
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

137
Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Data Optimization using Apache Flink

Vikas S, Thimmaraju S N

 Abstract: Map Reduce, Flink, and Spark, also become more

popular in the processing of big data lately. Flink will be an

open platform Big Data processing system for Apache-powered

batch storage and streaming of data. Flink's query optimizer is

constructed for historical information processing (batch) based

on parallel storage systems approaches. Flink query query

optimizer interprets the questions into jobs of different tasks that

are regularly sent. Therefore, taking advantage of task

similarities should prevent redundant computation. In this

article, the multi-demand optimization model for Flink, Flink

was planned and designed on Flink Software Stack's top

priority. It's thought-about as an associate in Apache Flink's

nursing add-on to maximize multi-demand information sharing.

The Flink system takes advantage of option operators '

information sharing resources to reduce overlap and duplication

of multi-query in-network information movement. Research

findings show that the leveraging of shared option operations in

vast information on multiple requests would offer promising

time to perform queries. Therefore, in the stream phase, Without

doubt the Flink approach can be used to boost application

performance over time periods.

 Keywords: BigData, Parallel Processing, Flink,

batchprocessing, selection predicates.

I. INTRODUCTION

Big data emerged in the digital data age as an innovation

space to address the enormous amounts of information

produced precisely. Usually the word "big data" is used to

characterize quantities, size and speed of information (M.

Chen et al., 2014). Such information generally

encompasses giant Quantities of quasi-structured and

unstructured data types that are very difficult to store,

control and analyze using ancient information technology.

Huge data is considered to be a viable technology

(Manyika et al., 2011; McAfee et al., 2012; Rothstein,

2015) and is useful to different organizationsIn general,

telecommunications companies use large quantities of

information to monetize traffic information (Yazti &

Krishnaswamy, 2014). Firms use large-scale data to

identify the ANoptimum maintenance period for

replacement elements before they fail, time and customer

satisfaction (Zhu et al., 2014). Pharmaceutical companies

use extensive knowledge to accelerate the development of

medicines and provide highly customized care (Greenspan

& Valkova 2014). To protect patients from cyber attacks,

governmental agencies use massive data (Kim et al., 2014;

Lyon, 2014).It is very important to extract important and

valuable knowledge from Brobdingnagian datasets to

provide new products and services and to raise the standard

Revised Manuscript Received on December 08, 2019

 Vikas S, Assistant Professor, CSE Department, VTU PG Centre,

Mysuru, Karnataka, India

 Thimmaraju S N, Professor, CSE Department, VTU PG Centre,

Mysuru, Karnataka, India

of either the dominant ones (Kambatla et al., 2014; Talia,

2013). Massive information keeps parallel to an excessively

distributed fashion need process (Philip Chen & Zhang,

2014), These new information and technology can be

thoroughly exploited at an affordable interval of your time.

In a broad range of applications, successful technology has

been implemented (Hsu, 2014), For example, data

processing, knowledge analysis, computer programming

and scientific computing. Nevertheless, these applications

have challenged the processing of massive data due to the

complexity of the information to be processed and the

quantifiability of the underlying algorithms that enable

these processes. (Labrinidis & Jagadish, 2012). Map

Reduce is probably the primary style model for the storage

of the current information on a large scale (Dean &

Ghemawat, 2008) (Dean & Ghemawat, 2010) primarily

attributable to its vital options embodying quantification,

fault tolerance, simple programming, and adaptability.

MapReduce is now primarily used to communicate

decentralized computations on large amounts of

information and a wide-scale processing system on clusters

of object databases. Cluster computing provides high

performance in distributed system environments, as well as

PC power, storage, and network communications (Bollier

& Firestone, 2010), but cluster computing will provide a

hospitable environment for information growth.As a result

of the numerous massive information coming across the

globe, several massive models of information, systems and

new technologies have been developed to provide

additional storageMulti-processing and analyzing various

large and diverse sources in real time. Furthermore, new

solutions are being built to ensure information privacy and

security. These systems provide a lot of flexibility,

scalability and performance compared to ancient

technologies. Moreover, due to the technological advance

of the property, the value of most hardware storage and

process solutions is steadily falling (Purcell, 2013). Many

models, programs, software, hardware and technologies are

designed and projected to extract data from massive

information. For large data applications, they try to confirm

a lot of correct and reliable results. Nonetheless,

distinguishing between various methods in such

surroundings should be time new-consuming and difficult.

