) = −2πνdt linearly

2.6 3 3.4
-1

0

1

2.6 3 3.4 0.1 0.15 0.2 0.1 0.15 0.2

FIG. 4: (a) Electron spin spectra for the pulse sequence corre-
sponding to Fig. 3(a) without and with UCNOTwhere θy = π.
The thermal state spectra on top are shifted vertically for
reference. The electron spin spectra are centered around the
detuning frequency 3 MHz. (b) 13C spin spectra obtained
by the pulse sequence shown in Fig. 3(b) without and with
UCNOT . The peaks appear at ν−= 0.11 MHz.

with t, using a detuning frequency νd of 3 MHz. We then
measured the population of mS = 0 with the readout
laser pulse as a function of t and its Fourier transform
gives the frequency domain signal. Thus, as seen in the
electron spin spectra in Fig. 4(a), the change of nuclear
spin state resulted in a different frequency of the ESR
lines in the case of UCNOT as compared to NOOP.

Since UCNOT targets the 13C, we also observed its effects
on the 13C by measuring the nuclear spin spectra using
the pulse sequence in Fig. 3(b). The initial 180y opera-

tion transforms |0 ↑〉 to |−1 ↑〉 ≈ |−1〉⊗(|ϕ−〉−|ψ−〉)/
√

2.
After implementing UCNOT , we allowed the 13C coher-
ence between states |ϕ−〉 and |ψ−〉 to evolve for a variable
time t, as shown in Fig. 3(c), and then applied another
180y operation to the electron to bring the evolved state
from mS = −1 to mS = 0. The subsequent clean-up op-
eration removed the population of |0 ↓〉 and allowed us to
measure the remaining population of |0 ↑〉 with the read-
out laser pulse. The experimental 13C spectra without
and with UCNOT are shown in Fig. 4(b). The resonance
frequency of the peak at 0.11 MHz agree with the ex-
pected resonance frequency ν− of the 13C for mS = −1.
Comparing with NOOP, the inverted amplitude shows
that UCNOT flipped the 13C states in mS = −1. In Figs.
4(a, b), we show the matching simulations, calculated for
ideal pulses, scaled by a factor 0.8.

As an additional test of the sequence for different input

0 20 2
0

0.5

1

0 20 2

FIG. 5: P0↓ as a function of θ corresponding to the pulse
sequences shown in Fig. 3(a). The diamonds and solid cir-
cles are the experimental data, and the dashed lines are the
matching simulations.
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states, we first applied a selective rotation, when mN = 1
[39], of ψ0 by an angle θy to generate the superposition
state ψθ = cos(θ/2)|0 ↑〉 + sin(θ/2)| − 1 ↑〉. As shown
in Fig. 3(a), we then applied either a NOOP or UCNOT .
The latter transforms ψθ to cos(θ/2)|0 ↑〉−i sin(θ/2)|−1 ↓
〉, which is entangled for θ 6= nπ with integer n. Ideally,
the amplitude of the resonance line for the transition |0 ↓〉
↔ |1 ↓〉 [40] is proportional to the population P0↓. We
thus determined P0↓ and the results, which are shown in
Fig. 5, demonstrate the effect of UCNOT for the 2 cases
where the control qubit is |0〉 or | − 1〉. Fig. 5(a) shows
P0↓ after applying NOOP or UCNOT to ψθ, as a function
of θ in the absence of the 180y operation indicated by the
dotted box in Fig. 3(a). This pulse sequence allows us
to measure the effect of UCNOT when the electron spin is
|0〉. The curves for both cases are similar since UCNOT
does not change the 13C state when the electron spin is
|0〉. In Fig. 5(b) we show the effect of UCNOT when
the electron spin is | − 1〉. To read out the population
of | − 1 ↓〉, we first applied a 180y operation, as shown
in Fig. 3(a) and then measured the electron spin FID
in mS = {0, 1}. In this case, the P0↓ vs θ curve flipped
for UCNOT compared to NOOP, indicating the change of
the 13C state when the electron is in | − 1〉. By fitting
the experimental P0↓ with the corresponding theoretical
populations for various θ as shown in Fig. 5, we estimated
the experimental infidelity due to UCNOT as 20% [32].
Discussion.— Our experiments convincingly show that
the IC scheme is a very effective approach to implement
operations in systems consisting of 3 types of qubits. The
advantages of this approach will become even more im-
portant as the number of qubits increases. While a full
implementation of the approach in large quantum regis-
ters is beyond the scope of this paper, we have tested the
basic scheme through numerical simulations of gates in
multiqubit systems with up to six qubits. The simula-
tions show that the procedure scales relatively favorably
with the size of the system [32]. For the 6-qubit system
our method to control individual 13C spins was efficient
as it required 3-4 MW pulses and the total duration was
< 30µs. The theory [24, 41] regarding the bounds for the
control overhead and the condition to retain efficiency for
larger spin systems is explained in [32].

