# Spacing and stability of compacts systems 

Antoine C. Petit
Center for star and planet formation, Globe Institute,
University of Copenhagen
antoine.petit@sund.ku.dk

## Compact systems?

- Majority multi-transit systems (3+ planets)
- Comparable masses and spacings; almost circular and coplanar orbits
- Close to the stability limit
- Excellent "laboratories" to test planet formation


NASA

## How close can you pack? The Equal Mass and Spacing (EMS) systems

Simplest possible setting:

- 3 or more planets
- Coplanar and circular orbit
- Equal mass planets
- Spacing measured in units of Hill radius

$$
R_{H}=\left(\frac{a_{k}+a_{k+1}}{2}\right)\left(\frac{m_{k}+m_{k+1}}{3 m_{S}}\right)^{1 / 3}
$$

Findings:

- Survival time scales exponentially with spacing measured in Hill radii

$$
\log T=b \Delta+c
$$

- Number of planets is not (that) important
- Effective stability (billion of stable orbits reached for $\sim 10$ Hill radii)

Chambers et al. 1996


FIG. 4. The data of Fig. 3 replotted with $\Delta$ measured in units proportional to $m^{1 / 4}$. The crosses are data from runs with $m=10^{-9} M_{\odot}$, the asterisks for $m=10^{-7} M_{\odot}$, and the diamonds for $m=10^{-5} M_{\odot}$. Note the similar slopes in each case.

## Goal of this work

# Provide an analytical model explaining quantitatively the compact system instability. 

## What happens?

## Phenomenology of the instability



- Planets disrupt each other but "quietly" (3+ planets are necessary)
- No evolution of the eccentricities for most of the time before the burst


## (Zeroth-order) 'Three body resonances

## A.k.a Generalised Laplace resonances

$$
\theta_{p, q}=p \lambda_{1}-(p+q) \lambda_{2}+q \lambda_{3}
$$

Zeroth-order since sum of coefficients $p-(p+q)+q=0$
No dependency in eccentricities



Stability limit scales as $\propto\left(m_{\mathrm{pl}} / m_{*}\right)^{1 / 4}$

## Comparison to numerical results



## Eccentric orbits?

Tamayo et al. 2021


Petit 2021


Combining the 3-body MMR overlap with known two-planet stability criteria (Petit et al. 2017, Hadden\&Lithwick 2018) may be enough

Higher-order 3-body MMR can also be treated analytically.

# Observational implications 



All adjacent pairs of planets
All adjacent triplets of planets
In the right units, systems are clustered closer to the stability limit
Only 3+ planet systems
California Kepler Survey catalog (Petitgura +2017 , Johnson +2017 , Weiss +2018 )
Mass-radius relationship from (Weiss \& Marcy 2014)

## Plato and tightly packed systems

- More data for Super-Earths
- Fill the gap (maybe?): Terrestrial planets systems extend the range of mass ratios for exoplanets
- Are terrestrial systems scaled down Super-Earths? (Lambrechts et al. 2019)

- Or do they have a different formation channel?
- Why is the inner solar system so far from the stability limit?



## Conclusions

- Compact systems are destabilised by the combinations of three-planet MMRs and two-planet MMRs.
- Instability time is given by the diffusion time along the three planet MMR network.
- Analytic model is consistent with numerical simulations (beyond the EMS case).
- Super-Earths systems are closer to the stability limit than expected from Hill spacing
- Spacing of terrestrial planet systems will provide insights onto their formation mechanism

