
3rd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2021),

17-19 November 2021, Porto, Portugal

Oral (Poster is also fine) Topic: Deep Learning

Some like it tough: Improving model generalization

 via progressively increasing the training difficulty

Hannes Fassold 1
1 JOANNEUM RESEARCH – DIGITAL, Steyrergasse 17, 8010 Graz

E-mail: hannes.fassold@joanneum.at

Summary: In this work, we propose to progressively increase the training difficulty during learning a neural network model

via a novel strategy which we call mini-batch trimming. This strategy makes sure that the optimizer puts its focus in the later

training stages on the more difficult samples, which we identify as the ones with the highest loss in the current mini-batch. The

strategy is very easy to integrate into an existing training pipeline and does not necessitate a change of the network model.

Experiments on several image classification problems show that mini-batch trimming is able to increase the generalization

ability (measured via final test error) of the trained model.

Keywords: deep learning, model training, model generalization, importance sampling, curriculum learning, optimization

1. Introduction

Training a neural network model which generalizes

well (has good performance on unseen data) is a highly

desirable property, but is not easy to achieve.

Nowadays, most often adaptive gradient methods like

the Adam optimizer [1] are used for training a model

as they are much easier to handle (less sensitive to

weight initialization and hyperparameters) compared

with mini-batch stochastic gradient descent (SGD). On

the other hand, their generalization capability has been

observed to be not as good as SGD [2].

In this work, we propose a simple strategy which

we call mini-batch trimming to increase the

generalization capability (measured for image

classification problems as the error of the final model

on the test dataset) of a trained model. The strategy is

easy to integrate into an existing training pipeline, does

not need a modification of the model structure and is

independent of the employed optimizer (so can be used

for both SGD and Adam-like methods). Its motivation

lies from the fact that humans do learn subjects (e.g.

algebra) ‘from easy to hard’: We first learn the basic

concepts of a certain subject and learn the more

advanced topics later. In the same way, we want our

optimizer to focus in the later training stages on the

more difficult samples in the dataset. E.g. for image

classification, these are the ones which are harder to

classify correctly.

Our strategy has similarities with curriculum

learning methods and importance sampling methods.

In curriculum learning (see the survey in [3]), during

training the samples are presented in a more

meaningful order (e.g. from easy to hard) instead of the

default random order. Importance sampling methods

do not treat all samples in a dataset in the same way,

but instead bias the selection of samples via a certain

criterion. E.g in [4], typicality sampling is used to

overweight highly representative samples during

training. A disadvantage of this approach is that it has

a complicated workflow, which involves density

clustering (via t-SNE algorithm [5]) in the sample

space.

In the following section we will describe our

proposed mini-batch trimming strategy, whereas in

section 3 experiments will be done on standard image

classification problems which demonstrate that the

strategy leads to models which generalize better.

2. Mini-batch trimming

The training of a neural network model is usually

done iteratively. In each iteration, a mini-batch

consisting of B samples (where B is typically 64 or

128) is drawn randomly from the training set, the mean

loss for the mini-batch is calculated in the forward pass

and in the backward pass the gradient of the mean loss

is utilized to update the model weights.

In order to focus more on the harder samples in the

mini-batch, we propose a strategy which we call mini-

batch trimming. As we cannot quantify the ‘hardness’

of a sample 𝜑 exactly, we take the per-sample loss

𝐿(𝜑) as an estimate of its hardness. This makes sense,

as the more difficult samples in the training set

typically also have a higher loss. We modify the

forward pass now in the following way: First the per-

sample loss 𝐿(𝜑) is calculated for all samples in the

mini-batch. Now all samples in the mini-batch are

sorted using the per-sample loss as criterion. The mean

loss is now calculated only from a fixed fraction of the

samples in the mini-batch with the highest per-sample

loss. So we are calculating sort of a trimmed mean

instead of the usual mean. For selecting the fraction p

of the samples with the highest loss the Pytorch

framework provides the torch.topk operator, which is

also differentiable.