Conclusion.— We experimentally demonstrated full co-
herent control i.e, state initialization, gate implementa-
tion and detection of the electron-nuclear spin system in
the NV center of diamond using the methods of IC. We
specifically chose a center with a small hyperfine cou-
pling, some three orders of magnitude weaker than that
of the nearest neighbor 13C spins. The distance between
the electron and 13C is ≈ 0.89 nm [32]. These remote
spins are much more abundant than the nearest neigh-
bors and their relaxation times much longer. However,
since their coupling to RF fields is also much weaker,
direct RF excitation does not lead to efficient control op-
erations. The IC techniques that we have demonstrated
allow much faster controls and therefore overall higher
fidelity - an essential prerequisite for scalable quantum
systems. Specifically, we have implemented a Hadamard
gate on 13C and a CNOT gate, where the electron is the
control qubit and 13C the target qubit, using only a small
number of MW pulses and delays. The above gate oper-
ations targeted the subspace mS = {0,−1} and mN = 1.
If we consider the control state of the 14N, i.e mN = 1, in
the whole space with mN = {0,−1, 1}, then our UCNOT
is a Toffolli gate in 12 dimensions. Since the total dura-
tion of the pulse sequence was well within the electron
coherence time (T ∗2 ≈ 20µs), additional coherence pre-
serving control operations were not required. However,
for complex algorithms consisting of many gates, it may
be necessary to include DD. While we have implemented
this scheme in the diamond NV center at room tempera-
ture in a small external magnetic field, it remains appli-
cable over a much wider parameter range and can clearly
be adapted to other quantum systems, thus opening the
ways for many different implementations of advanced
quantum algorithms using indirect control schemes.
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1. NV center system and Bloch Sphere representation of the evolution
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|-1 0〉|-1-1〉|-1 1〉
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FIG. 6: (a) NV center coupled to 14N and 13C spins. The magnetic field B0 is aligned along the NV axis in the z direction.
(b) The energy level splittings. {|0〉, | ± 1〉} correspond to electron and 14N spins, {| ↑〉, | ↓〉, |ϕ±〉, |ψ±〉} correspond to the 13C
spin. The ESR transitions in the electron spin subspace mS = {0,−1}, when 14N spin is in state mN = 1, are shown by four
arrows (red solid lines) in the right-hand part. Similarly, the ESR transitions in the electron spin subspace mS = {0, 1}, when
14N spin is in state mN = 1, are shown by two arrows (blue dotted lines) in the right-hand part.

