
> TII-21-1219< 

 

1 

 
 

Abstract— Capturing the dynamic behavior of the power 

distribution grids, especially under high penetration of 

renewables, is of high interest for grid operators. The distribution 

power grids are not fully observable due to lack of sufficient 

metering infrastructure, especially downstream of medium 

voltage substations. Therefore, fusion of data recorded at 

significantly different reporting rates was proposed to increase the 

situational awareness of the system with non-negligible effect on 

the accuracy of the monitoring tool. Higher reporting rates are 

possible for next generation smart meters, but they raise higher 

concerns about data privacy, already an issue for smart meters 

rollout. This work proposes a framework for knowledge extraction 

from high reporting-rate smart metering data. The process takes 

place at smart meter level and with low computation and 

communication costs and preserving user privacy, with the scope 

to increase the accuracy of the monitoring tools for distribution 

power grids. The methodology makes use of statistical metrics able 

to capture system dynamics relevant for network diagnosis. The 

proposed approach is validated on a three-phase low voltage 

power flow model applied to a realistic testbed microgrid and real 

field measurements synchronized at one second.    

Index Terms— data privacy, dynamic behavior of power grids, 

high reporting rate smart meters, quality of supply, technological 

knowledge extraction. 

NOMENCLATURE 

Variables:  

p Net active power (kW) defined as difference 

between self generation and consumption at 

prosumers' nodes; defined over a time interval, 

usually reported at 1 s. 

q Reactive power (kvar); 

u Voltage amplitude (line to neutral) (V); 

i Line current, rms value (A); 

𝑝𝑙𝑘

𝑡  Active power absorbed from the grid reported 

at time t and measured by the k-th meter; 

𝑝𝑝𝑣𝑘
𝑡  Active power injected into the grid reported at 

time t by the k-th meter; 

𝑝𝑠𝑘
𝑡  Net-active power exchanged with the grid 

reported at time t by the k-th meter; 
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X Tuple of all discrete random variable vectors, 

as a time series of quadrant measurands, 

associated with each smart meter (SM); 

xk,t The t-th sample of the time series vector 𝑿𝑘 

for data reported by the k-th SM; 

𝑦𝑤𝑎
 The aggregated value of the 1-second time-

series subset, [𝑿]𝑤𝑎
, in the range of the 

aggregation time window, 𝑤𝑎 ; 

𝑦𝑤𝑎
𝑑𝑆𝑁  The aggregated time-series for one day over 

the aggregation time window 𝑤𝑎; 

S The set of all metering units, including SM; 

𝑠𝑘 Element of the set S; 

SM The set of high reporting rate SM (HRRSM); 

𝑠𝑚𝑘 The k-th SM in the set of all HRRSM; 

W The set of time windows under analysis; 

𝑤𝑎 Element of the time window set W; 

𝑋𝑝95, 𝑋𝑝95 
Upper and lower bounds of the 95-percentiles 

of the measurand 𝑥 ∈ 𝑿𝑘(1-second data); 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]𝑤𝑎
 

𝑝95% 

or  

𝑝99% 

 

Estimated lower, 𝑥𝑙𝑏, and upper, 𝑥𝑢𝑏, bounds of 

the 95- percentile, p95% or of the 99-

percentile, p99%, respectively, of the 

distribution of the averaged measurand output, 

x, on the time window 𝑤𝑎; 
Functions:  

ϕ(∙) Aggregation function for the specific time 

window; 

Δ(∙) Signal decomposition function; 

F(x) Cumulative distribution function (cdf) of a 

random variable x, with 𝑥 ∈ 𝑿𝑘; 

𝑓(𝑡) Probability density function of a continuous 

random variable x(t); 

Indices:  

t Time index or element position in time-series. 

k Index indicating the meter in the sets S or SM; 

a Index denoting the time window (e.g. 𝑤60, or 

a=60 means 1-minute time window, while 

𝑤900, means the 15-minutes time window); 

N Total number of SMs; 
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dSN Total number of 1-second samples in daily 

time series (daily samples number); 

πp percentile of a discrete random variable. 

I. INTRODUCTION 

HE power distribution grids are facing major structural and 

operational transformations due to increasing deployment 

of distributed energy resources (DER), especially renewable 

energy resources (RES) at low voltage (LV) feeders on top of 

changes in the typical LV load profiles. These are associated 

with higher dynamical change in the operation of the network 

[1], [2]. The tool at hand for the Distribution System Operators 

(DSOs) for monitoring and operation of this part of the power 

gird is the Distribution Management Systems (DMS), which 

has as core sub-system a Meter Data Management System 

(MDMS) collecting and analyzing data from advanced 

metering infrastructures (AMI) and from Smart Meters (SMs) 

[3]. This data is not synchronized. On the contrary, it comes at 

significantly different time intervals and with different quality 

of associated information (e.g. some network automation 

sensors may report as fast as 30 samples per second, while SMs 

often report every one hour or at best every 15 minutes) [3], [4]. 