In addition, there are several criteria to consider:

Compatibility of code, complexity of planning, cost,

performance, value, reliability, risk support and protection.

There are many massive data studies in the literature, but

many of them seem to target algorithms and tackle

customized massive information methods rather than

technologies (Ali et al., 2016; Chen and Zhang, 2014; Chen

et al., 2014a).

Data Optimization using Apache Flink

138

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

MapReduce framework has been widely used to effectively

handle such massive information. MapReduce has existed

for the previous couple of years because it is the favored

computing model for parallel, batch-style and large-scale

data processing (Apache Flink (2016a). Once successfully

used by Google, MapReduce gained its quality. In addition,

it is a scalable and fault-tolerant methoding device that

provides versatility in processing large voluminous

information in parallel with many low-end computing

nodes (Babu, S. and Herodotou, H. (2013). MapReduce is

becoming present due to its usability, quantifiability and

sensitivity to faults, gaining major traction from every

business and educational world. High performance will be

achieved by breaking the process into tiny work units

running parallel across multiple cluster nodes (Camacho-

Rodríguez (2014)). Within the MapReduce model,

information in multiple machines and information is drawn

as (key, value) pairs at the starting partitions is a distributed

classification system (DFS). The MapReduce framework

performs the most on a single master machine wherever we

tend to be able to pre-process the input file before map

functions are known as or post-process the output of back

scale functions. A combination of map and scale back

functions is also dead once or varied times because it

depends on the associate degree application characteristics

(Tzoumas, K. (2015)).

Hadoop might be MapReduce's trendy open-source

implementation for analyzing massive datasets. This uses a

distributed file system at the user level to handle cluster-

wide processing resources (Zhang, C-Y. (2014)). However,

the system produces unintended acceleration with small

data sets, but it produces an affordable speed with a wider

range of information that increases the number of computer
nodes and reduces the execution time by half an hour

compared to traditional data mining process and alternative

processing techniques (Ghemawat, S. (2008)).

Apache Hadoop and Apache Spark are parallel systems

samples which provide environments for Development of

the programming template for Map Reduce. While Hadoop

Map Reduce (Zhou, W. (2015)) runs on the computer, due

to increased I / O operations, sometimes it is slow and

expensive.

In contrast, as Spark MapReduce (Touriño, J. (2016) is

implemented in the cluster's computer node memory, it

offers a simpler and cost-effective approach to deploying
scalable concurrent and distributed algorithms for large-

scale knowledge processing.

Well we just simply present an efficient flink-based

algorithm even in this article for the mining sequence from

relatively large repositories of breast cancer. We generally

apply our algorithm again to the breast cancer datasets to

check the efficacy of our algorithm for big data analysis.

The major contribution to this paper is our scalable

decentralized frequency mining technique, which is a

timely imitation of MapReduce's programming and parallel

processing system on a Apache flink platform to mine
series from large data sequences. Here they concentrate on

transaction information, structure encoding, key / value

information processing where Requests are translated into

information levels, including a collection of data processing

on batch processing.

A Big information project, many steps are recommended as

shown in Fig.1: First, the proper problem should be chosen.

There are three types of issues. The primary quite drawback

has al-ready been resolved with traditional technique and

there's no have to be compelled to use huge information

technologies. The second quite downside is impossible to

be resolved with current technologies. We must always

specialise in the third quite drawback that's resolvable with

current huge information technologies. Second, we'd like to
get the information by sen-sors, monitors, molecular

identification or extract the information from pub-lic

databases/sources when putting in place a practical goal.

Third, we'd like to try to to information pre-processing to

get clean and significant data. information pre-processing

could be a vital step for the success of a big information

project.

Fig 1: The workflow of a classic Big Data project

Large information could be divided into completely distinct

classes predicated on five aspects: data sources, type of

document, knowledge inventory, data storage and data

serial (see Figure 2) (Hashem et al., 2015).

Fig 2: Big data classification

1. RELATED WORKS

Several scientific research efforts were generated

throughout the field of Hadoop-based device setup to

automate massive information processing, in general. All

research activities in the study will be loosely divided into

two categories; co-occurringand non-competitive. The
same is true of the relative databases (Olston et al. 2008a).

