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 

   Abstract: In real-life situations, we human beings faced with 

multi-objective problems that are conflicting and 

non-commensurable with each other. Especially, when goods are 

transported from source to locations with a goal to keep exact 

relationships between a few parameters, those parameters of such 

problems might also arise in the form of fractions which are linear 

in nature such as; actual transportation fee/total transportation 

cost, delivery fee/desired path, total return/total investment, etc. 

Due to the uncertainty of nature, such a relationship is not 

deterministic. Mathematically such kinds of mathematical 

problems are characterized as a multi-objective linear fractional 

stochastic transportation problem. However, it is difficult to 

handle such types of mathematical problems. It can't be solved 

directly using mathematical programming approaches. In this 

paper, a solution procedure is proposed for the above problem 

using a stochastic Genetic Algorithm based simulation. The 

parameters in the constraint of the above problem follow a normal 

distribution. The probabilistic constraints are handled by 

stochastic simulation-based GA for the solution procedure of the 

proposed problem. The feasibility of probability constraints is 

checked by the stochastic programming through the Genetic 

Algorithm approach, without finding the equivalent deterministic 

model. The feasibility is maintained all-over the problem. The 

stochastic simulation-based Genetic Algorithm is considered to 

generate non-dominated solutions for the given problem. Then, a 

numerical case study is provided to illustrate the method. 

 

   Keywords: Genetic Algorithm, multi-objective programming, 

stochastic fractional programming, transportation problem.  

I. INTRODUCTION 

Transportation problems with the ratio of optimization of 

parameters where the ratios are objective functions are 

known as fractional transportation problems. It is concerned 

with delivering the commodities from numerous assets to 

various locations along to keep up great connections among a 

couple of parameters. Those parameters of transportation 

problems may happen as a proportion of actual transportation 

cost/total standard transportation cost, shipping cost/desired 

path, total return/total investment, and so forth. 

   In real-life, distributions of commodities are done on the 

minimization of the ratio of the total cost to total profit. The 
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problem derived by such type of two linear functions gets its 

name as a linear fractional transportation problem (LFTP). In 

many real-world situations, for LFTP, decisions are often 

made in the presence of multiple, non-commensurable, 

conflicting objectives. Such kinds of problems are called 

multi-objective linear fractional transportation problems 

(MOLFTP). It deals with the distribution of goods at a time 

by considering the ratio of several objective functions. The 

parameters associated with the MOLFTP are not 

deterministic or fixed value always. In a mathematical 

programming model, uncertainties are addressed using the 

fuzzy program set theory or probability theory. In the present 

paper, we deal with the parameters to address uncertainty 

using probability theory. The presence of probability in a 

mathematical programming problem leads to a stochastic 

programming (SP) problem. 

   SP problem is one of the mathematical programming 

problems that involve randomness. It is concerned with the 

decision-making in which a few or all parameters traced as 

random variables for capturing uncertainty.   

   In our proposed work, attention has been given to solve a 

stochastic transportation problem having more than one 

linear fractional objective function. The parameters of the 

constraints in the above problem are normal random 

variables. The mathematical model is known as a 

multi-objective linear fractional stochastic transportation 

problem (MOLFSTP). However, a set of optimal solutions 

known as Pareto-optimal (PO) solutions occurs due to the 

presence of conflicting objectives in a MOLFSTP. Finding 

these set of PO solutions is not practically possible, rather an 

approximation set to the true Pareto front (PF) is expected. 

Researchers have attempted various methods to tackle those 

types of MOLFSTP problems. Nowadays, due to the 

popularization of the evolutionary algorithm, many 

researches are going on solving the above problem using the 

said algorithm. One such popular algorithm is the Genetic 

Algorithm (GA) which is an efficient algorithm for tackling 

such type of problems. 

   Because of its population-based nature, in a single 

simulation run, GA can obtain multiple PO solutions. GA is 

superior in comparison to the classical methods. Because it 

finds convergent solutions, finds a diversified set of 

solutions, and covers the entire PF [1]. 

   The remainder of the paper is set up as follows. Following 

the introduction section, the literature survey has been 

provided in Section 2.  
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Basic preliminaries are presented in Section 3. The 

mathematical model is defined and described in Section 4. 

Simulation-based GA and its solution procedure are 

presented in Section 5. Case study and results and discussion 

have been presented in Section 6 and 7, respectively. The 

concluding remarks are given in Section 8, followed by 

references. 