The MDMS provides data to be further analyzed by other 

operational sub-modules such as: the Enterprise Resource 

Planning (ERP), Transformer Load Management (TLM), 

Outage Management System (OMS), or the Mobile Workforce 

Management (MWM) [3], for which enhanced functionalities 

were proposed based on the information coming from SMs [5]. 

Among these, one can mention voltage and frequency support, 

fault detection and localization [4], electricity thefts detection 

[5], or demand side response [6], [5]. While these analytical 

tools commonly rely on the data coming from the SMs, the 

information is in fact filtered information on the energy 

delivered in – sometimes unspecified – time intervals rather 

than, for example a much useful, power profile. In the 

following, we denote as “instantaneous” active power at a given 

moment t the active power evaluated over several periods 

(T=20 ms in Europe) of the voltage and current signals   and 

reported at the end of the time interval (e.g., every 1 second). 

Despite the acknowledged need of the DSO for closer 

observability of the dynamics in each node of the LV network 

[1], [7] the challenge arise when mitigating: (a) costs (e.g. 

expensive solution to deploy AMI at each MV/LV node to 

ensure system observability); (b) low quality information from 

already available infrastructure (e.g data from SM, if available, 

comes asynchronously in aggregated form every 60- or 30- 

minutes, thus limiting the observability of quantities such the 

rms values of voltage and current, “instantaneous” active and 

reactive power [7], [8] reported every 1s; and (c) privacy and 

cyber security concerns of grid users in providing access to high 

resolution data collected from SM [9].  

The main scope of large uptake of SM infrastructure was to 

automate the readings with a reporting rate higher than the 

billing period [5]. However, with the advancement of 

communication and data analytics capabilities of cheap edge 

computing extensions SMs are becoming an important source 

of information for which increasingly sophisticated data 

analytics are used to enhance network services such as: (a) 

extracting load signatures using non-intrusive aggregation of 

measurements gathered with high resolution data acquisition 

systems (1s sampling rate) [10]; (b) estimate the network states 

[7]; (c) load profiling [11]; (d) improve forecasting of both load 

and generation [12]; (e) peak-shaving incentives for bills and 

network costs reductions [13], among many others. For most of 

these applications, reporting rates of one hour or half an hour 

were usually considered as sufficient, because the amount of 

RES penetration was relatively low. However, increased spatial 

granularity of the energy exchange in modern distribution 

networks accommodating large number of prosumers and 

dispersed generation requires monitoring of the power transfer 

instead of the energy balancing [13]. To achieve this it is 

necessary to estimate the system states with resolution as low 

as 1-minute (and even below in case of microgrids). Skewness 

techniques [7] or fusion of higher resolution data from MV 

substations metering equipment (e.g. 1-minute or below) and 

asynchronous data from LV SMs were proposed to assess this 

need [7], [8], [14], [15]. However, despite an improvement in 

the State Estimator (SE) models at theoretical level, the 

obtained virtual measurements for LV nodes still preserve the 

smoothness effect of averaging measurement values (e.g. on 30 

minutes time windows). This might hinder undetected issues 

ranging from operation stress of the power assets (e.g., LV 

transformers, cables), abnormal operation of protection devices, 

to poor quality of electricity supply. While those phenomena 

are acknowledged by few reports [16], [17], quantification of 

their severity is yet unexplored. 

A next-generation concept for smart meters, able to process 

measurement information made available at 1-second intervals 

was recently demonstrated as part of a European project [18]. 

Further, several past and more recent works looked into non-

intrusive load monitoring techniques using aggregated 

measurements at load level which were gathered with very high 

reporting rates, down to 1-second [10], [19]. While these 

applications may serve the user, the grid or other third parties 

(e.g. aggregators), they still require special techniques for data 

handling in order to avoid large volumes of data to be collected 

and processed from many advanced SM [19], [20].   

The specific aim of this work is to enhance the monitoring tools 

of the LV network operators in terms of system dynamics 

observation (as it can be captured down to 1-second), using 

information available, and yet unused, from high reporting rate 

smart meters (HRRSM). The design of the methodology 

proposed is shaped by the following research challenges: (1) to 

capture the footprint of the system dynamics within the industry 

practice reporting rates; (2) to avoid any increase in cost on both 

the device and for data transmission (e.g., use the current 

processing unit of the SM, and undergo the same encryption and 

communication infrastructure already deployed); (3) to address 

the data privacy and cybersecurity concerns of the end-user. To 

this end, the major contributions of this work are:  

• Propose a general framework for technological knowledge 

extraction from HRRSM data to enhance the monitoring 

tools of the DSOs, while still preserving the privacy of the 

user. Technological knowledge is defined as relevant 

T 
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information ready to be used by network operators for 

monitoring or diagnosis of network assets.  