The experiments were carried out on a diamond sample with 12C enrichment of 99.995%, at room temperature and
at a field strength of 14.8 mT. The T ∗2 of the electronic spin that we used in this experiment was about ≈ 20 µs.
Fig. 6(a) shows the structure of a single NV center coupled to 14N and 13C nuclear spins. The Hamiltonian H of this
system is discussed in the main manuscript. Fig. 6(b) shows the corresponding energy level diagram. The external
magnetic field of strength B0 = 14.8 mT lifts the degeneracy of the electronic |−1〉 and |+1〉 states. Each of the spin-1
electronic states splits into {|0〉, | ± 1〉} states of the 14N spin, which further split into the states {| ↑〉, | ↓〉, |ϕ±〉, |ψ±〉}
of the 13C spin.
We chose a subspace where the electron spin was in mS = {0,−1} and the 14N spin was in mN = 1 and referred to
this subspace as our system subspace in which we implemented our gate operations. In the system subspace, there are
4 ESR transitions as indicated by the red arrows in Fig. 6(b), since the states |ϕ−〉 and |ψ−〉 are linear combinations
of | ↑〉 and | ↓〉 states with κ− ≈ 86◦ as described in Eqs. (1, 2) of the main manuscript.
In the subspace mS = {0, 1} when mN = 1, we observe that κ+ ≈ 10◦. Eqs. (1, 2) of the main manuscript indicate
that |ϕ+〉 ≈ | ↑〉 and |ψ+〉 ≈ | ↓〉. Therefore only 2 ESR transitions are observed for mS = {0, 1} and mN = 1, which
correspond to the transitions |0 ↑〉 ↔ |1 ↑〉 and |0 ↓〉 ↔ |1 ↓〉 as indicated by the blue arrows in Fig. 6(b). This
subspace was used to implement the clean-up operation.
Fig. 7(a) is our generic 3-pulse sequence for implementing UH and UCNOT . Fig. 7(b,c) shows the resulting trajectories
of the electron and 13C on the Bloch-sphere.

2. Analytical form of pulse sequence to map the state |0 ↑〉 to |0 (↑+↓)√
2
〉

Here, we design an analytical form for the pulse sequence to map the electron-13C spin state from an initial state |0 ↑〉
to a final state |0 (↑+↓)√

2
〉. We choose a generic pulse sequence (180◦− τ1− 180◦− τ2), where the 180◦ pulse acts on the
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FIG. 1:FIG. 7: (a) MW pulse sequence to realize UH and UCNOT by IC, at a fixed ω1. The delays τi, MW pulse durations ti and
phases φi are the free variables to be optimized. (b, c) Evolution trajectories of electron and 13C upon the application of UH
and UCNOT for specific initial states. The diamond indicates the initial state and the circle the final state.

electron that is resonant with the ESR transition 0↔ −1, and τi are delays. The unitary operator for the 180◦ pulse
is

Uπ = e−iπIx .

During the delays, τi with i = 1, 2, the system evolves under the free evolution Hamiltonian Hs, where

Hs/(2π) = (−νC −Azz/2)(E2 ⊗ Iz) +Azz(I
e
z ⊗ Iz) +Azx(Iez ⊗ Ix)−Azx/2(E2 ⊗ Ix). (3)

Here νc = 0.158 MHz is the 13C spin Larmor frequency, and Azz = −0.152 MHz, Azx = 0.11 MHz are the hyperfine
couplings with the 13C spin.
The corresponding evolution operator in the basis {|0 ↑〉, |0 ↓〉, | − 1 ↑〉, | − 1 ↓〉} during τi is

Uτi =


eiπνCτi 0 0 0

0 e−iπνCτi 0 0

0 0 cos(πν−τi) + i cos(κ−) sin(πν−τi) i sin(κ−) sin(πν−τi)

0 0 i sin(κ−) sin(πν−τi) cos(πν−τi)− i cos(κ−) sin(πν−τi)

 ,
where ν− =

√
A2
zx + (νC +Azz)2 is the 13C spin transition frequency in the mS = −1 subspace, and κ− =

tan−1[Azx/(Azz + νC)] ≈ 86◦ is the angle between the quantization axis of the 13C nuclear spin and the NV axis.
The total propagator for the pulse sequence (180◦ − τ1 − 180◦ − τ2) is

U = Uτ2UπUτ1Uπ.

The state transformation |0 ↑〉 → |0 (↑+↓)√
2
〉, can be written as

|0(↑ + ↓)〉〈0(↑ + ↓)|/2 = U |0 ↑〉〈0 ↑ |U†.

