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Abstract: Evolution of smart grid concept aims to address the 

imbalance between electricity demand and supply. Owing to 

consideration on sustainable energy, user comfort, and cost 

efficiency, residential Demand Response (DR) has gained a 

remarkable popularity over the past few years. To further 

enhance these benefits, herein we propose a residential 

appliance scheduling algorithm inspired by Least Slack Time 

(LST) algorithm. The conventional LST algorithm is amended 

with consumption thresholds and waiting factor constraints to 

derive proposed Minimum Slack Time (MST)  algorithm, which 

increase cost and comfort efficiency during DR. Proposed 

algorithm was experimented in a simulated residential 

community consists of 50 houses. Further experiments were 

conducted by aggregating renewable energy sources using 

aggregated MST (AMST) algorithm. All instances were 

compared with an existing scheduling mechanism to assure 

superiority of proposed MST and AMST algorithms, in terms of 

grid electricity consumption, cost, Peak-to-Average Ratio (PAR), 

and waiting time. 

 

Keywords: Cost efficient scheduling, Minimum slack time, 

Peak load reduction, Residential demand response, User 

convenience  

I. INTRODUCTION 

Conventional grids were evolved into smart grids with the 

advancements in communication technologies, energy 

storages, renewable energy sources, and Advanced Metering 

Infrastructures (AMI) [1, 2]. Although smart grids have 

promoted cost reduction, demand management, and 

renewable energy utilization, unceasingly escalating energy 

demand remains as a critical challenge in the modern world 

[3]. Hence, global attention was drawn towards small-scale 

power plants embed with renewable energy generators e.g. 

photovoltaic (PV) panels and wind turbines [4]. Moreover, 

Demand Response (DR) programs were introduced at the 

demand end to efficiently manage energy usage patterns. 

Adjustments in usage patterns aim to obtain cost benefits, 

while maintaining the balance between electricity demand 

and supply [5-8].  

DR programs alter energy consumption behaviors of users 

 
Revised Manuscript Received on December 08, 2019 

* Correspondence Author 

Bhagya Nathali Silva, School of Computer Science and Engineering, 

Kyungpook National University, Daegu, Korea.  

Murad Khan, School of Computer Science and Engineering, Kyungpook 

National University, Daegu, Korea.  

Kijun Han*, School of Computer Science and Engineering, Kyungpook 

National University, Daegu, Korea.  

to maximize cost efficiency and renewable energy utilization, 

meanwhile reducing the dependency on grid electricity [9, 

10]. DR programs are in two types, namely incentive driven 

and price driven. Incentive driven programs offer incentives 

to consumers considering their load adjustments. Whereas in 

price driven DR, consumers are enforced to get the maximum 

benefit from time varying tariffs. Price driven DR aims to 

reduce overall energy consumption and cost by shifting peak 

loads to off peak hours, in order to maximize utilization of 

periods with lower tariffs. Time of Use (ToU), Real-Time 

Pricing (RTP), Critical Peak Pricing (CPP), and Inclined 

Block Rate (IBR) pricing are some widely used price driven 

DR approaches. 

Recently, a lot of insightful works on price drive DR have 

been proposed to encourage optimal utilization of lower 

tariffs. Nevertheless, a majority of these works were proposed 

for single house scenarios [10-17]. A greedy method based 

appliance scheduler that incorporates neural networks with 

multiple energy sources has been proposed by Shukla et al. 

[14] to improve energy efficiency. Multiple schemes for 

autonomous appliance scheduling based on price driven DR 

were proposed by Khan et al. and Silva et al., in order to 

preserve energy, while reducing cost on energy [15-17]. 

Muratori et al. proposed a multi-ToU based dynamic 

domestic energy management approach to obtain a flat 

demand for a particular day [8]. Another price driven DR 

program for residential community was proposed in [18]          

using a mutation operator integrated ant colony optimization 

algorithm. Zhao et al. proposed a domestic DR program 

using IBR and RTP to avoid new peak formation problem 

arise with RTP based DR [19]. A task priority based 

appliance scheduling scheme was proposed by Rastegar et al. 

incorporating Value on Lost Load (VOLL) mechanism [20]. 