II. LITERATURE SURVEY 

Swarup [2] was the first who proposed an LFTP. The 

systematic development of LFTP is found in [3, 4, 5,6,7]. 

   An algorithm is presented by Gupta and Arora [8] to obtain 

the best cost-time trade-off pairs in a fractional capacitated 

transportation problem with bounds upon availabilities and 

demands. Guzel et al. [9] developed a solution procedure for 

fractional transportation problems with the interval 

coefficient. Pradhan and Biswal [10] presented a couple of 

algorithms to obtain an initial fundamental feasible solution 

of a linear fractional transportation problem. 

   In real-world applications, there are cases that the 

parameters might be inexact and have to be estimated. Due to 

the lack of exact data, some uncertain factors might occur 

within the problems. To deal with such a phenomenon, 

Liu [11] found the uncertainty theory and redefined it. It was 

applied to address uncertain problems by many researchers to 

date [12, 13]. 

   For handling uncertainty, different researchers have 

discussed on SP problem. Dantzig [14] was the first who 

formulated the SP model. Several researchers have 

recommended different models on SP [15, 16]. For handling 

uncertainty, several researchers have discussed on SP 

problem. 

   Many researchers have been developed for stochastic 

fractional transportation problems and their solution 

techniques. Charles and Dutta [17] proposed an interactive 

conversion technique that converts the sum of probabilistic 

fractional objective into the stochastic constraint with the 

help of a deterministic parameter. Charles and Dutta [18] 

applied multi-objective stochastic fractional programming 

problems to compiled published circuit board problems. Jain 

and Arya [19] presented an inverse optimization model for 

the transportation problem of optimizing the ratio of linear 

functions and linear constraints. Jadhav and Doke [20] 

presented a solution method to solve the fractional 

transportation problem wherein the coefficient of the 

objective function is fuzzy. Javaid, Jalil, and Asim [21] 

introduced a transportation problem model with a couple of 

fractional objectives involving random parameters. 

   Holland [22] developed GA, which is primarily in light of 

the idea of the biological process of natural selection. 

Holland and his understudies have devoted a great deal to the 

advancement of the area. 

   Many researchers have studied evolutionary computing and 

its application for solving transportation problems. GA is a 

well known and effective strategy for such sort of issues. 

Vignaux and Michalewicz [23] discussed how to solve linear 

transportation problem using alternative GA. Syarif [24] 

developed a GA approach for solving nonlinear side 

constrained transportation problems. Bharathi and 

Vijayalakshmi [25] presented an application of evolutionary 

algorithms to the multi-objective transportation problem 

(MOTP). A solution procedure is presented for a MOTP by a 

fuzzy stochastic simulation-based GA by Dutta, Acharya and 

Mishra. [26]. A GA is applied for shipping, location, and 

allocation of dangerous substances to a novel bi-objective 

stochastic model [27]. Recently, Karthy and Ganesan [28] 

applied a GA for solving the MOTP. 

   Going through the literature survey, we were motivated by 

a work done on MOTP using GA by Dutta, Acharya and 

Mishra. [26]. Their paper concentrated on fuzzy stochastic 

simulation-based GA as a solution procedure for a MOTP. 

The amount and request parameters of the restrictions follow 

fuzzy-exponential and fuzzy-normal distribution, 

respectively. However, in our proposed paper, a novel 

strategy has been evolved for MOLFSTP involving Normal 

distribution. 

   For solving the proposed model, we implement a 

simulation-based GA. The main difference between this 

paper and the above paper is listed as follows. Firstly, this 

paper concentrated on a ratio of two objective functions. 

Secondly, both supply and demand parameters are normal 

random variables. Finally, there are no fuzzy parameters in 

this paper. 

III. BASIC PRELIMINARIES 

A. Bounded Random Number (𝐁𝐑𝐍)  

The function 𝑟𝑎𝑛𝑑() is one way to generate random numbers 

between 0 and 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋, where 𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 is defined 

in #𝑠𝑡𝑑𝑙𝑖𝑏 as (210 − 1) in C++. Hence, to generate a random 

number in [0,1], the following steps are followed. 

 𝑚 = 𝑟𝑎𝑛𝑑() 

 𝑚 ← 𝑚/𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 

B. Normal Distribution 

 It is one of the probability distribution. The parameters 

which define Normal distribution are mean (location 

parameter) 𝜇 and standard deviation (scale parameter) 𝜎. 

