

# Pattern mining of mass spectrometry quality control data

Wout Bittremieux<sup>1,2</sup>, Dirk Valkenborg<sup>3</sup>, Aida Mrzic<sup>1,2</sup>, Hanny Willems<sup>3</sup>, Bart Goethals<sup>1</sup> and Kris Laukens<sup>1,2</sup>

# Introduction

**Mass spectrometry** = identify proteins based on the mass distribution of their peptides  $\leftrightarrow$  results subject to a large variability  $\rightarrow$  Quality control metrics

Previous research

- Univariate analysis [1]: Each metric individually ↔ does not take relationships between metrics into account
- Multivariate analysis [2]: Global analysis of all metrics simultaneously  $\leftrightarrow$  misses potentially interesting observations that are only expressed by a subset of metrics

As a result, **specialized pattern mining techniques** that take this duality into account can provide additional insights when analyzing quality control data.

# Pattern mining

Prior analysis insufficient

- Univariate analysis: A single metric will be inadequate to detect problems expressed by the combination of multiple elements
- Multivariate analysis: Different sets of metrics are produced by a different generating mechanism (separate parts of a mass spectrometry experiment)

#### Solution = **subspace mining** algorithms

- Find a suitable subset of the original feature space by disregarding irrelevant dimensions
- Within each subspace: clustering, outlier detection, ...

## **Quality control data**

- Mass spectrometry data = **standardized quality control samples**
- Extensive frequency: periodically ran before, during, and after experimental samples
  - $\rightarrow$  Detect problems as soon as possible
- Low complexity
  - $\rightarrow$  Limited variability

Currently: quality control metrics for BSA samples run over the period of several years on a single Orbitrap Velos mass spectrometer.

Metrics = **identification-free metrics** (from QuaMeter [3])

- No (costly) peptide identification required
  - $\rightarrow$  (Virtually) instantaneously available
- Does not depend on identification efficiency
  - $\rightarrow$  Objective quality measures

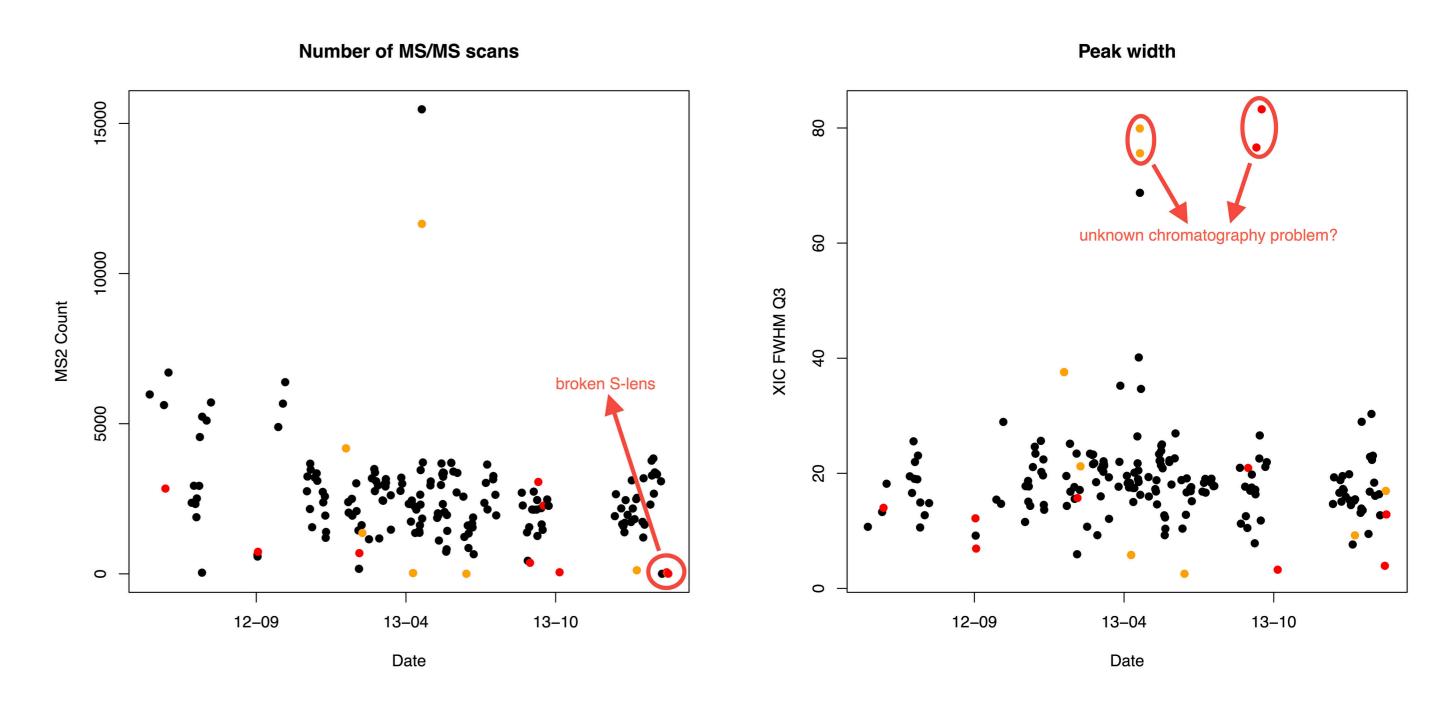
Set of 44 quality control metrics involving different aspects of the mass spectrometer: chromatography, ionization, MS1, MS2, ...

