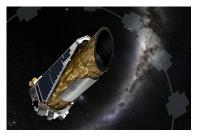
Asteroseismic probing of low mass solar-like stars throughout their evolution with new techniques

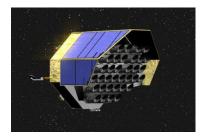
PLATO Mission Conference 2021

Martin Farnir - Université de Liège

12th of October 2021

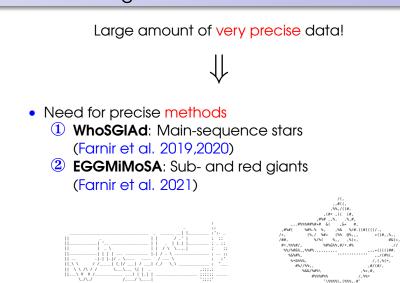


Introduction


Context

Large amount of data

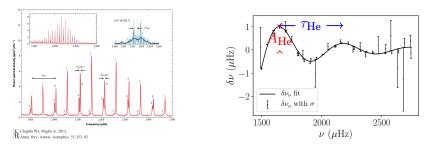
Kepler (2009-2018)


PLATO (2026-...)

Credits: NASA

Credits: CNES

Several hundreds of thousands of pulsating stars! \Rightarrow Unique opportunity for seismology: precise t, M, and R Take advantage of the data

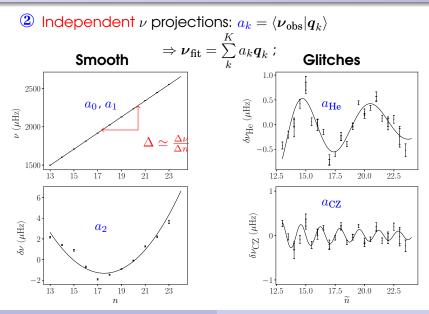


Solar-like oscillation spectra

 $\begin{array}{l} {\color{black} \textbf{Smooth}}\\ \nu_{n,l} \simeq \left(n+\frac{l}{2}+\epsilon\right)\Delta\nu\\ {\color{black} \textbf{Tassoul}} \ (1980), \ {\color{black} \textbf{Gough}} \ (1986) \end{array}$

$$\delta \nu = \nu_{\rm obs} - \nu_{\rm smooth}$$

WhoSGIAd - Whole Spectrum and Glitches Adjustment (Farnir et al. 2019,2020)


Consider the frequencies vector space:

- ① Build orthonormal basis of functions (Gram-Schmidt);
 - From regular functions: $oldsymbol{p}_k$
 - Build orthonormal functions: $\boldsymbol{q}_{k} = rac{\boldsymbol{p}_{k} \sum\limits_{j}^{k-1} \langle \boldsymbol{p}_{k} | \boldsymbol{q}_{j} \rangle \boldsymbol{q}_{j}}{\left\| \boldsymbol{p}_{k} \sum\limits_{j}^{k-1} \langle \boldsymbol{p}_{k} | \boldsymbol{q}_{j} \rangle \boldsymbol{q}_{j} \right\|}$
 - With the scalar product: $\langle \bm{x} | \bm{y}
 angle = \sum_{i}^{N} rac{x_i y_i}{\sigma_i^2}$

WhoSGIAd

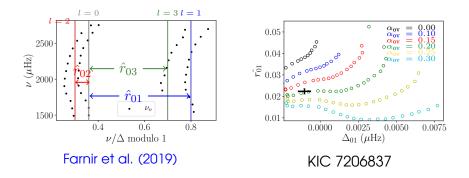
Principle

WhoSGIAd: Principle

Martin Farnir

WhoSGIAd: Principle

3 Combine independent a_k into indicators as uncorrelated as possible;

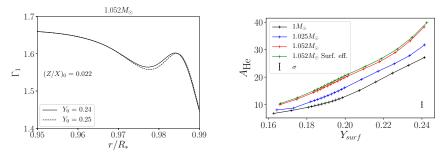

•
$$\Delta_l = a_{l,1} R_{l,1,1}^{-1}$$
,
• $\hat{r}_{0l} = \frac{a_{0,0} R_{0,0,0}^{-1} - a_{l,0} R_{l,0,0}^{-1}}{a_{0,1} R_{0,1,1}^{-1}} + \overline{n_l} - \overline{n_0} + \frac{l}{2}$,
• $\Delta_{0l} = \frac{a_{l,1} R_{l,1,1}^{-1}}{a_{0,1} R_{0,1,1}^{-1}} - 1$,
• $A_{\text{He}} = \| \delta \nu_{\text{He}} \| = \sqrt{\sum a_{\text{He}}^2}$,
• ...

with $R_{l,k,j}^{-1}$ the transformation matrix: $m{q}_{l,k} = \sum\limits_{j \leq k} R_{l,k,j}^{-1} m{p}_{l,j}$