It attempts to find common components between specific

queries, such as scanning, computing, shuffling, etc. (Wang

and Chan, 2013). The non-competitive is close to

materialized display strategies. It materializes and uses the

calculation's intermediate and final effects to respond to

questions (Elghandour and Aboulnaga, 2012).

MRShare may be a simultaneous distribution mechanism

wherever the price of I / O prevails (Nykielet al., 2010).

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

139

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

The interactive possibilities for exchanging maps, map

creation and map functions are therefore taken into

account. Nevertheless, the relaxed MRShare calms and

generalizes the conflicting questions in order to extend

sharing incentives over one job (Wang and Chan, 2013).

The mutual map input monitor and map production are
studied in accordance with relaxed MRShare, and in the

sense of MapReduce, algorithms are implemented to pick a

computational scheme for a batch of jobs. In the relaxed

MRShare, other methods of optimization (i.e., GGT and

MT) are also implemented. In addition, Sahal et al. (2016)

provides a comparative analysis of MRShare and relaxed

MRShare approaches using predicate-based filters on

MapReduce. In step with the comparative results, the

relaxed MRShare technique was found to outperform

MRShare methodology for sharing information on

MapReduce predicate-based filters with appropriate query

execution period.
The comparable work, on the other hand, discussed the

predicate-based filters of Map Reduce that considered huge

knowledge analytical tool with in-disk computation, while

this dissertation provides a broad comparative of Flink's

predicate-based filter that were considered in-memory

computing huge information analytical system.

ReStore platform is among the non-competitive exchanging

systems aimed at maximizing the effects of question

processing victimization on top of Pig (Elghandour and

Aboulnaga, 2012). It uses heuristics algorithmic software to

pick even for the complete or part of the map the correct
materialized results and rescale the output for each work.

The materialized performance provided by the ReStore

process will not be recycled in the case of non-perennial

request workloads that require overhead storage.

A Lefevre et al. research considers the reuse of previous

results stored as materialized views by using MapReduce's

intermediary results due to failure resilience wherever

Hive's linguistic new user-defined functions (UDF) models

were used to efficiently change views if future queries

could be evaluated more quickly. then on the other hand, a

mechanism, SharedHive, is planned to transform a HiveQL

collection of sharing scanning and computing tasks into
new optimized query sets (Dokeroglu et al., 2014). For Pig

scripts, PigReuse was suggested to classify and recycle

CSEs that occur in Pig Latin scripts to tackle the reused-

based optimization. Instead, for the most successful ones to

be implemented, a cost-based search approach is chosen a

linear process problem solver is used to solve this problem

(Camacho-Rodríguez et al. 2014). Through extensive

knowledge of completely and partly reused ways to take

advantage of the gross roughness, the moth template is also

suggested. The basic concept of the theoretical moth model

is the horizontal analysis of the coarse-grained reused
opportunity (i.e., non-equal tuple size) and the horizontally

non-uniform distribution of knowledge (i.e., tuple number).

(Sahal et al., 2017).

BATCH AND STREAM PROCESING FLINK-

SYSTEM

A description of the processing of flink batch and stream

processing is given in this paragraph. Then we will discuss

the proposed Flink-System.

3.1 Flink batch processing overview
Apache Flink is a partner in Apache massive information

analytics platform that enforces a widespread data flow

engine to execute massive data analytics for each channel

and batch (Carbone et al., 2015). This tends to follow a

model for large-scale knowledge processing in-memory

computing. In-memory processing refers to using direct

storage rather than just disks (i.e. MapReduce) to handle

the streaming or batching operation. Thus, Application
reliability is often improved through processing and storing

information straight from RAMHowever, by storing

unlimited data flows for the moment of data analysis, the

overhead of disk access is often reduced. The storage of

Flink batches is addressed over certain static information in

conjunction with this article. For information purposes,

delimited information such as conventional data

warehouses could be an unique case of similar unbounded

information flow, thereby moving traditional information

warehouse systems stored on the hard disk to an analytical

model in memory like a Flink (Carbone et al., 2015)

In this article, batch processing is called a special streaming
case wherever the flow is small and thus record sequence

and duration may not matter (i.e. all records belong directly

to a single all-encompassing window). In particular, Flink

manages batch processing by optimizing its output using a

query optimizer and adding memory-free block operators

(Mohammed et al., 2016).