• Propose meaningful and simple statistical metrics that allow  

capturing the system dynamics footprint at several sections 

of the power network. These metrics are dynamically 

computed and updated within the time window between two 

consecutive SM’s reporting moments, and they are 

processed at the SM level, with low computational cost.  

• Validate the model framed by these metrics using real field 

measurements from HRRSM and a three-phase LV load-

flow model applied to a realistic testbed microgrid with 

more than 50% renewables installed on the LV feeders. 

The rest of the paper is organized as follows: Section II presents 

the innovative technology of HRRSM (up to 1-second). Section 

III presents the problem and the proposed methodology for grid 

diagnosis using steady-state models for grid operation and real 

HRRSM data. It also details a methodology for knowledge 

extraction and quantification for the severity of possible 

operation or quality of supply phenomena encountered in some 

grid sections. Section IV presents the use cases and critically 

analyzes the results, while Section V concludes the work.  

II. HIGH REPORTING RATE SMART METERS 

One of the main areas of research in smart metering deals with 

increasing their functionalities on top of its metrology scope, 

accuracy and reporting rate for billing purposes. In this paper, 

data achieved with the new generation SMs, called unbundled 

smart meters (UMS) [18], were used.  

A. USM components  

Figure 1 shows a comparison between a classical SM and the 

USM, the latter incorporating one upper layer components, 

called the Smart Meter Extension (SMX). Thus, in the USM 

architecture, the Smart Metrology Meter (SMM) is similar to 

the classical SM and it implements the so-called real-time 

functions securing the measurement information. Its data 

cannot be modified from outside, and it is kept unchanged over 

the whole life of the meter, legally preserving the measurements 

of energy for billing purposes. 

 
Figure 1: SM types: a) traditional; b) Unbundled Smart Meter 

As a difference from traditional SM, in the upper part of the 

USM, called SMX, a variety of local intelligence and functions 

related to Smart Grid functionalities, as well as the different 

communication protocols and cyber-security capabilities are 

implemented. This part is expected to support advanced 

functionalities that enable new energy services, thus being 

prone to upgrades during the lifetime of the meter.  

B. Applications and cyber-security at the SMX layer 

The unbundling into two parts preserves high accuracy and 

metrology aspects covered by the SMM with the high flexibility 

needed for a faster electricity market (down to 15 minutes 

instead of 1-hour) and Smart Grid requirements in the SMX. In 

this way, the large investment in a smart metering infrastructure 

is done for a usual lifetime also ensuring flexibility for new 

control modes. With access to the real-time data and with 

enhanced cyber security functionality at physical layer of the 

SMX (e.g., using physical unclonable function) [20] myriad of 

functionalities is possible. Among the numerous potentials uses 

for the enhanced data from the SMX, it is worth mentioning the 

light power quality initiatives such as voltage level assessment 

and control, high resolution load profiles (LP), or increasing 

individual energy awareness [21]. In this paper we are focusing 

on using high resolution datasets of real-time measurements 

such as voltage, current and active power (in rms values), to 

allow defining new indices for assessing the network capacity 

and its voltage smoothness from the usual utility reporting rates, 

which currently are at 15-, 30- or 60-minutes.  

III. PROBLEM AND METHODOLOGY 

The primary goal of this work is to provide technological 

insight on grid operation using HRRSM data on top of already 

reported temporally aggregated information for billing 

purposes while preserving the privacy of data to the electricity 

users. By technological insight we understand changes of the 

system operating conditions within the time window between 

consecutive reporting of SMs, which could have a significant 

impact on proper operation or the lifetime of the network assets.  

A. The problem and related works 

Generally, dynamic load models are used for assessing the 

behavior of the network in normal and abnormal operation 

conditions [2]. The research so far is focused on transmission 

networks (TN), or at the boundaries between the transmission 

and distribution [1], [22]. These models use measurements 

reported every 2 minutes or even up to 10 ms (phasor 

measurement units-PMUs), corroborated with full observability 

of the network [23]. At low voltage, the state-of-the-art for 

estimating the system dynamics (e.g., to take appropriate 

operation and control actions) is based on estimated load 

profiling. The latter is determined using aggregated data, such 

as deriving mean active power from energy consumption 

recorded at time intervals much higher than TN (e.g.  60- or 30 

minutes [7]. However, averaging information over such large 

time windows is not appropriate to model the energy transfer in 

both directions within the power distribution networks 

incorporating significant RES-based generators [15]. Methods 

such as spatio-temporal aggregation were proposed [9] to 

improve the modeling accuracy. However, there are still two 

concerns with this approach: (a) they might miss useful 

information, such as quality of supply (QoS) in each LV 

distribution nodes; and (b) on top of still preserving the 

smoothing effect on load profile, the aggregation process takes 

place outside the home area network (HAN) of the electricity 

customer, which might be a source of cyber vulnerability [24]. 
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High resolution smart metering data, with reporting rates down 