This mechanism schedules tasks according to given task 

priorities and allows forceful termination of low priority 

tasks, in order to maintain demand curve. Regardless of 

valuable contributions from previous works, still a larger 

room remains for research in DR in real-world aspect, due to 

unceasing growth in energy demand, depletion of 

non-renewable energy sources, increasing carbon emission, 

and volatility of energy cost.Herein, we propose a Least Slack 

Time (LST) inspired Minimum Slack Time (MST) based 

appliance scheduling algorithm incorporating price driven 

DR to manage residential electricity demand.  
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Although many DR programs have been proposed during 

last few years, a majority of these works focused on single 

house scenarios, which restrict the implementation 

feasibility in real world context. Hence, the proposed 

algorithm’s performance was evaluated for a multiple houses 

context occupied by multiple users. The utmost goals of the 

proposed work are to minimize grid electricity consumption 

and cost, while maximizing user comfort and renewable 

energy usage. Proposed algorithm performance was 

evaluated for two instances. MST instance evaluates the 

algorithm without aggregating renewable energy sources. 

Whereas aggregated MST (AMST) evaluates the 

performance of same algorithm by additionally introducing 

renewable energy sources. Performance evaluations were 

compared with a no scheduling (NS) instance and a VOLL 

scheduling instance proposed by Rastegar et al. VOLL 

scheduling was selected considering its operational 

similarity to proposed algorithm, since both algorithms 

operate according to dynamic priorities. As the breakthrough 

of the MST and AMST, consumption thresholds, waiting 

factor, and renewable energy sources were introduced to the 

conventional LST algorithm. Results obtained from 

experiments reveal the superiority of proposed algorithm and 

thus, we can claim introduced amendments to the LST led 

MST and AMST towards remarkable performance 

improvements in domestic energy management tasks. 

II.  METHODOLOGY 

A. Overview 

Energy usage behaviors of users are uncertain and as a 

result energy management in real-world context remains 

challenging. Hence, experts in both academia and industry 

aim to fine-tune energy management strategies such as DR to 

reduce energy wastage, cost, grid energy utilization, and 

peak demand, while preserving user comfort. In order to 

achieve these goals, this article proposes a price driven DR 

approach based on LST algorithm. Similar with 

conventional LST, proposed MST algorithm schedules 

energy related tasks considering the slack time of a task. 

Slack time is the time difference between desired deadline 

and actual deadline, if a task starts its operation right at this 

moment. Fig. 1 clearly presents the definition of slack time. 

Proposed MST algorithm prioritize tasks in ascending order 

of slack time. In other words, highest priority will be given 

the tasks with least slack time. MST inherits its 

characteristics from conventional LST algorithm. Hence, 

MST becomes highly potential for scheduling uncertain tasks 

such as users’ energy requests, since it does not consider 

prior assumptions on task occurrence rate. Appliance load 

profiles and user requests influence electricity consumption 

patterns of a household. Therefore, an effective appliance 

scheduling program should essentially consider load profiles 

of appliances and user requests. In proposed MST scheduler, 

three types of load shift models were considered namely, 

generic shifting model (GSM), flexible shifting model 

(FSM), and periodic shifting model (PSM), which are 

elaborately discussed in one of our previous works [16]. GSM 

consists of appliances with partial flexibility, whereas 

appliances with additional flexibility belong to FSM. PSM is 

applied on appliances with periodic operational load profiles. 

 

 
Fig.  1. Overview of task slack time 

In proposed scenario all houses in the residential 

community are equipped with a smart meter that facilitates 

bidirectional communication between users and utility, PV 

panels and an ESS. MST scheduler is aware about all 

appliances and sensors deployed in the house and disclose 

any required information to the grid.   