By equating the matrix elements 〈0 ↑ |U |0 ↑〉 and 〈0 ↑ |U |0 ↓〉 to 0.5, we solve for τi:

τ1 =
1

πν−
sin−1(

1√
2 sin(κ−)

) (4)

τ2 =
1

2πνC
cos−1(

cos(κ−)

sin(κ−)
) (5)

where for our system, κ− ≈ 86◦, ν− = 0.11 MHz and thus τ1 = 2.28 µs, τ2 = 1.53 µs. τ1 + τ2 sets the lower bound on
the pulse sequence duration.
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3. State evolution during to the pulse sequence to demonstrate Hadamard gate

We show the details of the state evolution during the pulse sequence in Fig. 2(a) of the main manuscript. The 13C
spin is initialized into the state

ρc0 =
E2

2
+ Iz. (6)

E2 is a 2× 2 identity matrix that does not evolve under any operation, and we track the evolution of Iz spin operator
at each stage of the pulse sequence [38]. The first Hadamard gate UH transforms Iz as:

Iz −→ Ix (7)

Since, initially the populations of the mS = −1 subspace are zero, we concentrate on the evolution of the 13C spin
state in the mS = 0 subspace, where the 13C spin Hamiltonian is

HC = 2πνcIz. (8)

Here νc is the 13C spin larmor frequency. During the free precession for a duration t, Ix evolves as

Ix −→ Ix cos(2πνct) + Iy sin(2πνct) (9)

The second UH takes the above state to Iz cos(2πνct)− Iy sin(2πνct). Thus the initial state ρc0 goes to the final state

ρc −→ E2

2
+ Iz cos(2πνct)− Iy sin(2πνct) (10)

The last clean-up operation transfers the population from |0 ↓〉 to |1 ↓〉. Hence, the remaining population of the state
|0 ↑〉 of equation (10) is [1 + cos(2πνct)]/2.

4. State determination

Fig. 8(a) shows the ESR spectrum of the state ρ. It was obtained with the method described in [35]. The two peaks
correspond to the electron spin transitions in the mS = {0, 1} subspace when the 13C spin is in the | ↑〉 and | ↓〉 states,
respectively, as indicated in the figure. The area under these spectral lines is proportional to the populations of |0 ↑〉
and |0 ↓〉. The analysis shows that the populations of |0 ↑〉 and |0 ↓〉 are ≈ 80% and ≈ 20%, respectively.
In order to calculate the coherence of the above state ρ, we performed an experiment using the pulse sequence shown
in Fig. 2(a) of the main manuscript starting from a state with ≈ 80% and ≈ 20% populations in states |0 ↑〉 and |0 ↓〉
respectively but omitted the first UH operation. If ρ contains coherence between the states |0 ↑〉 and |0 ↓〉, then these
coherences will evolve during the free evolution time t. The second UH converts one component of the coherence to
population, and the cleanup operation transfers population from state |0 ↓〉 to |1 ↓〉. Upon Fourier transformation
of the remaining populations of the state |0 ↑〉 for variable t, we get a frequency domain signal with a peak centered
at the 13C spin Larmor frequency νc. Following this argument, we expect no peak at νc in the absence of the above
coherence terms. The experimental result shown in Fig. 8(b) indicated the presence of a peak at νc, thereby indicating
the presence of coherence between the states |0 ↑〉 and |0 ↓〉. We determined this coherence by fitting the experimental
population of state |0 ↑〉 as a function of variable delay t (in Fig. 2(a) of the main manuscript) with the corresponding
theoretical input state and by optimizing the coherence amplitudes. We found a coherence of 0.08 and thus our state
before the clean-up operation was

ρ =


0.8 0.08 0 0

0.08 0.2 0 0

0 0 0 0

0 0 0 0

 .
We further purified this state by a clean-up operation that transferred the population from |0 ↓〉 to |1 ↓〉 and the
coherence between the states {|0 ↑〉, |0 ↓〉} to the states {|0 ↑〉, |1 ↓〉} [36]. This clean-up is a MW pulse sequence
(90x − τc − 90y), where 90x/y are pulses with rotation angle 90◦ about the x/y-axis applied to the mS = 0 ↔ 1
transition with 0.5 MHz Rabi frequency and τc = 1/(2|Azz|) is the delay between them. After this clean-up, our
system subspace spanned by mS = {0,−1} and mN = 1 was in the pure state

ψ0 = |0 ↑〉 (11)
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FIG. 8: (a) Population determination. ESR spectrum in the subspaces mS = {0, 1} and mN = 1 showing 80% population in
state |0 ↑〉 and 20% population in state |0 ↓〉. (b) Coherence determination. The 13C spectrum corresponding to the pulse
sequence in Fig. 2(a) of the main manuscript without the first UH starting from input state with 80% population in state |0 ↑〉
and 20% population in state |0 ↓〉.