The probability density function (pdf) of Normal distribution 

is defined as: 

}
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where 𝑥 > 0, 𝜇 is mean, 𝜎 > 0 is standard deviation. 

For generating Normal distribution, the following steps are 

used. 

Step-1: Generate 𝑚 and 𝑛 from 𝐵𝑅𝑁 0,1 . 
Step-2: Use mean 𝜇 and standard deviation 𝜎. 

Step-3: Return 𝑧 = [−2ln⁡(𝑛)]
1

2 sin⁡(2𝜋𝑛).  

Step-4: Return 𝜇 + 𝜎𝑧 

C. Stochastic Simulation for Probabilistic 

Constraints 

In a stochastic condition, some or all the coefficients of a 

probabilistic constraint may be random variables with a 

known probability distribution. For the probabilistic 

constraints where randomness occurs on the right-hand side 

are defined in (2) and (3). 
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Let's define 𝑈𝑠(𝑟1 , 𝑥) and 𝑊𝑡(𝑟2 , 𝑥) as follows: 
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The probability constraints as defined in (2) and (3) can be 

written as follows: 

msxrUP ss ,,2,1;1)0),(( 1       (4) 

ntxrWP tt ,,2,1;1)0),(( 2       (5) 

Where  𝑟1 = (𝑎1 , 𝑎2,, … , 𝑎𝑚 )  and 𝑟2 = (𝑏1 , 𝑏2, … , 𝑏𝑛)  are an 

𝑚 -dimensional and 𝑛 -dimensional vector of random 

numbers respectively, 𝑥 = (𝑥1𝑡 , 𝑥2𝑡 , … , 𝑥𝑚𝑡 ) ; 𝑡 = 1,2, … , 𝑛 

is the vector of decision variables and 𝛾𝑠; 𝑠 = 1,2, … , 𝑚 and 

𝛿𝑡 ; 𝑡 = 1,2, … , 𝑛 are pre specified confidence levels. 

   𝑁  independent random vectors 𝑟1
𝑖 = (𝑎1

𝑖 , 𝑎2
𝑖 , … , 𝑎𝑚

𝑖 ) ; 

𝑖 = 1,2, … , 𝑁  and 𝑀  independent random vectors 𝑟2
𝑗

=

(𝑏1
𝑗
, 𝑏2

𝑗
, … , 𝑏𝑛

𝑗
) ; 𝑗 = 1,2, … , 𝑀 are generated where 𝑎𝑠

𝑖  and 

𝑏𝑡
𝑗
 are random numbers generated according to the 

distribution of 𝑎𝑠  and 𝑏𝑡  respectively. Let 𝑁𝑠
′ 𝑠 = 1,2 … , 𝑚  

and 𝑀𝑡
′(𝑡 = 1,2, … , 𝑛  be the number of cases in which 

msxrU s ,,2,1;0),( 1  and

ntxrWt ,,2,1;0),( 2  respectively.  

Then by the definition of probability, (2) and (3) hold if 
𝑁𝑠

′

𝑁
 ≥ 1 − 𝛾𝑠 and 

𝑀𝑡
′

𝑀
 ≥ 1 − 𝛿𝑡  respectively for 

𝑠 = 1,2, … , 𝑚; 𝑡 = 1,2, … , 𝑛. 

D. Feasibility of Probability Constraints 

For checking the feasibility of the probability constraints of 

the right hand side parameters, the following steps are used. 

Step-1: Use all the steps for generating Normal 

distribution. i.e., 

 Generate 𝑟𝑠 , 𝑟𝑠
′ , 𝑟𝑡and 𝑟𝑡

′ from 𝐵𝑅𝑁(0,1). 

 Use mean 𝜇𝑠 , 𝜇𝑡
′  and standard deviation 𝜎𝑠 , 𝜎𝑡

′ . 

 Return 𝑧𝑠 =  −2ln⁡(𝑟𝑠
′ ) 

1
2 sin⁡(2𝜋𝑟𝑠) and  

𝑧𝑡 =  −2ln⁡(𝑟𝑡
′ ) 

1
2 sin⁡(2𝜋𝑟𝑡) 

 Return 𝑇𝑠 = 𝜇𝑠 + 𝜎𝑠𝑧𝑠  
and 𝑇𝑡

′ = 𝜇𝑡
′ + 𝜎𝑡

′𝑧𝑡   
Step-2: Return 𝑇 =  𝑇𝑠

𝑚
𝑠=1  and 𝑇 ′ =  𝑇𝑡

′𝑛
𝑡=1  

Step-3: Return 𝑃 = 𝑇 − 𝑇 ′  

Step-4: If 𝑃 ≥ 0, then the generated population is feasible 

for the probability constraints. 