Fig.  2. Overview of the proposed MST scheduling system for the residential community 
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B. MST Scheduler 

The experimented residential community ( X ) consists of 

50 houses ( x ), where x X ,  1 2 3 50, , ,...,X x x x x . Each 

house consists of ten appliances ( a ) and total appliance set 

for the community is given by A , 

where a A ,  1 2 3 500, , ,...,A a a a a . Further, each house 

resides four consumers ( c ) and total consumer set of the 

community is given by C , where 

c C ,  1 2 3 200, , ,...,C c c c c . Operation parameters namely 

earliest start aes , latest finish alf , task duration atd , and 

power consumption apc are defined by the consumer 

according to desired comfort measures and electricity tariffs. 

ToU pricing is used as the price driven DR mechanism to 

calculate electricity bill. Grid electricity, PV panels, and ESS 

are connected to the MST scheduler to optimize energy 

utilization. As illustrated in Fig. 2, ToU tariff from utility and 

user requests are the inputs to the MST scheduler. 

Accordingly, MST scheduler determines the operational 

schedule for residential energy tasks using MST algorithm. 

The MST algorithm is executed for a duration of 24 hours. 

Total duration ( T ) is subdivided to intervals ( t ) of one hour, 

where  1 2 3 24, , , ,...,t T T t t t t  . Each time interval belongs 

strictly to a single demand phase ( x ). Demand phase can be 

either off-peak ( 1 ), average-peak ( 2 ), or peak ( 3 ) 

phases. Demand phase for each t interval is given as below.  
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In price driven DR, electricity bill calculation depends on 

demand phase and corresponding energy consumption. MST 

algorithm incorporated ToU based DR. ToU defines energy 

cost per unit ( xR ) respective to the demand phase as below. 

  

1

2

3

x

R

R R

R







,

,

,

 

1

2

3

t

t

t













 

(2) 

In proposed MST, consumption threshold ( x ) is defined 

for each demand phase and these thresholds contribute to the 

performance improvement in terms of reducing grid 

electricity utilization and increasing renewable energy 

utilization. Further, consumption thresholds distinguish 

MST from conventional LST algorithm. Consumption 

thresholds for each demand phase is given as below. 
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Let aE  denotes energy consumption of appliance a  for a 

single operation cycle. Energy consumption of appliance a  

during t  and energy consumption of all appliances during t  

are denoted by atE  and AtE  respectively. Accordingly, 

energy consumption of a during total period and energy 

consumption of all appliances during total period are denoted 

by aTE and ATE as defined below.  

a a aE pc td  (4) 

at a

t

E E  (5) 

1
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At at

a

E E
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(8) 

Let a determines cost of a single operational task. 

at , At , aT , and AT calculates energy costs respective 

to atE , AtE , aTE , and ATE . 

a x aR E   (9) 
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    (10) 
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(13) 

AMST facilitates alternative energy utilization through 

PV panels or ESS. PV panels are used to charge ESS or to 

operate domestic appliances during peak hours. Although 

PV energy generation depends on the angle of the sunlight, 

herein we considered only the duration with direct sunlight. 

The proposed work assume that duration of direct sunlight 

( D ) is 5 hours. PV energy duration during t interval is 

denoted by t  and determined by rated generation capacity 

of a PV panel ( PVP ) and number of PV panels ( PVN ). Let 

PVE  denotes total energy generation for experimented 

period, when D is total duration with direct sunlight 

and t D . 

t PV PVP N   (14) 

PV tE D   (15) 

In all instances, ESS status ( ESS ) is either charging (1) 

or discharging (0) and represented as a Boolean variable. 

Flow constraints and capacity constraints are defined for both 

statuses. Let ,
c
r maxESS and ,

d
r maxESS denote maximum 

charging and discharging flow rates. Capacity constraints 

regulate maximum capacity ( maxESS ) during charging and 

minimum capacity ( minESS ) during discharging, when 

ESS denotes current storage level of the ESS.  