5. Error estimation for CNOT

In this section, we estimate the experimental fidelity of the state after UCNOT using the results from Fig. 5 of the
main text. Here Fig. 5(a) corresponds to the case when the electron is in state |0〉 and thus according to the definition
of our gate operation, UCNOT is an identity operation on the 13C spin. In the case where the electron is in state
| − 1〉, UCNOT flips the 13C spin and the results are shown in Fig. 5(b). The theoretical P0↓ has the functional form
P0↓(θ) = [1− cos θ]/2, where the angle θ parametrises the electron spin input states before applying UCNOT . For all
θ = [0, 2π], we matched the experimental P0↓ by multiplying the corresponding theoretical populations by 0.7 and 0.9
for mS = −1 and mS = 0 respectively. Thus we observed a 10% signal loss when the electron was in state |0〉 and
a 30% signal loss when electron was in state | − 1〉. The average of these errors is 20% and hence the experimental
fidelity of the state after UCNOT , which in this case is calculated by measuring P0↓, amounted to about 80%, in
agreement with the results in Fig. 4 of the main manuscript where data are shown for θ = π.

6. Gates in Multiqubit systems

Addressing and controlling individual qubits in multiqubit systems is necessary to realize scalable quantum systems.
The central electron spin in the NV centers of diamond has potential to be coupled to multiple 13C spins, thereby
offering a possibility of realizing multiqubit registers. However, the presence of these multiple nuclear spins also
is a main contribution to the decoherence and limits the spectral resolution. The duration of the gate operations
should therefore not exceed the electron spin coherence time. We here extend our indirect control scheme to the
implementation of simple gate operations in multiqubit systems consisting of up to 6 qubits, and check the typical
gate durations, the minimum required electron spin coherence time and the control overhead.

Our n-qubit system consists of 1 electron spin, 1 14N spin and (n− 2) 13C spins. Here, the operations that we chose
are controlled-controlled rotations where the electron spin and the 14N spin are the control qubits and an individual
13C spin is the target qubit. On the remaining spins, the operation should implement a unit operation (NOOP). In
the rotating frame of the electron spin with frequency given by D + νe −AN (where the notations are defined in the
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main text), the n-qubit system Hamiltonian in the subspaces mS = {0,−1} and mN = 1 can be written as

H⊗ns
2π

= |1N 〉〈1N | ⊗ (|0e〉〈0e| ⊗
n−2∑
j=1

Hj0 + | − 1e〉〈−1e| ⊗
n−2∑
j=1

Hj−1), (12)

where e represents the electron, N represents the 14N, Hj0 = −νCIjz and Hj−1 = −(νC + Ajzz)I
j
z − AjzxIjx are the

Hamiltonians for the jth 13C spin. The 13C spin Larmor frequency is νC = 0.158 MHz and the chosen hyperfine
couplings with the 13C spins are listed in Table II. The simulated spectrum of this Hamiltonian for n = 6 in the
mS = {0,−1} and mN = 1 subspaces is shown in Fig. 9. Thus we see that, a minimum T2

∗ = 1/(πδν) ≈ 30µs, where
δν is the line width of the ESR spectra, is necessary to spectrally address individual 13C spins in this system.

j Ajzz (MHz) Ajzx (MHz)

1 A1
zz = −0.152 A1

zx = 0.110

2 A2
zz = (1.5) ·A1

zz A2
zx = (1.5) ·A1

zx

3 A3
zz = (2/3) ·A1

zz A
3
zx = (2/3) ·A1

zx

4 A4
zz = (2.5) ·A1

zz A4
zx = (2.5) ·A1

zx

TABLE II: Hyperfine couplings Ajzz, A
j
zx for a system of four 13C spins. j = 1 . . . 4 represents the label for the 13C spins.

4.4 4.6 4.8 5 5.2 5.4 5.6

FIG. 9: Simulated ESR spectrum of the n = 6 system, i.e, with all the four 13C spins, in the mS = {0,−1} and mN = 1
subspace. The coupling parameters are listed in Table II and the detuning frequency was set to 5 MHz.