Apache Flink offers 3 forms of APIs for extreme data

upload, batch processing, and SQL analysis: DataSet API,

Table API and DataStream API (Apache Flink, 2016a). The

DataStream API involves translating and combining data

stream windows to keep the state and partition retrievable.
In contrast to Flink, the DataSet API facilitates the storage

of batches over static datasetsIn addition, the DataSet apis

Flink batch processing utilizes advanced information

systems, Algorithms and operators such as being part of,

categorizing and using various methods of scheduling.

Recently, Flink has provided associate API, specifically

Table API, to specify SQL-like expressions for relative

streaming and batch processing for victimization of

operations. The Flink Table API enables developers to

create down a relative table abstraction list of their queries.

. related tables will be generated from external information

sources or from existing Data sets and Data Streams
wherever related operators are included, such as collection,

aggregation and tables (Apache Flink, 2016b, 2016c).

3.2 Flink Stream processing overview

Flink's Data stream API implements the complete stream

analytics framework on the prime platform of Flink, as well

as time management mechanisms like those out of-order

event processes, window formation, and customer-defined

status monitoring and updating. The stream API is based on

a DataStream concept, an infinite (possibly unbounded) set

of components of a specific type. While Flink's platform

already embraces pipeline information transfers,
Continuing state-of - the-art operators and also a failure

detection system for continuing state-of - the-art changes,

superimposing a stream processor is largely about applying

a windowing approach and a state-of - the-art interface.

These are opaque to runtime, as noted, which treats

windows as merely associating state-of - the-art operators

with implementation.

Within the API in Flink State, unique associates are created

by supplying: I user interfaces or annotations to

dynamically record explicit local variables at an operator's

range at intervals, and ii) an
operator-state abstract to

define divided Key-value

Data Optimization using Apache Flink

140

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

conditions and operations correlated with them. Users even

can plan how to store the condition and check the system's

State Backend abstractions. This allows extremely versatile

administration of custom state in streaming applications.

The check-pointing feature of Flink ensures that any

recorded state is robust with precisely once semantic

updates.
Apache Flink integrates windowing into a state-of - the-art

operator controlled by a dynamic statement consisting of 3

processes: a window assigner associating optionally a

trigger and an evicter. All three processes can be chosen

from the a pool of commonly predefined implementations

(e.g. sliding time windows) or can be expressly stated by

the user (e.g. user-defined functions).

Breast cancer is just one way that a stream-based

architecture with proper message transmission (MapR

Streams) and a scalable, high-performance stream

processor (Flink) can accommodate a variety of different
types of stream-based implementations.

3.3 Highly-Available Flink Clusters

The check-pointing and recovery methods used by Flink

avoid data loss only in the case of a job or employee error.

But Flink needs a sufficient quantity of process slots to

restart the associated application. A streaming program can

be implemented with a total parallelism of eight due to a

Flink setup with four Task Managers granting 2 slots each.

If one of the task managers fails, the amount of available

slots will be reduced to six which is not sufficient to

recover a streaming application with eight parallels. This
problem can be solved for complete cluster setups by

getting standby project managers who can take over the job

of failed staff. New Task Manager processes can be started

mechanically in cluster setups with resource managers such

as YARN and Apache Mesos.Link to all available Task

Managers and query ZooKeeper's storage locations to get

the Job Map, the JAR file, and all state handles from the

remote storage of the last checkpoint of all running

applications. Then restart all applications and reset to the

last completed checkpoints the status of all their tasks using

the recovered Job Graphs and job state handles.A stand-
alone cluster configuration that is highly accessible requires

at least two job managers, one active and one or more

stand-by masters. Flink selects the active Job Manager

using ZooKeeper. If Flink runs on a resource manager like

YARN or Apache Mesos, there is no need for stand-by

masters because a new Job Manager is started

automatically.

Fig 3. Highly-available JobManager setup with Apache

ZooKeeper

1.4 Type of implementation of the flink framework

The proposed Flink architecture optimizes multi-query

efficiency by using the relaxed MRShareand MRShare

strategies for sharing information. You may describe the

measures of the suggested Flink system given below:

1. The predicate extractor module collects the test queries

(i.e. the queries sent by broad information analysts) and

analyzes them to suit standard SQL language. Operators are

then derived attribute names and predicates from the

relationship names. Subsequently, interpreted data queries

are clustered to help extracted relationships, attributes, and

forecast operators in the multi-demand and multi-demand
cluster. The mutual multi-demand cluster that carries

entirely different groups according to the information

operators of the shared option.