 

Minimum Slack Time based Appliance Scheduling for Price Driven Demand Response in Smart Communities 

 

90 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B3528129219/2019©BEIESP 

DOI: 10.35940/ijeat.B3528.129219 

1

0
ESS





,

,
 
Charging

Discharging
 

(16) 

1ESS  ,  maxESS ESS   AND  ,
c c
r r maxESS ESS  (17) 

0ESS  ,  minESS ESS   AND  ,
d d
r r maxESS ESS  (18) 

Reducing PAR value is another objective proposed MST. 

PAR value reduction depends on energy consumption of all 

houses in the residential community. Hence, comPAR  is 

defined as below for the community, when ,t xE  denotes 

maximum energy utilization of thx  house during t time.  

,
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In contrasting to existing works that do not quantifies user 

convenience during scheduling, proposed work 

quantitatively determines waiting time according to user 

preference. Waiting time ( aw ) is calculated from maximum 

desired waiting time ( maxw ) defined by users and waiting 

factor ( f ). The minimal waiting time is determined by 

considering maxw ,  f , and expected operation period ( a ) 

of a task, when  ,a a a aes lf td   . Let f is a real value 

between zero and one. 

a a
f

a a a

es

lf td es







 
 

(20) 

maxa f ww   (21) 

MST algorithm defines the objective function as a 

minimization function of cost and waiting factor. Cost of grid 

electricity, cost of uninterrupted frame allocation, and 

waiting factor are the optimization variables. Below given 

objective function was evaluated using mixed integer linear 

programming (MILP).  

   1 1 2

1 1 1

min
T A A

a a a f

t a a

     
  

 
    

 
    

(22) 

 Inverse correlation between cost and comfort is 

demonstrated using user defined cost priority constant ( 1 ) 

and comfort priority constant ( 2 ), where 1 2 1   . 

Appliance status ( a ) can be either on (1) or off (0). 

Requirement for uninterrupted frame allocation comes with a 

cost and denoted by a , where 1a   requires continuous 

frames and 0a  is otherwise as per to user demand.        

C. Experiment Setting 

The community energy management system was simulated 

on Visual Studio 2016 on .NET framework 4.6 using Visual 

C# language. The community consists of 50 houses, where 

each house resides four consumers and deploys ten 

appliances. Appliances belong to GSM, FSM, and PSM 

shifting profiles. Refrigerator and light bulbs are considered 

as non-schedulable appliances. Uncertain behavior of 

consumers is replicated in the experiment setting using a 

random variable to initiate consumer requests. Simulation 

period was 24 hours divided in to off-peak, average-peak, 

and peak hours. Simulation was simultaneously executed for 

NS, VOLL, MST, and AMST instances to maintain 

consistency of consumer requests and energy demand. Grid 

energy allocated for the community per hour is 2500 kWh. In 

AMST instance, ESS and PV panels are integrated to the 

house. Each house installs ten PV panels with 250 W rated 

energy to cover 16.35 m2 roof area (1 panel = 65” x 39”) and 

generates solar power with direct sunlight for a period of six 

hours. Each ESS stores 10 kWh with a 90% depth of 

discharge (DoD). ToU tariffs corresponding to each demand 

phase are given in below Table I.  

Table I. ToU tariffs corresponding to demand phases and 

operational intervals 

Demand phase ( x ) Interval ( t ) Tariff (cents) 

1  
0 6t   

5.5 
22 24t   

2  
6 10t   

10.5 
20 22t   

3  10 20t   14.5 

III. RESULTS AND DISCUSSION 

Despite of the remarkable efforts made in energy 

management domain, still a big room left for research in 

terms of reducing energy cost and preserving consumer 

comfort simultaneously. Using all results generated for NS, 

VOLL, MST, and AMST, performance was evaluated for 

community energy consumption, community energy cost, 

renewable energy source influence, PAR value, and waiting 

time parameters.  