To design pulse sequences for arbitrary gate operations in multiqubit systems, we extend the optimization protocol
for a two qubit system as explained in the main text to that of an n qubit system with the system Hamiltonian

H⊗ns . The control (MW) Hamiltonian in mN = 1 is ω1[cosφi(sx ⊗ E⊗2
n−2

) + sinφi(sy ⊗ E⊗2
n−2

] where ω1 is the
MW pulse amplitude and E⊗m is the 2m × 2m identity matrix. We show that the controlled-controlled rotations can
be implemented using the generic 4 pulse MW pulse sequence as shown in Fig. 10. As explained in the main text,
(τi, ti, φi) are the pulse sequence parameters that are to be optimized to design gates with maximum fidelity with a
target unitary operator. The Rabi frequency ω1/(2π) is set to 0.5 MHz which is used to select the mN = 1 subspace
of the 14N spin and the pulses are not selective to any of the 13C spin transitions.
We first simulate a controlled-controlled NOT gate in a n = 4 system. We separately implement two controlled-
controlled NOT gates targeting the j = 1 spin on two four-qubit systems with different 13C spin hyperfine couplings
as indicated in Figs. 11(a, b). In Fig. 11(a), the system consists of 1 e, 1 14N, and j = 1, 2 carbon spins where the
hyperfine coupling with the j = 2 spin is larger than that of the j = 1 spin. In Fig. 11(b), we choose a system with
1 e, 1 14N, and j = 1, 3 carbon spins where the hyperfine coupling with the j = 3 spin is weaker than that of the
j = 1 spin. The optimized pulse sequence parameters corresponding to the sequence in Fig. 10 are shown in Table
III. The MW pulse sequence for implementing the controlled-controlled-NOT gate targeting the j = 1 carbon spin
and NOOP on the other carbon spin in either of the two cases were efficiently designed using only 4 MW pulses with
total duration of the sequence less than 15µs and the theoretical gate fidelities were greater than 0.99.
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FIG. 10: MW pulse sequence to implement controlled-controlled rotations on individual 13C spins in muti-qubit systems up to
at least n = 6.
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FIG. 11: Circuit to implement controlled-controlled-rotations: (a, b) in n = 4 and (c) in n = 5. Here θx = e−iθIx .

The n = 5 system consists of 1 e, 1 14N, and j = 1, 2, 3 carbon spins. Fig. 11(c) shows the circuit for implementing a
selective controlled-controlled-NOT gate targeting only the j = 1 spin. The corresponding 4-pulse MW pulse sequence
parameters are shown in Table III. This MW pulse sequence implements the above controlled-controlled-NOT gate
with a fidelity greater than 0.98 within a duration of 15µs, while simultaneously implementing NOOP on the j = 2, 3
spins.
Finally, we consider the n = 6 qubit case with 1 e, 1 14N, and j = 1, 2, 3, 4 carbon spins. Here we optimize the
parameters of the pulse sequence in Fig. 10 for 4 controlled-controlled-rotation operations using the different 13C
spins as target qubits, as shown in Fig. 12. Table III gives the resulting pulse sequence parameters for each of these
cases with theoretical gate fidelities ranging from 0.93 to 0.99 and total durations ranging from 22-28 µs. As an
example, the form of the ideal and simulated operator in the mN = 1 subspace corresponding to Fig. 12(a) is shown
in Fig. 13.
Efficiency and comparison with methods based on DD cycles.– The numerically optimized pulse sequence parameters
for implemening controlled-controlled rotation gates between specific pairs of qubits in systems with up to n = 6
qubits show that the indirect control scheme proposed in this work is efficient with only 4 MW pulses and with
theoretical gate fidelities ranging from 0.93 to 0.99. As can be seen in Table III, the gate durations gradually increase
from about 12µs for n = 4 up to 28µs for n = 6. These gate durations will further increase (about 2 − 3µs) if the
sequences are made robust with respect to the deviations in ω1. Thus as seen in Table III, a mimimum T ∗2 of about
30µs is necessary to implement controlled-controlled rotations in the n = 6 system that we considered. Also the
control overhead was only 4 MW pulses.
The 12C enriched NV sample that we used in our experiments had an electron spin T ∗2 of about 20µs and the electron
spin coherence time T2 for this sample was more than 1.3 ms [43]. This T ∗2 is sufficient for indirect control a single
13C spin, but T ∗2 of the electron spin is shorter in crystals with higher 13C spin concentration [44] and the total gate
durations will exceed the T ∗2 . In such cases, protected quantum gates that are interleaved with the DD pulses [19]
so as to extend the electron spin T ∗2 beyond 30− 100µs would assist in coherently addressing the individual nuclear
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FIG. 12: Circuits to implement controlled-controlled-rotations in systems with n = 6 qubits. Here θx = e−iθIx .
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n j Figure θ τ1 τ2 τ3 τ4 τ5 t1 t2 t3 t4 φ1 φ2 φ3 φ4 Fidelity Gate duration (µs)