to 1s have been proposed for non-intrusive load monitoring as 

a cost-effective solution for appliance level behavior of 

consumers [10], or to enhance energy management in 

microgrids [19]. Compared with previous similar works, this 

paper proposes to capture the dynamics of the LV nodes by 

appropriate statistical metrics able to provide useful 

technological insights for the system operator. These metrics 

could be directly calculated at the functional layer of the meter 

with similar computational needs, and preserving privacy and 

cyber security within the SM itself.  

B. Methodology  

The methodology assumes as baseline scenario the ideal case 

when the network operator has access to 1-second data. For 

comparison purposes, three use-cases are investigated against 

this baseline scenario. Two of them refer to the current utility 

practices, when only temporal-aggregated energy data is 

transmitted either every 1-hour (case A) or down to every 15-

minutes (case B). The third use-case deals with the 1-minute 

reporting rates (case C). This is a theoretical but useful case for 

microgrids operation, similar to TN. The scope is to extract 

knowledge from HRRSM data which could be used as system 

dynamic footprint while still preserving user privacy. By data 

we mean the series of recorded measurement values, while by 

information we define the network behavior in terms of voltage 

variations (including values lower than the minimum of higher 

than the maximum a-priori selected thresholds) and variability 

of the power/current (rms values) profiles (e.g. spikes).  

In order to critically assess this problem, a general knowledge 

extraction framework (Figure 2) is proposed. The framework 

has four layers: (L1) data collection layer which includes the 

LV level metering sources and an optional data collection and 

synchronization process for information coming from external 

sources; (L2) temporal aggregation layer for the local data 

integrating an expert knowledge formalism; (L3) descriptive 

analytics layer for both streams of information from the 

previous two layers; and (L4) prescriptive analytics and 

knowledge extraction layer. The upper layers implement 

functionalities where data is translated into model parameters 

and further used in a set of operation specific applications. Two 

such applications are detailed in the next Section of the paper.  

 
Figure 2: Framework for knowledge extraction from high resolution 

dynamical SM data. 

At the physical layer (L1), data is collected from a set of smart 

measurement units S={𝑠1, 𝑠2, … , 𝑠𝑁}, delivering information on 

several measurands (e.g. p, q, u, i) via measurement results 

provided with high (1-second) granularity, while the optional 

information from external contextual sources measurands is 

retrieved at different time intervals (e.g., every 30- or 15-

minutes for price signals, several hours for handling expected 

peak time loading, etc.). The second layer (L2) consists of two 

components: (1) the aggregation processor for temporal 

aggregation of the SM data on 1-, 15-, 30-, and 60- minutes time 

windows 𝑤𝑡 ∈ 𝑾, respectively; and (2) the expert knowledge 

formalism to be processed on the specific time window. 

Let 𝑺𝑴 = {𝑠𝑚1, 𝑠𝑚2, … 𝑠𝑚𝑁} be the subset of HRRSM 

installed at the local community level, where 𝑺𝑴 ∈ 𝑺. Each 

SM, 𝑠𝑚𝑘, is measuring a four-quadrant (Q4), sub-set of 

measurands {𝑝𝑘 , 𝑞𝑘 , 𝑢𝑘, 𝑖𝑘} with a reporting rate of 1-second. 

Our analysis investigates the behavior of the network following 

a full diurnal cycle (e.g., total number of Q4 samplings being T 

= 86400 = 3600s×24h). Thus, for each 𝑠𝑚𝑘 we define a daily 

time-series quadrant matrix 𝑿𝑘
𝑇 = {𝑥𝑘,𝑡} where 𝑥𝑘,𝑡 =

{𝑝𝑘
𝑡 , 𝑞𝑘

𝑡 , 𝑢𝑘
𝑡 , 𝑖𝑘

𝑡 } is the four-quadrant of measurands recorded at 

the time interval t (equal to one second). The synchronized data 

coming from all the smart meters of the network (from the set 

SM) forms the tuple 𝑿 = {𝑿𝟏
𝑻, 𝑿𝟐

𝑻, … , 𝑿𝒌
𝑻, … , 𝑿𝑵

𝑻 }. 

Depending on the scope of the analysis and the network section 

of interest, only a subset of the tuple X of measurands might be 

needed. Thus, for the diagnosis purposes of a MV/LV 

transformer, only p and q are of interest to obtain another the 

apparent power, s (in kVA) which expresses the loading 

conditions of the transformer. This is directly proportional with 

the level of thermal stress of this network asset.  