 Fig. 3 illustrates energy consumption results of NS, 

VOLL, and MST instances for 50 houses during 24 hours. As 

clearly visible in Fig. 3(a), off-peak energy consumption was 

increased in all houses for VOLL and MST compared to NS 

due to load shifting. As shown in Fig. 3(b), load profiles of 

community during average-peak hours varied closely in all 

three instances due lack of flexibility arise with consumption 

thresholds and tariffs. Peak energy consumption profiles of 

all houses are shown in Fig. 3(c) and clearly indicates the 

significant load reduction of MST compared to VOLL and 

NS. Although VOLL reduced peak load, it resulted 3.11% 

load lost from total load. Total energy consumption of the 

community and average consumption per house are 

presented in Fig. 3(d). Total peak load reduction obtained by 

VOLL and MST are 180 kWh and 264 kWh respectively. In 

community perspective, MST reduced peak load by 7.89% 

compared to VOLL scheduling without any lost load. 

Corresponding average standard deviation values for average 

energy consumption are given below in Table II. 

 

Table II. Standard deviation values for average energy 

consumption in residential community for NS, VOLL, 

MST scheduling 
 NS VOLL MST 

Off-peak 1.62 2.19 2.46 

Average-peak 2.01 2.21 2.03 

Peak 5.11 4.52 4.30 
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Fig.  3. Energy consumption of residential community. (a) Off-peak energy consumption (kWh); (b)  Average-peak 

energy consumption (kWh); (c) Peak energy consumption (kWh); (d) Total and average energy consumption ((kWh) 

for each demand phase. 

 

 
Fig.  4. Energy cost of residential community. (a) Off-peak energy cost (cents); (b)  Average-peak energy cost (cents); 

(c) Peak energy cost (cents); (d) Total and average energy cost (cents) for each demand phase. 
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Community cost profiles for NS, VOLL, MST instances 

are presented in Fig. 4. All cost profiles correlate with 

consumption profiles in Fig. 3. Monetary value of energy 

consumed by each house during off-peak, average-peak, and 

peak hours are illustrated in Fig. 4(a), 4(b), and 4(c) 

respectively. It is clear from the results that MST reduced 

cost on energy than VOLL scheduling without introducing 

any lost load. Total and average cost profiles for the 

community during each demand phase are presented in Fig. 

4(d). Total cost reduction achieved by VOLL and MST are 

1214.5 cents and 1962.5 cents respectively. Average cost on 

energy during the day is reported as 438 cents, 413 cents, and 

398 cents for NS, VOLL, and MST and corresponding 

standard deviations are given below in Table III. 

Table III. Standard deviation values for average energy 

cost in residential community for NS, VOLL, MST 

scheduling 
 NS VOLL MST 

Off-peak 8.90 12.09 13.57 

Average-peak 21.08 23.26 21.37 

Peak 68.98 61.68 57.61 

AMST instance integrates ESS and PV panels as 

alternative energy sources. Fig. 5 illustrates energy 

consumption profile of each house corresponding to energy 

source. AMST consumption profiles were compared only 

with proposed MST, since MST achieved superior 

performance over NS and VOLL with only grid electricity. 

Noteworthy that PV energy is not aggregated during off-peak 

and average peak hours, since direct sunlight is not available 

during those time intervals. According to Fig. 5(a) and 5(b) 

AMST considerably reduced grid energy consumption 

during off-peak and average-peak hours, owing to ESS 

integration. Although Fig. 5(c) shows that cumulative peak 

load consumption of AMST is higher than MST, in all 

houses grid energy consumption is reduced owing to 

integration of PV panels and ESS. In other words, ESS and 

PV panels acted as alternative energy sources that take over 

peak load burden on grid. This phenomena improved 

consumer comfort by assuring minimal waiting time during 

peak hours. Fig. 5(d) depicts total and average energy 

consumption of the community with respect to energy 

sources. As depicted, in all demand phases, grid energy 

consumption of AMST is considerably less than MST. Since 

AMST outperforms MST, it is evident from the results that 

AMST certainly performs better than VOLL. Table IV 

presents standard deviations for average energy consumption 

with respect to energy source.  