**Subspace clustering** [4] (Figure 1) = identify clusters of similar objects with respect to a subset of the attributes

- Highlighted in red: Several different subspace clusters concerning the full width at half maximum (FWHM), indicating different chromatography settings
- Highlighted in yellow: A potentially interesting cluster concerning the ionization of peptide fragments

**Subspace outlier detection** [5] (Figure 2) = detect highly deviating objects in any attribute combination

- Left: A collection of experiments that were detected as outliers, and where there was a known problem with the S-lens, which influenced the MS2 fragmentation
- Right: An example of potentially interesting outliers mainly exhibited by the chromatography-based metrics, which might indicate an unknown chromatography problem



#### Subspace clustering (CartiClus)

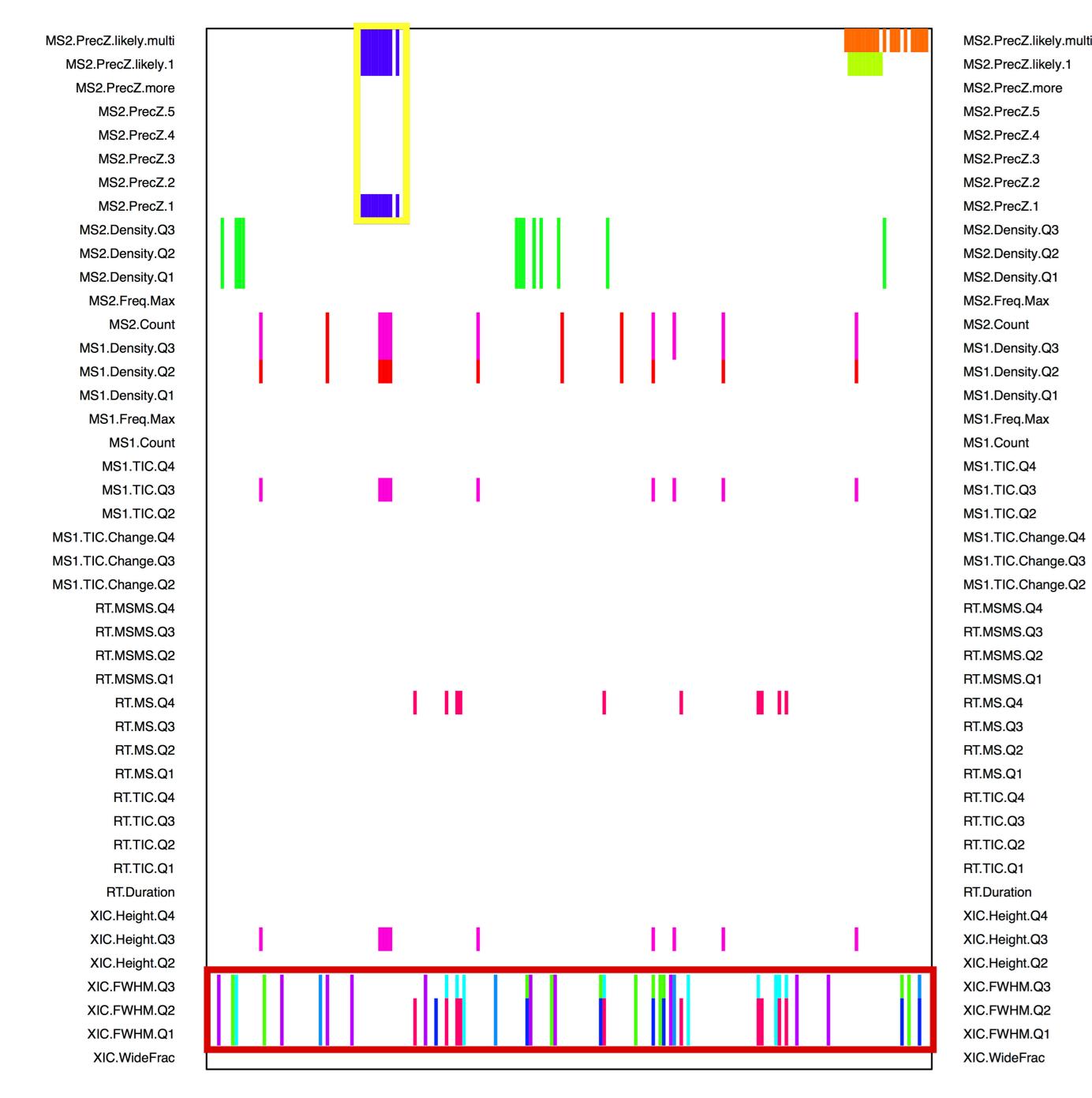


Figure 2: Subspace outlier mining can be used to detect outliers based on a subset of features. The top 10 ranked outliers are indicated in red, while the subsequent 10 ranked outliers are indicated in orange. Detected outliers are shown projected on a single dimension. Note that not all outliers are relevant in these dimensions.

### Conclusion

Mass spectrometry experiments can be characterized by a broad set of quality control metrics. We have employed some specialized pattern mining techniques that take into account the specific properties of this high-dimensional data when looking for interesting patterns, such as subspace mining algorithms. Future work includes extending these initial approaches and relating the found patterns to experimental events.

### References

1. Rudnick et al. (2010) Molecular & Cellular Proteomics 9:225-241.

2. Wang et al. (2014) Analytical Chemistry 86:2497–2509.

3. Ma et al. (2012) Analytical Chemistry 84:5845-5850.

4. Aksehirli et al. (2013) ICDM '13 937-942.

5. Keller et al. (2012) *ICDE '12* 1037–1048.

#### Experiments

Figure 1: Subspace clustering can be used to detect patterns based on a subset of features. The subspaces found across multiple experiments are indicated by the same color.

### **Contact info**

1 ADReM research group, Department of Mathematics and Computer Science, University of Antwerp, Belgium 2 Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp / Antwerp University Hospital, Belgium 3 Flemish Institute for Technological Research (VITO), Mol, Belgium

Universiteit Antwerpen

wout.bittremieux@uantwerpen.be