𝑠 = Σt=1

𝑇𝑡𝑟𝑎𝑓𝑜Σ𝑘=1
N (𝑠𝑘

𝑡 ), where 𝑠𝑘
𝑡 = √𝑝𝑘

𝑡 2 + 𝑞𝑘
𝑡 2 (kVA) (1) 

The measurement uncertainties for derived quantities are 

ignored in this work for simplicity purposes. However, they 

could be easily computed from the SM information, and added 

later on, without affecting the methodology flow. 

In some cases, the SM might be able to report two separate 

values for the active power in the considered point of common 

coupling (PCC):  the load consumption (𝑝𝑙𝑘

𝑡 ) and the local (e.g., 

from PV) power production (𝑝𝑝𝑣𝑘
𝑡 ). In this case, the net power 

exchange with the grid (𝑝𝑠𝑘
𝑡 ) at PCC is defined as: 

 𝑝𝑠𝑘
𝑡 = 𝑝𝑙𝑘

𝑡 − 𝑝𝑝𝑣𝑘
𝑡   (kW) (2) 

At the data collection layer there is also a selection process for 

the measurand(s) of interest. For simplicity, but without loss of 

generality, let us assume that one out of the four measurands is 

of interest for a specific analysis (e.g., the phase-to-neutral 

voltage in a specific node of the distribution grid, 𝑥𝑘,𝑡 = 𝑢𝑘
𝑡 ). 

While rms values of voltage, current or active power variations 

above or below the levels imposed by norms (e.g., related to 

power quality and/or electromagnetic compatibility or by the 

thermal ratings of the equipment) might be accepted for short 

periods of time (e.g., several seconds), when they occur 

frequently might have a detrimental effect on the asset lifetime 

and normal operation [25]. Therefore, a statistical metric of 

their frequency of occurrence and severity within the 

aggregation window is a useful information, similar to the 

assessment of voltage dips. Such metric is the cumulative 

distribution function (cdf), 𝐹(𝑥), of a continuous or discrete 

random variable, 𝑥(𝑡). 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞
,  for 𝑥 ∈ ℝ  (3) 
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The (100)-th percentile (0 ≤ 𝑎𝑝 ≤ 1) of a probability 

distribution with cdf F(x) is the value 𝜋𝑝, such that: 

 𝐹(𝜋𝑝) = 𝑃(𝑋 ≤ 𝜋𝑝) = 𝑎𝑝  (4) 

In the case of electrical current and active power, ensuring a 

reliable and safe grid operation requires that their values in the 

defined (standardized) time intervals lie within limits in more 

than 95% of their occurrences [26]. Therefore, equations (3) 

and (4) become: 

 0.95 = 𝐹(𝑃̅𝑝95) = ∫ 𝑓(𝑝(𝑡))𝑑𝑡
𝑃̅𝑝95

−∞  
  (5) 

 0.95 = 𝐹(𝐼𝑝̅95) = ∫ 𝑓(𝑖(𝑡))𝑑𝑡
𝐼𝑝̅95

−∞  
  (6) 

In the case of voltage, power quality acceptability levels 

similarly impose that the rms voltage values estimated on 

standardized time intervals should be above the minimum level 

in 95% of occurrences. Therefore, the following applies: 

 0.95 = 𝐹(𝑈𝑝95) = ∫ 𝑓(𝑢(𝑡))𝑑𝑡
+∞

𝑈𝑝95  
 (7) 

Because some of these bounds are not symmetric relative to the 

standardized (e.g., nominal or optimal) operating values we first 

apply a decomposition of the signal (1-second measurements) 

to count the positive (upwards) and negative (downwards) 

exceeds against the to-be-reported SM aggregated value.  

Thus, we define the aggregation function, 𝜙(∙), applied to the 

1-second signal values, 𝑿𝑘 , on the aggregation time window, 

𝑤𝑎, as the mean value of all 1-second samples, i.e. 

 𝜙𝑤𝑎
(𝑿𝑘) = (Σ𝑡=1

wa 𝑥𝑘,𝑡)/𝑤𝑎  (8) 

The proposed aggregation process is able to capture the 

asymmetrical variations of the signal. This is important because 

in some diagnostic applications the upward limits might be 

different than the downwards limits. This approach defers from 

the power quality aggregation procedure using the quadratic 

mean (insensitive to the asymmetrical variation of the signal).  

For a daily collection of 1-second measurements, the 

aggregation function will be successively called 𝑑𝑆𝑁/𝑤𝑎 times, 

thus obtaining the aggregated signal, 𝑦𝑤𝑎
𝑑𝑆𝑁 = [𝜙𝑤𝑎

(𝑿𝑘)]𝑑𝑆𝑁. 

The decomposition function, Δ(𝑋𝑘
𝑑𝑆𝑁 , 𝑦𝑤

𝑑𝑆𝑁
𝑎

), gets the original 

1-second signal into a positive component, Δ+, and a negative 

component, Δ−, respectively. 