4 1,2 11(a) 180◦ 1.05 1.04 1.09 1.07 4.13 2.44 1.12 0.94 1.49 61◦ 270◦ 233◦ 90◦ 0.991 14.4

4 1,3 11(b) 180◦ 0.43 0.83 0.79 1.08 2.55 2.14 1.36 1.80 1.46 298◦ 218◦ 252◦ 90◦ 0.996 12.4

5 1,2,3 11(c) 180◦ 2.35 2.13 3.99 0.63 0.48 1.51 1.93 0.25 1.27 296◦ 315◦ 181◦ 90◦ 0.983 14.5

6 1,2,3,4 12(a) 180◦ 4.27 2.22 0.79 3.91 6.14 1.34 1.01 1.65 1.16 206◦ 129◦ 325◦ 90◦ 0.989 22.5

6 1,2,3,4 12(b) 180◦ 4.18 7.26 1.83 1.06 6.38 2.35 0.95 0.59 0.24 182◦ 170◦ 245◦ 90◦ 0.939 24.8

6 1,2,3,4 12(c) 45◦ 5.01 2.02 2.07 3.72 5.17 0.50 1.89 0.95 0.93 276◦ 262◦ 254◦ 90◦ 0.970 22.3

6 1,2,3,4 12(d) 45◦ 4.83 3.77 4.45 2.58 6.75 1.68 1.98 1.54 0.33 176◦ 76◦ 97◦ 90◦ 0.976 27.9

TABLE III: Optimized pulse sequence parameters (τi, ti, φi) corresponding to the pulse sequence in Fig. 10 to implement
controlled-controlled rotations on individual 13C spins in the system of size n. j indicates the different 13C spins that are
considered in each case. Each row corresponds to a specific operation as indicated by the Fig. 11 or 12. In all these cases,
ω1/2π = 0.5 MHz. Fidelity represents the theoretically calculated gate fidelities.

spins in larger spin systems. Also, in our previous work, we showed that one can further improve the fidelity and gate
duration by polarizing the 14N spin instead of working in the subspace mN = 1 [35]. For n > 10, optimizing the pulse
sequence parameters using classical computers gets increasingly difficult. Nevertheless, our control scheme could be
very useful in cases like Ref. [42] where it has been shown that only 5 qubits are sufficient to realize a fully functional
quantum repeater node.
Our scheme is efficient for the systems where νC is comparable to the hyperfine couplings. In such cases, the difference
δ between the orientation of the quantization axes of the 13C spin with the NV axis in mS = 0 and 1 subspaces is close
to π/2. Following this, the low control overhead of only 4 MW pulses derives from the argument that any rotation in
the SO(3) group can be constructed with ≤ m+ 2 rotations where π/(m+ 1) ≤ δ < π/m [24, 41]. Our scheme holds
even for systems where the hyperfine couplings are only a few tens of kHz. This requires that the multiple 13C spins
under consideration have similar coupling strengths. One can then adjust the external static magnetic field to bring
νC to a value that is comparable with the couplings. Thus, using this scheme, even very weakly coupled 13C spins
could be controlled with as few as 3 MW pulses. On the other hand, the indirect control methods based on multiple
cycles of DD sequences to achieve a desired nuclear spin rotation work in a different regime where νC � (Azz, Azx)
[29, 31]. The latter method requires tens to hundreds of MW pulses.