2. The replicated multi-demand optimizer module

estimates compare or overlap information sharing chances

(i.e. reciprocal predicate choice operators) in each shared

multi-demand cluster using the MRShare cost model and

relaxed MRShare techniques (Nykiel et al., 2010)

3. A request editor module edits the shared queries and

creates the optimized multi-demand execution

configuration which takes into account the equality and
overlap of multi-demand data sharing.

4. The Flink-System discloses the configured multi-query

execution attempt to Apache Flink. The Flink Table API

interprets the queries as predictions of choice between the

optimized multi-query project in a list of relative operators.

Such operators have been built into such a list of batch

processing tasks transmitted throughout the native system

to Flink's runtime environment Flink reads information

from a large information network and performs optimized

jobs comparable to the lower information volume. The final

results of the goal will be sent back to researchers of big

data. While the algorithmic program one does not lose its
generality, it shows the intended Flink system's pseudo

code adapted to MRShare victimization and relaxed

MRShare techniques.

Fig 4: CPU Utilization using support vector machine

implementation in Flink.

Algorithm 1: Flink-System

Input: Finput = [Q1, Q2, …, Qn]

Output: FMRShareoutput = [Q1, Q2, …, Qm]

FRelaxedMRShareoutput = [Q1, Q2, …, Qm]

// Step 1: Predicates extractor

 Flinkparsed = ParseQuery(Finput)

FlinkPredicates= ExtractPredicates(Flinkparsed)
// Step 2: Sharing classification

FSharedGroup=GetSharedGroup(FlinkPredicates)

// Step 3: Reused-based figurer

FMRShare = MRShare(FSharedGroup)

FRelaxedMRShare=RelaxedMRShare(FSharedGroup)

// Step 4: redaction Flink set up for each F in FMRShare do

F′ = RewiteQuery(F)

FMRShareoutput =

FMRShareoutput ∪ F′

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

141

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

for each Q in QRelaxedMRShare do

F′ = RewiteQuery(F)

FRelaxedMRShareoutput=FRelaxedMRShareoutput ∪ F′

// Step 5: Generate Flink set up

FMRShareoutput=FMRShareoutput ∪FnonSharedGroup

FRelaxedMRShareoutput=FRelaxedMRShareoutput∪

FnonSharedGroup

Fig 5: System Architecture in Flink IDE

II. EXPERIMENTAL RESULTS

It tests the efficacy of the expected batch processing of the

Flink Framework and the stream processing that was

implemented in Java. We appear to show the effectiveness

of Flink for parameter knowledge about the variety of

tuples omparati e analy i wa ommonly per ormed

 etween na e, F-MRT and F-MT,Flink relaxed FT

andFlink MRShare techniques (Guoping, 2014). Analyzed

and contrasted muti-demand execution plans are as follows:

1 FT plan independently running queries
2 F-MT project based on similar opportunities

 for data sharing

3 F-MRT project based on specific opportunities for data

sharing with overlap consideration.

In the end, two parameters are calculated; the application

execution period and thus the filtered data reduction.

Typically, database execution time will be a common

metric for information management systems wherever the

request execution period was the duration from sending

queries to completing queries. Whereas the information

filtered displays the tuples which could be filtered to

respond to a request running on data files such as input data
or the result folder reuse

Fig 6: Data Visualization in vector format

in Flink

Fig 7: predicted data in Binary representation.

\

Fig 8: A matrix visualization.

We can easily distinguish the difference
between Malignant and Begnin of given Breast cancer

Data set.

5.1 Performance measurement

Table1: Performance variation with respect the

network bandwidth

BandWidth(in Mbps) Runtime(In Seconds)

 110 2s

80 to 90 3s

 50 7s

20 - 30 9s

5 - 10 12s or 13s

Fig 9: Performance flow with respect to time and

Network bandwidth

Data Optimization using Apache Flink

142

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3081129219/2019©BEIESP

DOI: 10.35940/ijeat.B3081.129219

III. CONCLUSION

The Flink system is built in this article on top of Processing
of flink batches to maximize multi-query sharing over

massive data. The proposed system of Flink uses two

proven techniques for sharing; MRShare and relaxed

MRShare to reveal the benefit of using mutual option

predicates on multi-query. It can allow critical

improvements in multi-query efficiency by increasing

duplication overheads due to the collection of useless

information which cause extra unnecessary work. The

experimental analysis showed that, relative to the Naive

methodThe Flink platform can simplify and speed up the

exchange of information across a wider range of queries.
The data volume and sections of multi-query overlap will

greatly improve the efficiency of the Flink process by

eliminating redundant filtration tasks.