 Δ+ =|𝑋𝑘
𝑑𝑆𝑁 − 𝑦𝑤

𝑑𝑆𝑁
𝑎

| (9) 

 Δ− = −|𝑦𝑤
𝑑𝑆𝑁

𝑎
− 𝑋𝑘

𝑑𝑆𝑁| (10) 

An example of this decomposition is presented in . 

 
Figure 3: Decomposition of active power, P at 1-second, on MV/LV 

transformer against 15-minutes and 60-minutes time windows 

Then, on each aggregation window, a recursive discrete 

calculation is made for the percentiles of interest in the case of 

each measurand (e.g., for active power we apply eq. (5), for 

current we apply eq. (6), and eq. (7) for voltage, respectively). 

An illustrative example is provided in Figure 4. Several 

percentile bounds, also called confidence bounds, per type of 

aggregation time window could be created for the rules guiding 

the prescriptive analytics in Layer L4 (Table 1). 

Table 1: Signal sampling versus probability distribution bounds 

#samples 1s 

(86400) 

#samples 1-min 

(1440) 

#samples 15-min 

(96) 

#samples 1h 

(24) 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1𝑠 

𝑝95% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1𝑚 

𝑝95% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]15𝑚 

𝑝95% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1ℎ 

𝑝95% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1𝑠 

𝑝99% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1𝑚 

𝑝99% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]15𝑚 

𝑝99% 

[𝑥𝑙𝑏 , 𝑥𝑢𝑏]1ℎ 

𝑝99% 

IV. USE-CASES AND EVALUATION OF RESULTS   

To prove our proposed approach, a realistic LV microgrid 

testbed with more than 50% RES-based prosumers has been 

selected. The behavior of this network captures energy transfers 

governed by lower time constants than the ones assumed 

traditionally by the DSOs (with still low percentages of RES)  

[15]. The analysis considers two distinct sets of daily power 

profiles based on meteorological conditions: i) Case 1 is a 

cloudy day, with low PV production and seldom net-power 

peaks; ii) Case 2 is a sunny day with many short-time shadows 

impacting the PV power profile. These two days were selected 

out of the ten days for which real measurements, fully 

synchronized 1-second recorded data, were available from 18 

distinct locations (Austin database from the PecanStreet data-

portal) [27]. The pre-selection process used a simple algorithm 

for selecting two most distinct daily net-load profiles out of the 

ten available days (e.g., largest root mean square distance). All 

18 locations (represented by the nodes N0 to N17), are 

connected to the same MV/LV distribution substation. Ten of 

them are prosumer nodes (with roof-top PV installations), while 

the other eight are pure loads (Figure 5). 

 
Figure 5: Topology and specific data of the studied LV grid. 

Figure 4: Illustrative calculation of the 95-percentile for active power 

(aggregation time window wa=15-minutes, and Pmaxp95 =32 kW 
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A network situation without PV production is expected to have 

lower dynamics and may be subject of other investigations.  

All the relevant line and node parameters of the network are 

provided in the diagram, while the parameters of the MV/LV 

transformer are given in Table 2. 
 

Table 2: MV/LV Transformer - parameters 

Rated 
power 

Phases/ 
coupling  

Winding 
numbers 

Primary 
voltage 

Secondary 
voltage 

Core 
losses  

Winding 
losses 

50 kVA 3, Δ/Y 2 20 kV 0.4 kV 145 W 1100 W 

 

For simplicity, but without loss of generality, we present the 

analysis for the balanced three phase load flow option of the 

OpenDSS because the scope of the study is to quantify the 

impact of information loss due data averaging on the accuracy 

of the considered distribution system model and its network  

diagnosis capability. It is worth mentioning that the analysis 

itself does not change in case we use an unbalanced power flow 

model, besides to be applied on each phase independently.  

Three distinctive situations were studied, considering the daily 

profiles for: (a) the active and reactive power on the MV/LV 

transformer, for capturing the loading level, loading variability, 

and thermal stress (Figures 6 and 7); (b) the voltage level on a 

remote network node (node N17, at the end of the LV feeders) 

to capture the quality of supply (Figure 8); and (c) the current 

on one of the critical lines, such that to assess possible needs for 

network expansion, or to advice the need for different setups of 

feeder protection relays in emerging microgrids (Figure 9). 

Below we present the cumulative distribution probabilities of 

several measurands of interest for Case 1 (sunny daily net-load 

profiles) as they result from running the load flow model.  
 