IV. MATHEMATICAL MODEL OF MOLFSTP 

Mathematically, a MOLFSTP where randomness is 

considered in the right-hand-side constraints is expressed as: 
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where 𝑥𝑠𝑡 ≥ 0,0 < 𝛾𝑠 , 𝛿𝑡 < 1; ∀𝑠, 𝑡. 
Let 𝑎𝑠(𝑠 = 1,2, … , 𝑚)  and 𝑏𝑡(𝑡 = 1,2, … , 𝑛)  are normal 

random variables. The unit shipping cost coefficients along 

the traveled route and preferring route for transporting of 

goods from source 𝑠  to destination 𝑡  is represented by 𝑐𝑠𝑡
𝑙  

and 𝑝𝑠𝑡
𝑙 (𝑠 = 1,2, … , 𝑚; 𝑡 = 1,2, … , 𝑛; 𝑙 = 1,2, … , 𝐿) 

respectively. 𝛾𝑠 and 𝛿𝑡  are pre specified probability levels for 

all 𝑠, 𝑡. The variable 𝑥𝑠𝑡  denotes the amount transported from 

source 𝑠 to destination 𝑡. It is expected that the denominator 

of the objective function remains positive, and the total 

supply is greater than or equal to total demand. 

V. SIMULATION BASED GA FOR MOLFSTP 

The method is designed to solve the MOLFSTP. The 

algorithmic steps are described as follows: 

Step-1: Fix GA parameters and termination criteria 

        𝑀𝑎𝑥−𝑔𝑒𝑛  

Step-2: Generate the parameters for the given distribution. 

Step-3: Initialize the GA population for the objective  

function 𝑍𝑙(𝑙 = 1) with the given constraints. 

Step-4: Initialize generation 𝑔𝑒𝑛 = 1  and penalty 

parameter 𝜏 

Step-5: Apply the bounds on the population and calculate 

constraints for each objective function. 

Step-6: Check the feasibility condition, if satisfied go to 

Step 7 else go to Step 3. 

Step-7: Probability criteria is checked, if satisfied go to 

Step 8 else go to Step 3. 

Step-8: Calculate the functional value i.e., the objective 

function. 

Step-9: Apply Selection, Crossover and Mutation 

respectively. 

Step-10: Again, calculate the functional value i.e., the 

objective function. 

Step-11: Again check feasibility criteria, if satisfied go to 

Step 12 else go to Step 3. 

Step-12: Again check probability criteria, if satisfied go to 

Step 13 else go to Step 3. 

Step-13: Apply Elitism. 

Step-14: Check the stopping criteria. If reached, the current 

population is the best population else 𝑔𝑒𝑛 = 𝑔𝑒𝑛 +
1 and go to Step 5. 

Step-15: Ideal solution is obtained for the first objective 

function. 

Step-16: Repeat the steps from Step 2 to Step 15 for the 

other objective function until ideal solution obtained for 

all objective functions. 

Step-17: Construct a pay-off matrix containing the ideal 

solution and functional values as shown in Table I.  

Step-18: Formulate the fitness function by using bracket 

penalty operator: 
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Table I: Pay-Off Matrix 
Ideal 

Solutions  

Objective functions 

𝑍1(𝑥) 𝑍2(𝑥) ⋯ 𝑍𝐿(𝑥) 

𝑋(1) 𝑍1(𝑋 1 ) 𝑍2(𝑋 1 ) ⋯ 𝑍𝐿(𝑋 1 ) 

𝑋(2) 𝑍1(𝑋 2 ) 𝑍2(𝑋 2 ) ⋯ 𝑍𝐿(𝑋 2 ) 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑋(𝐿) 𝑍1(𝑋 𝐿 ) 𝑍2(𝑋 𝐿 ) ⋯ 𝑍𝐿(𝑋 𝐿 ) 
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𝑖 = 𝑠 + 1, 𝑠 + 2, … , 𝑠 + 𝑡. 
where 𝑥𝑠𝑡 ≥ 0; ∀𝑠, 𝑡.  𝐹𝑙(𝑥)  is a fitness function, 𝑍𝑙(𝑥)  is 

objective function, 𝜏 is penalty parameter, 𝑧𝑠  and 𝑧𝑡  are as 

described in Section 3.4,< g𝑖 𝑥 > is constraint violation in 

which <∙> denotes the absolute value of the operand where 

< 𝑔 >=  
0, g ≥ 0
g, g < 0

  
 

Step-19: Solve using GA to obtain Pareto optimal 

solutions.
 

