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Summary: In this work, we propose to progressively increase the training difficulty during learning a neural network model 

via a novel strategy which we call mini-batch trimming. This strategy makes sure that the optimizer puts its focus in the later 

training stages on the more difficult samples, which we identify as the ones with the highest loss in the current mini-batch. The 

strategy is very easy to integrate into an existing training pipeline and does not necessitate a change of the network model. 

Experiments on several image classification problems show that mini-batch trimming is able to increase the generalization 

ability (measured via final test error) of the trained model. 
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1. Introduction 

Training a neural network model which generalizes 

well (has good performance on unseen data) is a highly 

desirable property, but is not easy to achieve. 

Nowadays, most often adaptive gradient methods like 

the Adam optimizer [1] are used for training a model 

as they are much easier to handle (less sensitive to 

weight initialization and hyperparameters) compared 

with mini-batch stochastic gradient descent (SGD). On 

the other hand, their generalization capability has been 

observed to be not as good as SGD [2]. 

In this work, we propose a simple strategy which 

we call mini-batch trimming to increase the 

generalization capability (measured for image 

classification problems as the error of the final model 

on the test dataset) of a trained model. The strategy is 

easy to integrate into an existing training pipeline, does 

not need a modification of the model structure and is 

independent of the employed optimizer (so can be used 

for both SGD and Adam-like methods). Its motivation 

lies from the fact that humans do learn subjects (e.g. 

algebra) ‘from easy to hard’: We first learn the basic 

concepts of a certain subject and learn the more 

advanced topics later. In the same way, we want our 

optimizer to focus in the later training stages on the 

more difficult samples in the dataset. E.g. for image 

classification, these are the ones which are harder to 

classify correctly. 

Our strategy has similarities with curriculum 

learning methods and importance sampling methods. 

In curriculum learning (see the survey in [3]), during 

training the samples are presented in a more 

meaningful order (e.g. from easy to hard) instead of the 

default random order. Importance sampling methods 

do not treat all samples in a dataset in the same way, 

but instead bias the selection of samples via a certain 

criterion. E.g in [4], typicality sampling is used to 

overweight highly representative samples during 

training. A disadvantage of this approach is that it has 

a complicated workflow, which involves density 

clustering (via t-SNE algorithm [5]) in the sample 

space. 

In the following section we will describe our 

proposed mini-batch trimming strategy, whereas in 

section 3 experiments will be done on standard image 

classification problems which demonstrate that the 

strategy leads to models which generalize better. 

 

2. Mini-batch trimming 
 

The training of a neural network model is usually 

done iteratively. In each iteration, a mini-batch 

consisting of B samples (where B is typically 64 or 

128) is drawn randomly from the training set, the mean 

loss for the mini-batch is calculated in the forward pass 

and in the backward pass the gradient of the mean loss 

is utilized to update the model weights. 

In order to focus more on the harder samples in the 

mini-batch, we propose a strategy which we call mini-

batch trimming. As we cannot quantify the ‘hardness’ 

of a sample 𝜑 exactly, we take the per-sample loss 

𝐿(𝜑) as an estimate of its hardness. This makes sense, 

as the more difficult samples in the training set 

typically also have a higher loss. We modify the 

forward pass now in the following way: First the per-

sample loss 𝐿(𝜑) is calculated for all samples in the 

mini-batch. Now all samples in the mini-batch are 

sorted using the per-sample loss as criterion. The mean 

loss is now calculated only from a fixed fraction of the 

samples in the mini-batch with the highest per-sample 

loss. So we are calculating sort of a trimmed mean 

instead of the usual mean. For selecting the fraction p 

of the samples with the highest loss the Pytorch 

framework provides the torch.topk operator, which is 

also differentiable. 

In this way, in each training iteration the update of 

the model weights is biased towards the more difficult 
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samples. In the fashion of curriculum learning, the 

fraction p is linearly decreased during training. For the 

first epoch p has the value 1.0 (take all samples in mini-

batch into account), whereas in the last epoch p is set 

to 0.2 (focus only on the 20 % samples in the mini-

batch with the highest loss). Experiments have shown 

that this is a sensible choice. Note that for neural 

networks without batch-normalization layers (e.g. 

transformer architectures for natural language 

processing), mini-batch trimming brings also a 

runtime improvement,  as the backward pass then 

depends only on a part of the mini-batch 1. 

 

3. Experiments and Evaluation 
 

For the experiments and evaluation, we employ 

three standard datasets for image classification: 

SVHN, CIFAR-10 and CIFAR-100. The datasets 

consist of 32x32 pixel RGB images, which belong to 

either 10 classes (SVHN and CIFAR-10) or 100 

classes (CIFAR-100). We use the Adam optimizer, 

with learning rate set to 0.001 and weight decay set to 

0.0001. The mini-batch size is 128 and training is done 

for 150 epochs, with the learning rate decayed by a 

factor of 0.5 at epochs 50 and 100. We perform the 

experiments with two popular neural network 

architectures for computer vision, Resnet-34 [6] and 

Densenet-121 [7].  

To measure how well the trained model is able to 

generalize, we utilize the top-1 classification error of 

the final model on the test set (which of course has not 

been seen during training). For each configuration, we 

do 10 different runs with random seeds and take the 

average of these 10 runs. We compare the standard 

training with the variant with mini-batch trimming 

enabled. Results of the experiments can be seen in 

Table 1. The evaluation shows that mini-batch 

trimming is able to improve the generalization 

capability of the model in nearly all cases, except for 

one case (Densenet-121 architecture on CIFAR-10 

dataset) where there is a slight regression in the model 

performance. 

 

3. Conclusion 
 

We presented a novel strategy called mini-batch 

trimming for improving the generalization capability 

of a trained network model. It is easy to implement and 

add to a training pipeline and independent of the 

employed model and optimizer. Experiments show 

that the proposed method is able to improve the model 

performance in nearly all cases. In the future, we plan 

to investigate and integrate this strategy within a 

distributed training framework like DeepSpeed. 

 

Table 1: Comparison of training with mini-batch trimming 

disabled / enabled for various network architectures and 

datasets. The first value in each cell is the average test error 

(in percent, averaged over 10 runs) with mini-batch 

trimming disabled, the second value is with mini-batch 

trimming enabled. The lower value is marked in bold. 

 

Dataset 

Network architecture 

Resnet-34 Densenet-121 

SVHN 5.87 / 5.76 4.62 / 4.42 

CIFAR-10 17.43 / 17.01 10.10 / 10.19 

CIFAR-100 48.19 / 47.72 32.95 / 32.18 
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