Table IV. Standard deviation values for average energy 

consumption in residential community for MST and 

AMST with respect to energy source 
 MST AMST_GRID AMST_PV AMST_ESS 

Off-peak 2.46 1.69  - 0.58 

Average-peak 2.03 1.96  - 0.43 

Peak 4.30 5.05  1.10 0.88 

 

 
Fig.  5. Energy consumption of residential community with respect to energy source. (a) Off-peak energy consumption 

(kWh); (b)  Average-peak energy consumption (kWh); (c) Peak energy consumption (kWh); (d) Total and average 

energy consumption ((kWh) for each demand phase 
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Fig.  6. Grid energy cost of residential community for MST and AMST. (a) Off-peak energy cost (cents); (b)  

Average-peak energy cost (cents); (c) Peak energy cost (cents); (d) Total and average energy cost (cents) for each 

demand phase. 

 

Cost profiles of all houses in the community for grid 

energy utilization with MST and AMST DR are shown in 

Fig. 6. As clearly revealed in Fig. 6 (a), 6(b), and 6(c), 

reduction of grid energy utilization has replicated in all 

corresponding cost profiles. In community aspect, total 

energy cost for grid electricity was reduced by 5490 cents and 

average cost per house was reduced by 109 cents in AMST 

scheduling and distributed as in Fig. 6(d). Total cost 

reduction achieved by AMST with respect to NS, VOLL, and 

MST are given in Table V. 

PAR value is the ratio between peak demand and average 

demand. Fig. 7(a) demonstrates PAR variation throughout 

the day for the whole community. PAR curve without any DR 

program (NS) has the steepest curve and several significant 

peaks. Although all other mechanisms have flattened the 

PAR curve to a certain extent, AMST has obtained the most 

flattened curve without any significant peaks. Hence, it is 

clear from the results that proposed MST and AMST manage 

grid peak demand without forming new peaks. 

 

 

 
Fig.  7. PAR curve and waiting factor variation. (a) PAR value variation during the day for the community; (b) 

Correlation between waiting factor and cost reduction 
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Table V. Cost reduction percentage achieved by AMST 

with respect to NS, VOLL, and MST 
AMST 

against 

Cost reduction (%) 

1  
2  

3  
1 2 3     

NS 21.44 21.70 38.21 34.40 

VOLL 47.79 31.71 27.57 30.45 

MST 57.65 31.28 21.08 27.94 

Generally, DR programs compromise consumer comfort 

due to load shifting. Nevertheless, proposed work 

quantitatively minimizes waiting time to preserve maximum 

consumer convenience. Aggregating PV panels and ESS 

along with consumer defined constants contributed towards 

this goal. The objective function optimizes waiting factor and 

waiting time is calculated accordingly. The simulated 

scenario considered 1 2 0.5   . Cost variation with 

waiting factor is illustrated in Fig. 7(b). In the instance 

without any DR program, waiting factor did not influence 

energy cost, since operations are immediate. In VOLL, MST, 

and AMST instances energy cost was reduced with 

increasing waiting factor. However, as illustrated AMST has 

the optimal cost reduction with respect to f . Worthy to 

note VOLL scheduling obtained afore stated cost reduction 

with a small portion of lost load.  

IV. DISCUSSION 

Although uncertainty of consumer patterns increase the 

complexity of DR programs, considering the uncertain 

nature of user behaviors is crucial for developing any 

successful DR program. Optimizing energy utilization to 

reduce monetary cost, while preserving consumer 

convenience is the utmost goal of any DR program.  