The algorithmic steps described earlier are displayed as a 

flow diagram in Fig. 1. 

VI. CASE STUDY 

GAA-Oil mining"(name changed) company mines from 

three branches to supply the oil for five cities in India. The 

manager of the company decided to plan for transportation 

for the next month onwards. He needs to collect the primary 

records along with delivery capacity, demand, total profit, 

cost of a unit product, shipping time, and so on at the start of 

his project. However, due to uncertain human and natural 

phenomena, he can't get these data exactly. According to 

previous experiences, the company assumes that the supply 

and demand parameters follow a normal uncertain 

distribution with known mean and standard deviation. 

   The production cost and profit per unit (in liters) from 

source to destination are given in Table II. Similarly, the 

delivery time from the source to the destination for a unit is 

given in Table III. 

Table II: Production cost/profit per unit (in rupees) 
 

Source 

Destination 

City 1  City 2  City 3  City 4  City 5 

Branch 1 18/30  17/32  18/34  18/30  20/32 

Branch 2 10/20  10/18  12/22  9/20  10/16 
Branch 3 20/40  18/32  20/32  22/30  18/36 

Table III: Delivery time (actual/standard) per unit (in 

hours) 
 

Source 

Destination 

City 1  City 2  City 3  City 4  City 5 

Branch 1 10/12  8/10  10/13  10/12  12/15 
Branch 2 6/8  6/9  7/10  5/7  6/9 

Branch 3 12/14  10/13  12/15  13/18  10/12 

The mathematical model for the above problem is expressed 

as below in (12) to (15). 
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      Fig. 1: Flow Diagram of Simulation based GA 

Approach to solve MOLFSTP 
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𝑥𝑠𝑡 ≥ 0 and 0 < 𝛾𝑠 , 𝛿𝑡 < 1; ∀𝑠, 𝑡. 
The known parameters of a normal distribution with a 

specified probability level (SPL) of supplies 𝑎𝑠(𝑠 = 1,2,3) 

and demands 𝑏𝑡(1,2,3,4,5) are presented in Table IV and 

Table V respectively. 

Table IV: Values of SPL; mean and standard deviation 

for supplies 𝒂𝒔 
Mean standard deviation SPL (𝛾𝑠) 

𝜇1 = 24 𝜎1 = 2 𝛾1 = 0.9 

𝜇2 = 32 𝜎2 = 1.5 𝛾2 = 0.9 

𝜇3 = 30 𝜎3 = 2 𝛾3 = 0.9 

Table V: Values of SPL; mean and standard deviation for 

supplies 𝒃𝒕 
Mean standard deviation SPL (𝛿𝑡) 

𝜇1
′ = 12 𝜎1

′ = 1.5 𝛿1 = 0.9 

𝜇2
′ = 10 𝜎2

′ = 1 𝛿2 = 0.9 

𝜇3
′ = 16 𝜎3

′ = 1 𝛿3 = 0.9 

𝜇4
′ = 10 𝜎4

′ = 1.5 𝛿4 = 0.9 

𝜇5
′ = 14 𝜎5

′ = 1 𝛿5 = 0.9 

Using the data in Tables IV and V, the above multi-objective 

fractional stochastic transportation problem is solved using 

simulation-based GA. Applying the steps of simulation based 

GA, we obtain two ideal solutions as 

𝑋(1) =  (0.2541, 0.3187, 0.9834, 0.1945, 0.8094, 0.1222, 

0.6989, 0.1251, 0.5415, 0.0117, 0.3744, 0.1642, 

0.0694, 0.4242, 0.8113) 

𝑋(2) =  (0.2678, 0.7146, 0.3646, 0.1642, 0.0156, 0.0938, 

0.2991, 0.7928, 0.3167, 0.1896, 0.0557, 0.1320, 

0.6188, 0.7947, 0.2727). 

The objective function values are 𝑍1 𝑋 1  = 0.5554  and 

𝑍2 𝑋 2  = 0.7649 respectively. 