REFERENCES

1. kerkar, R. (2013) ‘Big data omputing’,in Bu ine & E onomi ,

564pp, December, CRC Press.

2. Alhajj, R. and Polat, F. (1999) ‘U ing o je t-oriented materialized

views to answer selection- a ed omplex querie ’, Information

Sciences, Vol. 118, No. 1, pp.75–99.

3. Apache Flink (2016a) Scalable Batch and Streaming Data Processing

[online] https://flink.apache.org/ (accessed 18 November).

4. Apache Flink (2016b) Table API – Relational Queries Beta [online]

https://ci.apache.org/projects/ flink/flink-docs-release-

0.9/libs/table.html (accessed 8 August).

5. Apache Flink (2016c) Table API and SQL Beta (2016c) [online]

https://ci.apache.org/projects/flink/ flink-docs-release-

1.1/apis/table.html (accessed 13 November).

6. Ba u, S. and Herodotou, H. (2013) ‘Ma i ely parallel data a e and

MapRedu e y tem ’, Foundations and Trends in Databases, Vol. 5,

pp.1–104.

7. [online]https://www.sciencedirect.com/science/article/pii/S002002551

4000346.

8. Council, T.P.P. (2008) TPC-H Benchmark Specification [online]

http://www.tcp.org/hspec.htm (accessed 26 December 2016).

9. Dokeroglu, T., Ozal, S., Bayir, M.A., Cinar, M.S. and Cosar, A.

(2014) ‘Impro ing the per orman e o Hadoop Hi e y haring an

and omputation ta k ’, Journal of Cloud Computing, Vol. 3, No. 1,

pp.1–11.

10. Dong, Y., He, J., Yao, S. and Zhou, W. (2015) ‘The kip-octree: a

dynamic cloud storage index framework for multidimensional big data

 y tem ’, International Journal of Web Engineering and Technology,

Vol. 10, No. 4, pp.393–407.

11. Eiras-Franco, C., Bolón-Canedo, V., Ramos, S., González-

Domínguez, J., Alonso-Betanzos, A. and Touriño, J. (2016)

‘Multithreaded and Spark parallelization o eature ele tion ilter ’,

12. Journal of Computational Science, Part 3, Vol. 17, pp.609–619

[online] https://www.

sciencedirect.com/science/article/pii/S1877750316301107

13. Gkoulalas-Divanis, A. and Labbi, A. (2014) Large-Scale Data

Analytics, National University of Singapore, Springer.

14. Guoping, W. (2014) Optimization Techniques for Complex Multi-

query Applications, National University of Singapore.

15. Lee, K-H., Lee, Y-J., Choi, H., Chung, Y.D. and Moon, B. (2012)

‘Parallel data pro e ing with MapRedu e: a ur ey’, ACM SIGMoD

Record, Vol. 40, No. 4, pp.11–20.

16. Lefevre, J., Sankaranarayanan, J., Hacigumus, H., Tatemura, J.,

Polyzotis, N. and Carey, M.J. (2014a)

17. ‘Opportuni ti phy i al de ign or ig data analyti ’, Proceedings of

the 2014 ACM

18. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The

design of the Borealis stream processing engine. CIDR, 2005.

19. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-

Moctezuma, R. Lax, S. McVeety, D. Mills, ´ F. Perry, E. Schmidt, et

al. The dataflow model: a practical approach to balancing correctness,

latency, and cost in massive-scale, unbounded, out-of-order data

processing. PVLDB, 2015.

20. A. Nadkarni, D. Vesset, Worldwide Big Data Technology and

Services Forecast,2016–2020, International Data Corporation, IDC,

2016.

21. Dynamic allocation in spark, http://spark.apache.org/docs/latest/job-

scheduling.html/.

22. Álvaro Brandón Hernández a, María S. Perez a, Smrati Gupta b,

Victor Muntés-Mulero ” U ing machine learning to optimize

paralleli m in ig data ppli ation ” Future Generation Computer

Systems 86 (2018) 1076–1092

23. M.A. Alsalem a , A .A . Zaidan a , B.B. Zaidan a , M. Hashim a ,

H.T. Madhloom a , N.D. zeez a , S. l yi u ” A review of the

automated detection and classification of acute leukaemia: Coherent

taxonomy, datasets, validation and performance measurements,

moti ation, open hallenge and re ommendation ” Computer

Methods and Programs in Biomedicine 158 (2018) 93–112.