Nevertheless, this goal is tedious to achieve in real-world 

context due to the inverse correlation between cost and 

comfort. Many works reported in literature [13, 19-22] 

including our previous works [15, 16] successfully optimized 

electricity cost. However, these works did not focus on 

optimizing user convenience simultaneously and a majority 

of these works aimed to optimize energy consumption 

patterns of a single house, which mitigates the feasibility of 

realistic implementation. In order to address these 

challenges, herein we proposed a price driven DR program 

that optimizes energy utilization of a residential community, 

while independently preserving consumer convenience at 

each household.  

Proposed MST algorithm was developed considering the 

concepts of LST algorithm. LST algorithm is less complex 

and widely used for real-time scenarios. Owing to dynamic 

priority driven nature of LST, proposed MST does not 

require a priori task information. [23]. In general, LST is 

well suited for preemptive tasks scheduling. Even though all 

tasks in a household are not preemptive, proposed MST 

alleviated this disadvantage by defining all appliances as 

state machines. Accordingly, non-preemptive tasks that get 

interrupted simply changes the state from active to sleep 

without terminating task operation. Performance of MST and 

AMST were compared with NS and VOLL, where VOLL is 

another DR program based on dynamic priority.  

A shown in Fig. 3, both VOLL and MST disseminated 

energy demand across three demand phases. Although peak 

load demand was reduced in both VOLL and MST, unlike 

MST, VOLL achieved peak reduction with a portion of lost 

load that correlates with task priority. This causes lack of 

consumer satisfaction and was successfully addressed in 

proposed MST. Fig. 4 revealed that both VOLL and MST 

reduced electricity cost. VOLL is a price driven DR based on 

2-tier IBR. During peak hours MST obtained the optimal 

cost, whereas VOLL optimized the cost to a certain extent by 

terminating low priority tasks. Hence, performance gains of 

MST can be explained as positive outcomes of introduced 

consumption thresholds and priority constants on cost and 

comfort. Fig. 5 and Fig. 6 presents consumption and cost 

profiles for MST scheduling after aggregating PV panels and 

ESS. As expected, these integrations significantly improved 

grid energy utilization and monetary expense on grid 

electricity. Hence, notable performance improvements of 

AMST can be explained as a consolidated result of 

aggregating alternative energy sources and afore stated 

characteristics of MST. PAR curve flattening in Fig. 7(a) 

achieved by MST and AMST is another remarkable benefit 

gained through consumption thresholds. These thresholds 

assure load dissemination among load phases without new 

peak formation. Cost reduction with waiting time is 

significant in proposed work as shown in Fig. 7(b), since the 

objective function quantitatively evaluates both cost and 

comfort. Users can determine maximum desired waiting time 

and priorities for cost and comfort. Owing to these 

characteristics, MST and AMST achieved superior 

performance over existing VOLL scheduling in terms of 

peak load shifting, cost reduction, grid energy utilization, 

PAR value reduction, and consumer convenience.  

V. CONCLUSIONS 

A ToU based energy management scheme based on LST 

algorithm was proposed for a residential community consists 

of 50 houses as a DR solution with less complexity and faster 

execution. Proposed MST scheduling was executed for 24 

hours. The utmost objective of the work was to minimize 

electricity cost with aid of load shifting and alternative 

energy sources, while preserving consumer convenience. 

Propose work addressed uncertainty of consumer behaviors 

to mimic realistic operation. Underlying LST concepts 

assured that proposed MST is less complex and suitable for 

real-time scenarios. Further, consumption thresholds in 

MST ensured optimal load dissemination without new peak 

formation. Unlike other DR programs, priority constants 

defined in objective function simultaneously addressed cost 

and convenience parameters quantitatively. Moreover, 

optimal load dissemination flattened the PAR curve 

maintaining the balance between load demand and supply. 

Results revealed that proposed work successfully obtained 

minimal cost with minimal peak load compared to VOLL 

scheduling, which is an existing price driven DR program 

based on dynamic priority. Hence, results evidently claim 

that proposed MST and AMST works improve community 

energy utilization with preserved consumer satisfaction. 

Thus, proposed work will be a promising DR program that 

fits for futuristic smart 

communities.  
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