(a) Active and reactive power (transformer thermal stress) 

 

b) Voltage at N17 (quality of supply) 

(c) Current on the N11-N12 line – conductor thermal stress and 

protection coordination (are needed, e.g., in microgrids) 

 

Figure 7: Cumulative Distribution (cdf) of reactive power measurements at 

MV/LV transformer, recorded at 1-second (s), 1-, 15- and 60-minutes (min) 

 

 
Figure 8: Cumulative Distribution (cdf) of the phase voltage of phase A in node 

N17, recorded at 1-second (s), 1-, 15- and 60-minutes (min) 

 
Figure 9: Cumulative Distribution (cdf) of line current (N11-N12), recorded at 

1s, 1-, 15- and 60-min. 

Table 3 gives the percentiles (p95, p99) of the active power at 

the MV/LV transformer against the highest recorded value for 

the active power (Pmax) for the baseline scenario and each of the 

three aggregation time windows (1-, 15-, and 60-min), 

respectively.  

Figure 6: Cumulative Distribution (cdf) of active power measurements at 

MV/LV transformer, recorded at 1-second (s), 1-, 15- and 60-minutes (min) 
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Table 3: Active power thresholds in kW (upper bounds) for p95-, p99- and 
p100- (max), respectively for the MV/LV transformer, based on the upward 

discrete integration of the corresponding cdf 

 
Time 
resolution  

p95 
[kW] 

p99 
[kW] 

max 
[kW] 

1-p99 relative 
to the 1s 

information 

1-max relative 
to the 1s 

information 

Case 1 (24 hours, day 1 mix of load and PV production LPs) 

1 second 39.5 46.0 57.5 0 % 0 % 

1 min. 39.5 44.5 50.4 3.3 % 12.4 % 

15 min. 38.0 42.5 42.4 7.6 % 26.2 % 

60 min. 36.5 36.5 36.7 20.7 % 36.1 % 

Case 2 (24 hours, day 2 mix of load and PV production LPs) 

1 second 50.5 57.5 67.1 0 % 0 % 

1 min. 50.0 57.0 62.8 0.9 % 6.5 % 

15 min. 49.0 56.9 56.9 0.9 % 15.3 % 

60 min. 45.0 46.5 46.5 19.1 % 31.1 % 

The severity and the percentage of the lost information in terms 

of dynamic change of the loading conditions of the transformer 

are given by two terms: (1-p99) and (1-max), respectively. 

Thus, the difference between p100 (denoted as 1) of the 

baseline scenario and p99 of the compared scenarios (e.g. 1-, 

15, 60-min) is denoted in the table as (1-p99). Similarly, the 

difference between the p100 in the baseline scenario and the 

maximum recorded value of the measurand of interest in the 

compared scenarios is demoted as (1-max). 

It can be seen that in the case of the cloudy day, the quality and 

quantity of the information lost in terms of system  (slow) 

dynamics are higher than in the case of the sunny day. For Case 

1 the loss of information regarding the maximum active power 

during the day quantified as high as 36.1% when the assessment 

is based on 60-minutes LPs and of 26.2% in case of 15-min LPs. 

Furthermore, in 1% of the situations (described by 1-p99 

relative to 1s information) the quantified loss of information is 

as high as 20.7% in the case of 60-min time window, and 7.6% 

in the case of 15-min time window (5th column). These large 

deviations emphasize the need for reconsidering the accuracy 

reached by theoretical state-estimators with pseudo 

measurements coming form meters with reporting rates above 

15 minutes. They also affect real-time decisions related to 

power quality, coordination of short time-reacting protections, 

or design of smart devices in distribution networks.  

Table 4 gives the lowest threshold of the phase voltage values 

in a remote network node, N17, as calculated based on the 95- 

and 99-percentiles, respectively. The minimum voltage value 

for the baseline scenario is denoted by min. All the above are 

calculated based on the load flow model run in OpenDSS for 

each of the use cases (baseline scenario and each of the three 

averaging time windows 1-, 15- and 60-min, respectively). It 

can be noticed that a significant percentage (>5%) of the 

voltage dips at the MV/LV transformer pass undetected for 

reporting rates higher than 15-min (in case no PQ analyzer is 

installed). Contrary to other impact studies of the RES-based 

generation where this phenomenon was emphasized only for 

sunny days (when large reverse power flows occur), it seems 

that it may actually occur for both cases (sunny and cloudy day). 

Table 4: Phase voltage threshold (lower bounds) for the remote node N17 for 
p95-, p99- and p100- (min), respectively 

Time 

resolution  

p95 

[V] 

p99 

[V] 

min 

[V] 

p99 relative 

to the 1s 

information 

[V] 

min relative 

to the 1s 

information 

[V] 

Case 1 (24 hours, day 1 mix of load and PV production LPs) 

1 second 210.5 206.0 201.3 0 0 

1 min. 210.5 206.0 203.9 0 2.6 

15 min. 210.6 206.5 207.1 0.5 5.8 

60 min. 211.5 210.3 210.7 4.3 9.4 

Case 2 (24 hours, day 2 mix of load and PV production LPs) 

1 second 211.8 208.8 204.3 0 0 

1 min. 211.8 209.3 206.0 0.5 1.7 

15 min. 212.3 210.0 210.4 1.2 6.1 

60 min. 213.5 211.8 212.4 3.0 8.1 

 

Traditionally recorded 15- and 60-minutes discretized LPs give 

significantly lower p95 and p99 values because they do not 

capture the dynamics characterized by high spikes, thus 

hindering quality of supply issues as well as abnormal loading 

conditions for MV/LV transformers.  