In this way, in each training iteration the update of

the model weights is biased towards the more difficult

3rd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2021),

17-19 November 2021, Porto, Portugal

samples. In the fashion of curriculum learning, the

fraction p is linearly decreased during training. For the

first epoch p has the value 1.0 (take all samples in mini-

batch into account), whereas in the last epoch p is set

to 0.2 (focus only on the 20 % samples in the mini-

batch with the highest loss). Experiments have shown

that this is a sensible choice. Note that for neural

networks without batch-normalization layers (e.g.

transformer architectures for natural language

processing), mini-batch trimming brings also a

runtime improvement, as the backward pass then

depends only on a part of the mini-batch 1.

3. Experiments and Evaluation

For the experiments and evaluation, we employ

three standard datasets for image classification:

SVHN, CIFAR-10 and CIFAR-100. The datasets

consist of 32x32 pixel RGB images, which belong to

either 10 classes (SVHN and CIFAR-10) or 100

classes (CIFAR-100). We use the Adam optimizer,

with learning rate set to 0.001 and weight decay set to

0.0001. The mini-batch size is 128 and training is done

for 150 epochs, with the learning rate decayed by a

factor of 0.5 at epochs 50 and 100. We perform the

experiments with two popular neural network

architectures for computer vision, Resnet-34 [6] and

Densenet-121 [7].

To measure how well the trained model is able to

generalize, we utilize the top-1 classification error of

the final model on the test set (which of course has not

been seen during training). For each configuration, we

do 10 different runs with random seeds and take the

average of these 10 runs. We compare the standard

training with the variant with mini-batch trimming

enabled. Results of the experiments can be seen in

Table 1. The evaluation shows that mini-batch

trimming is able to improve the generalization

capability of the model in nearly all cases, except for

one case (Densenet-121 architecture on CIFAR-10

dataset) where there is a slight regression in the model

performance.

3. Conclusion

We presented a novel strategy called mini-batch

trimming for improving the generalization capability

of a trained network model. It is easy to implement and

add to a training pipeline and independent of the

employed model and optimizer. Experiments show

that the proposed method is able to improve the model

performance in nearly all cases. In the future, we plan

to investigate and integrate this strategy within a

distributed training framework like DeepSpeed.

Table 1: Comparison of training with mini-batch trimming

disabled / enabled for various network architectures and

datasets. The first value in each cell is the average test error

(in percent, averaged over 10 runs) with mini-batch

trimming disabled, the second value is with mini-batch

trimming enabled. The lower value is marked in bold.

Dataset

Network architecture

Resnet-34 Densenet-121

SVHN 5.87 / 5.76 4.62 / 4.42

CIFAR-10 17.43 / 17.01 10.10 / 10.19

CIFAR-100 48.19 / 47.72 32.95 / 32.18

Acknowledgements

The research leading to these results has received

funding from the European Union’s Horizon 2020

research and innovation programme under grant

agreement No. 951911 - AI4Media.

References

[1]. D. Kingma, J. Ba, Adam: A Method for Stochastic

Optimization, in International Conference for

Learning Representations (ICLR), 2015.

[2]. P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, E. Weinan,

Towards theoretically understanding why SGD

generalizes better than ADAM in Deep Learning, in

Conference on Neural Information Processing Systems

(NeurIPS), 2020.

[3]. X. Wang, Y. Chen, W. Zhu, A Survey on Curriculum

Learning, in IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2021.

[4]. X. Peng, L. Li, F. Wang, Accelerating Minibatch

Stochastic Gradient Descent using Typicality

Sampling, in IEEE Transactions on Neural Networks

and Learning Systems, 2020.

[5]. L. van der Maaten, G. Hinton, Visualizing Data using

t-SNE, in Journal of Machine Learning Research,

2008.

[6]. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual

Learning for Image Recognition, in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

2016.

[7]. G. Huang, Z. Liu, L. van der Maaten, K. Weinberg,

Densely Connected Convolutional Networks, in IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

1https://stackoverflow.com/questions/68920059/pytorch-no-

speedup-when-doing-backward-pass-only-for-a-part-of-the-

samples-in-m

