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Overview 
Quality control is a very important aspect to 
assess the performance of a mass spectrometry 
experiment. Recently the qcML format has been 
proposed as a standard format for quality 
control information. In addition, the jqcML 
open-source Java API has been developed to 
work with qcML data. This standard data format 
and accessible API open up new possibilities to 
perform advanced data mining techniques, 
which can increase our understanding of 
complex mass spectrometry experiments. 

Introduction 
Because of the inherent complexity of mass 
spectrometry, the results of an experiment can 
be subject to a large variability (Figure 1). As a 
means of quality control, several qualitative 
metrics have been defined. However, these still 
suffer some limiting factors: 
•  Compatibility: Storing and communicating 

of quality control data is not standardized, 
limiting the dissemination along with 
experimental data; 

•  Variability: The data can be generated by 
software tools of different origins, with 
content and definitions varying for each tool. 

Conclusion 
The expressive file format and database structure defined by the qcML specification allows a wide range of possibilities in dealing with quality control data in a standardized way. Furthermore the 
jqcML library contains all the required functionality in order to work with qcML data. Using these tools we can easily perform data mining techniques on big datasets detailing several hundreds to 
several thousands of mass spectrometry experiments. Currently we are evaluating different data mining techniques in order to identify interesting patterns, and our future work will continue in this 
direction. 

Quality control data mining 
Quality control samples are standard samples that are periodically run to asses the performance of a 
mass spectrometry instrument. As such, they provide a potentially useful source of information. 
Using QuaMeter4 quality control data was calculated for several thousand of mass spectrometry 
experiments. Subsequently jqcML was used to store the metrics originating from different sources in a 
common database to simplify the data management. 
 
Using this data several analyses are possible: 
•  Univariate analysis to evaluate the behavior of each parameter individually. However, this is often 

insufficient because the different metrics do not function in isolation (Figure 4). 
•  Multidimensional analysis through data mining techniques to evaluate all parameters simultaneously. 

For example subspace clustering can be used to detect outliers based on a subset of metrics (Figure 5). 

qcML 
In order to provide a pervasive and standardized 
means to report quality control information for 
mass spectrometry experiments, the qcML 
standard2 has been developed. The qcML 
standard addresses these issues: 
•  Compatibility: XML-based file format 

(Figure 2; interchange format), and 
relational database (archival); 

•  Variability: Controlled vocabularies to 
unambiguously define terms. 

Figure 1: Reproducibility of identifications between different 
experiments on different instruments. Shaded boxes represent 
peptides, while white boxes represent proteins.1 
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Figure 4: The number of MS/MS scans for a set of standard samples run on a Thermo Scientific LTQ Orbitrap Velos. The samples indicated in 
red were run when the in-source fragmentation broke down. The samples highlighted in blue might seem outliers as well, but the figure on the 
right shows that these samples simply ran for a longer time. 
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Figure 5: Subspace clustering can be used to detect patterns based on a subset of features. These patterns 
can subsequently be reevaluated based on the individual metrics to identify their interestingness. The top 
figure shows each of the specific subspaces across multiple experiments detected by the CartiClus5 subspace 
clustering algorithm. The bottom figures show examples of how these subspaces can be traced back to the 
individual metrics, with the aim of trying to find interesting patterns. 

jqcML3 is an open-
source Java API for 
working with qcML 
data: 
•  Complete object 

model to represent 
qcML data; 

•  The ability to work 
w i t h da t a f r om 
several sources in 
a uniform manner 
(Figure 3). 

Figure 3: Simplified 
representation of the jqcML 
workflow. 

Figure 2: A quality metric as represented in the XML schema for 
the qcML standard version 0.0.8.	  
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