Table 5 shows the same analysis on the line current measurand 

on one of the critical line sections of the network. Critical line 

is defined as the line where the highest power flow could take 

place. The simulations results show that the thermal stress on 

this conductor may pass almost undetected above 15 min 

reporting rates, leading to underestimation of the risks related 

to conductor failure or to less sensitive setups of the associated 

protection relays.  
 

Table 5: Probability of occurrence p95%, p99% for the current on a selected 

line, based on upward integrating DPs 

Time 
resolutio

n  

p95 
[A] 

p99  
[A] 

max 
[A] 

1-p99 
relative to the 

1second 

information 

1-max relative 
to the 1second 

information 

1 second 59.3 75.3 92.3 0 % 0 % 

1 min. 58.7 74.7 79.9 0.9 % 13.5 % 

15 min. 57.7 69.3 69.4 8.0 % 24.8 % 

60 min. 56.0 56.6 56.6 24.8 % 38.6 % 
 

 
 

Figure 10: Voltage profile in N17 from measurements with 1s, 1-, 15- and 60-

minutes resolution 
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Figure 10 shows the voltage (rms) profiles at one of the critical 

nodes (N17) of the simulated grid. This node particularly 

emphasizes the significant voltage changes which are not at all 

visible anywhere above 15 min reporting rates. 

In all situations it can be seen that the high granularity data 

obtained from HRRSMs could be statistically processed at the 

SM level to reveal additional information that warn about the 

variability of the state quantities in emerging LV grids and 

microgrids (e.g. where available system inertia is inherently 

low), while still preserving privacy (accurate time series 

reconstruction from this statistical indices is not possible, 

without additional information [29]). The fact that boundary 

information such as p95, p99 and min/max values are already 

useful for a much better understanding of the grid operation 

aspects allow in case of privacy-sensitive situations (e.g., power 

profiles for private entities) to still have access to the reality 

through offline information. Moreover, the p95 and p99 can be 

also calculated at SM level by end user application, thus being 

able to send to external actors such as DSO only statistical data 

which is useful for network operation and planning while 

preserving desired levels of privacy. 

V. CONCLUSION 

This paper shows the benefits of extracting relevant 

technological information from high-reporting rate smart 

meters using simple to calculate statistical metrics able to 

preserve user privacy, while observing, offline, the system 

behavior within the same reporting rates as per current industry 

standards. This work proposed a general knowledge extraction 

framework, with a focus on a statistical based methodology 

which aims to mitigate dual constraints coming from SM data 

owners (privacy and cyber security concerns) and from the 

needs of the DSO to enhance the network situational awareness 

down to the most remote parts of its LV network in order to 

ensure reliability and high quality of service. Compared to other 

state of the art approaches where sophisticated data analytics, 

prone to heavy computational, communication and data 

handling needs, our proposed approach follows two critical 

design constraints: to have minimum computational and 

communication costs and to avoid sending any high resolution 

large volumes of data outside of the home area network of the 

user. The proposed statistical metrics to satisfy these constraints 

are the percentiles (e.g., p95 and p99) and the cumulative 

probability function (cdf). They are simple enough to be 

processed and encrypted at SM level using the same processing 

unit, while capturing relevant system dynamics within the time 

window between two consecutive reporting moments as per the 

current industry standard. Our approach was validated using a 

state of the art three-phase power flow model of a realistic LV 

microgrid with more than 50% RES. Using real data from a 

public database, it has been shown, for three different 

measurands of interest (power on MV/LV transformer, voltage 

in critical nodes, and current on vulnerable line sections), that 

there is a significant loss of information regarding the real 

boundaries of the 95- and 99-percentiles of the grid cases which 

translates into underestimation of thermal stress on sections of 

the grid or their critical assets (e.g. transformers) to possible 

abnormal operation of protection devises, or of the quality of 

service issues. The proposed methodology is suitable for off-

line network and assets diagnosis, prescriptive and post-

contingency analysis, among others. While our methodology 

could not be directly applied for on-line type of operation 

applications such as state estimation in low voltage power grids, 

the proposed statistical metrics could provide additional 

information to improve the current models (enhance the 

accuracy of virtual measurements). This will be a future 

direction of research.      
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