24. Mohamed Hosni a , ∗, Ibtissam Abnane a , Ali Idri a , Juan M.

Carrillo de Gea , Jo éLui Fernández lemán” Reviewing ensemble

 la i i ation method in rea t an er” Computer Methods and

Programs in Biomedicine 177 (2019) 89–112

25. Panagiota Galetsia, Korina Katsaliakia, Sameer Kumar ” Big data

analytics in health sector: Theoretical framework, techniques and

Pro pe t ” International Journal of Information Management 50

(2020) 206–216.

26. Carl Witt, Mar Bux, Wladi law Gu ew, Ul Le er” Predi ti e

performance modeling for distributed batch processing using black

 ox monitoring and ma hine learning” In ormation Sy tem 82 (2019)

33–52.

27. PekkaPääkkönen,1, DanielPakkala1” Reference Architecture and

Classification of Technologies, Products and Services for Big Data

Sy tem ” Big Data Re ear h 2 (2015) 166–186.

28. Tan ir Ha i Sardar, Zahid n ari “ n analy i o MapRedu e

efficiency in document clustering using parallel K-means algorithm

“Future Computing and In ormati Journal 3 (2018) 200e209.

29. Stefano Tribertia,b, Lucrezia Savionia,b, Valeria Sebria,b, Gabriella

Pra ettoni “eHealth or impro ing quality o li e in rea t an er

patient : a y temati re iew “Accepted Date: 7 January 2019.

30. Kee Yuan Ngiam, Ing Wei Khor “Big data and machine learning

algorithms for health-care delivery“www.thelancet.com/oncology Vol

20 May 2019.

31. GASPARD HARERIMANA, (Student Member, IEEE),

BEAKCHEOL JANG , (Member, IEEE),JONG WOOK KIM ,

(Mem er, IEEE), ND HUNG KOOK P RK” Health Big Data

 nalyti : Te hnology Sur ey” Digital Object Identifier

10.1109/ACCESS.2018.2878254.

32. Hanjo Jeong 1 and Kyung Jin CH ” n E_cient MapReduce-Based

Parallel Processing Framework for User-Based Collaborative Filtering

“Symmetry 2019, 11, 748; doi:10.3390/sym11060748.

33. T. Y. J. Naga Malleswari1 and G. Vadi u” MapRedu e: Te hni al

Re iew” Indian Journal of Science and Technology, Vol 9(1),

DOI:10.17485/ijst/2016/v9i1/78964, January 2016.

AUTHORS PROFILE

Mr.Vikas S. received M.Phil degree in Computer Science

in the year 2009 and Master of computer Applicaions

(MCA) in the year 2007 from Visvesvaraya Technological

University and Bachelors Degree in Computer Science in

the year 2004 from kuvempu University. He is currently working as

Assistant Professor in the Department of CS&E, Visvesvaraya

Technological University, PG Center, Mysore, Karnataka, where he is

involved in research and teaching activities. He is having 11 years of

teaching experience and 02 years of Industrial experience. He is a Life

member of India Society for Technical Education (LMISTE), Computer

Society of India (CSI) and Doing Research work on the Area Big data

Analytics.

Dr. Thimmaraju S N, He is presently a professor,

CS&E, Visvesvaraya Technological University, PG

Center, Mysore, Karnataka, he has received his Ph.D

degree from VisvesvarayaTechnological

University(VTU), Belgaum in the year 2010, M.E., degree in Computer

Science and Engineering from University Visvesvaraya College of

Engineering (UVCE), Bangalore in 2002 and Bachelors Degree in

Computer Science and Engineering from PESCE, Mandya in the year

1999. He is involved in research and teaching activities. His major areas of

re ear h are Computer Network , WSN’ and Graph theory. He i ha ing

17 years of teaching experience. He has published around 17 research

papers which include International Journals, International Conferences and

Notional Conferences.

https://ci.apache.org/projects/
https://ci.apache.org/projects/flink/
http://www.tcp.org/hspec.htm
https://www/
http://spark.apache.org/docs/latest/job-scheduling.html/
http://spark.apache.org/docs/latest/job-scheduling.html/