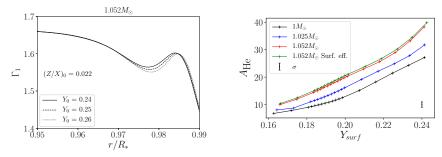
Seismic indicators

Smooth:

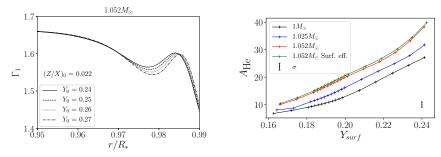
- $\hat{r}_{0l} \rightarrow \text{Composition}$ and evolution (~ Roxburgh & Vorontsov 2003)
- $\Delta_{0l} \rightarrow \text{Overshooting}$ (See also Deheuvels et al. 2016)



Glitch:

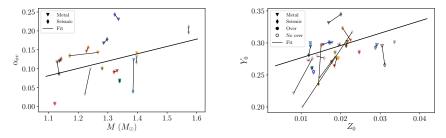

Farnir et al. (2019) Independent of smooth indicators

Glitch:


Farnir et al. (2019) Independent of smooth indicators

Glitch:

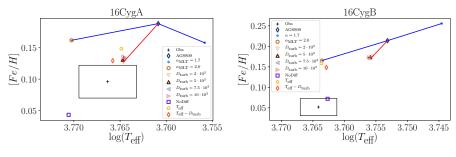
Farnir et al. (2019) Independent of smooth indicators


Glitch:

Farnir et al. (2019) Independent of smooth indicators

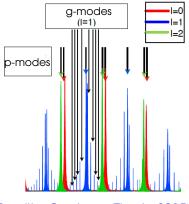
Application to the Kepler LEGACY sample

• Overshooting $\Delta \alpha_{ov}/\Delta M = 0.2 \pm 0.1$, $\alpha_{ov,0} = -0.1 \pm 0.2$ • Galactic enrichment $\Delta Y/\Delta Z = 1.92 \pm 0.79$, $Y_p = 0.26 \pm 0.01$



Free param.: $t, M, X_0, (Z/X)_0$, and α_{ov} ; Seismic: Models with only Δ , $\hat{r}_{01}, \hat{r}_{02}, \Delta_{01}$, and A_{He} ; Metal: Models with only Δ , $\hat{r}_{01}, \hat{r}_{02}, \Delta_{01}$, and [Fe/H].

WhoSGIAd Results


Application to 16 Cygni

Fitting only Δ , \hat{r}_{01} , \hat{r}_{02} , and A_{He} :

Seismology alone cannot discriminate models (Farnir et al. 2020) See also Bulden et al. (2021 in prep.) Sub- and red giants: Mixed-Modes

Pressure and **gravity** character \Rightarrow Probe the **whole** structure!

Credits: Grosjean (Thesis, 2015)

H-shell vs. core-He burning

(Montalbàn et al. 2010, Bedding et al.

2011)

Credits: Mosser et al. 2014 $\Delta \pi_1$: Period spacing

EGGMiMoSA

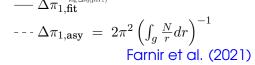
 $\log \Delta \pi_1(Ms)$

0.50

0.75

1.00

1.25


 $\log \Delta \nu_0 (\mu H z)$

EGGMiMoSA:

Extracting Guesses about Giants via Mixed-Modes Spectrum Adjustment (Farnir et al. 2021)

red giants subgiants -3.2 $\log t(yr)$ $\frac{2R_\odot}{2.1M_\odot}$ 10.0-3.498 -3.4 $\log \Delta \pi_{1,\mathrm{as}}(Ms)$ -3.69.6 -3.6 -3.8 $2.1 M_{\odot}$ -9.49.2 -4.0-3.8 $1M_{\odot}$ $1.0M_{\odot}$ 9.0 -4.2

Info on mass, radius, and age

1.50

1.75

 $1'_{6}$

 $\log \Delta \nu_0 (\mu H z)$

1.4

1.8

- Two methods to probe most of the evolution of solar-like pulsators;
- Fast (< 1s per star) and automated;
- Robust indicators for stellar modelling;
- Well suited candidates for the analysis of the PLATO data.

/6	
,,#((,	
.%%./((#.	
. (#+ . (((#.	
.#\#\\.#.	
#WM##N#+# &(.&+ #.	
.#%#(%#%.% %%& %/#.((#(((//	
/*, (%,/ %#+ (%% (%,,, +((#,,%,	
/##, %/%(%,, ,%(+, #5	
#+.%%#/. %#%&%.#/+.#%	11
%%/%#&%,,%%#%.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
%&%#%, ········· ,,/(#%(,	
\$+55%. /.(.%(+.	
#%//%	
\$66/\$#\$\ .\$*.#.	
#3/0#90 / .90+	
'\%%%(%%%,.#'	
/ / / (-) / / /)	
	\
	1
\ - - - - - \/-/-/	1-1