7. Spatial distance between the electron and the 13C spin.

The dipolar Hamiltonian between the electron spin with γe = −1.761 × 1011 rad s−1T−1 and a 13C spin with
γC = 6.728× 1011 rad s−1T−1 which is located at a distance r from electron is

Hd = ~S · Ā · ~I = −µ0

4π

γeγCh

r3
[3(~S.n̂)(~I.n̂)− ~S · ~I] (13)

Here Ā if the hyperfine tensor, ~S and ~I are the electron and 13C spin operators respectively, h = 6.626 ×
10−34 Js is Planck’s constant, µ0 = 4π × 10−7 Hm−1 is the magnetic permeability, and n̂ = [nx, ny, nz] =
[sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] is a unit vector pointing from the electron to the13C.
By equating the coefficients of SzIz and SzIx in Eq. 13, we get

Azz = −0.152 MHz = [b(r)/2π].[3 cos2(θ)− 1].

Azx = 0.110 MHz = [b(r)/2π].[3 sin(θ) cos(θ)]
(14)

where b(r) = −µ0

4π
γeγCh
r3 and we have set φ = 0 by chosing a reference frame in which the 13C is located in the zx-plane.

By solving the above equations, we detemined the spatial distance between the electron and 13C spin as r = 0.8924
nm and θ = 78◦.

8. Effects of operations in the 14N subspaces mN = {0, 1,−1}

In this section, we show that our operations on the electron spin in the subpaces mS = {0,−1} and mN = 1 to
implement rotations on the 13C spin do not effect the other 14N subpaces mN = {0,−1}. To demonstrate this, we
compare the thermal state ESR spectrum with the pure state ESR spectrum. As explained in the main text, the
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pure state is obtained by initializing the electron to state |0〉 by a 532 nm laser pulse and the13C spin is initialized
to |0〉 by the indirect control method. The corresponding MW pulse sequence driving the electron spin consists of 3
pulses followed by a laser pulse of duration 1.1 µs as explained in the main text. As with the gate implementations
for Hadamard and CNOT, the MW pulse amplitude was set to 0.5 MHz and the optimized pulse sequence parameters
were (τ1, τ2, τ3, τ4, t1, t2, t3, φ1, φ2, φ3) = (0, 2.09µs, 2.59µs, 0.84µs, 0.52µs, 0.45µs, 1.03µs, 16◦, 108◦, 90◦).
Fig. 14 shows the experimental ESR spectrum for the thermal state (top trace) and pure state (bottom trace) in the
mS = {0,−1} subspace. The 14N spin subspaces mN are indicated. In each mN subspace, the thermal spectra have
four ESR transitions as explainined in section 1 of this supplementary material. The numbers 1, 2, 3, 4 in the mN = 1
subspace mark the ESR transitions |0 ↑〉 ↔ |−1ψ−〉, |0 ↑〉 ↔ |−1ϕ−〉, |0 ↓〉 ↔ |−1ψ−〉, |0 ↓〉 ↔ |−1ϕ−〉 respectively.
The pure state spectrum contains only the 2 ESR lines, 1 and 2, in the mN = 1 subspace but with almost twice the
amplitude as in the thermal state, consistent with the subspaces where our gates were designed.
We see that the electron and 13C spins were polarized only in the mN = 1 subspace while the other subspaces. e.g.
mN = 0 retain all the four peaks with comparable spectral amplitudes. This shows that our MW pulse sequences do
not affect the 13C spins in the other 14N spin subspaces.

FIG. 13: Ideal (right) and simulated (left) unitaries in the mN = 1 subspace with 1 e and four 13C spins using Fig. 12(a).
The pulse sequence parameters for the simulated unitary are given in Table III. In the simulation, ω1 was set to 0.5 MHz and
hence, for simplicity, we here show the reduced unitary in the mN = 1 subspace.
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FIG. 14: ESR spectrum of the thermal state (top) and the pure state (bottom). Here, the detunig frequency was set to 5 MHz.
1, 2, 3, 4 are the ESR transitions in the mN = 1 subspace.
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