Using the two ideal solutions a pay-off matrix is formulated 

in Table VI. 

Table VI: Pay-Off Matrix for case study 
Ideal 

Solutions 

      Objective functions 

𝑍1 𝑍2 

𝑋(1) 0.5554  0.7777 

𝑋(2) 0.5833  0.7649 

Applying bracket penalty function MOLFSTP is solved as 

follows in (16) to (20). 
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VII. RESULT AND DISCUSSION 

The proposed simulation based GA approach is coded in C++ 

Code:: Blocks 16.01 compiler. The size of population is taken 

as 100. The numbers of generations are taken to be 100. The 

penalty parameter is taken for an initial value of 𝜏 = 10 and 

it is incremented by 10 after 10
th

 generation. The ideal 

solutions are recorded by taking more than 10 simulations. 

However, the top 4 values are record. An extensive 

experimental study has been done varying the value of 

probability of crossover (𝑃𝑐 ) and probability of mutation (𝑃𝑚 ) 

respectively. The 𝑃𝑐  has been taken 0.6, 0.7, 0.8, and 0.9 and 

𝑃𝑚  has been taken 0.001, 0.005, 0.01, 0.05, and 0.1. 

   In these simulations, the most approximate redundant 

values are taken as ideal solution for each objective function. 

PO solutions and values are obtained and shown in Tables 

(VIII-XI) for different values of 𝑃𝑐  and 𝑃𝑚  respectively.  

The best functional values are recurred as shown below for 

different values of 𝑃𝑐  and 𝑃𝑚 . 

Table VII: Best functional values 
 

𝑃𝑚  

𝑃𝑐  

Objective 

function 

value 

0.6 0.7 0.8 0.9 

0.001 𝑍1 0.5461 0.5508 0.5581 0.5451 

𝑍2 0.7590 0.7771 0.7716 0.7618 

0.005 𝑍1 0.5547 0.5576 0.5490 0.5541 

𝑍2 0.7761 0.7744 0.7610 0.7730 

0.01 𝑍1 0.5512 0.5552 0.5509 0.5459 

𝑍2 0.7694 0.7610 0.7718 0.7788 

0.05 𝑍1 0.5521 0.5517 0.5489 0.5483 

𝑍2 0.7766 0.7756 0.7662 0.7761 

0.1 𝑍1 0.5498 0.5557 0.5449 0.5609 

𝑍2 0.7743 0.7747 0.7763 0.7722 

From the tabular results, it can be seen that for both of the 

objectives the best functional values are obtained at 𝑃𝑐 = 0.6 

and 𝑃𝑚 = 0.001,  with functional value 𝑍1 = 0.5461  and 

𝑍2 = 0.7590 . However, at  𝑃𝑐 = 0.7 , the best functional 

value for the first objective is 𝑍1 = 0.5508 at 𝑃𝑚 = 0.001 

and for the second objective is 𝑍2 = 0.7610 at 𝑃𝑚 = 0.01. It 
is also observed, at (𝑃𝑐 = 0.8) the best functional value for 

the first objective is 𝑍1 = 0.5449 at (𝑃𝑚 = 0.1) and for the 

second objective is 𝑍2 = 0.7610 at (𝑃𝑚 = 0.005). Lastly, at 

(𝑃𝑐 = 0.9) and (𝑃𝑚 = 0.001), the best functional values for 

both of the objectives are 𝑍1 = 0.5451 and  𝑍2 = 0.7618 

respectively. Graphical representations of the PO values are 

expressed in Fig. 2 to Fig. 5.  
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From the plotted figures diversified PO values can be 

visualized for different values of 𝑃𝑐  and 𝑃𝑚 . 

VIII. CONCLUSION 

In this study, a stochastic simulation-based GA is used to 

solve the proposed MOLFSTP model without deriving the 

equivalent deterministic model. Stochastic simulation-based 

GA is superior in comparison to classical methods. It 

supports the decision-maker in forming a collection of 

non-dominated solutions, to obtain a diversified solution, and 

to cover the entire Pareto front. This also helps the 

decision-maker to make a more favorable choice by 

analyzing all the desirable way of the parameter. The 

non-dominated solutions represent the positions in this 

solution space of the problem.  A numerical case study is 

provided to illustrate the methodology where both the supply 

and demand points follow a normal distribution. It is 

concluded from the tabular results shown in Table (VIII-XI) 

that the diversified Pareto optimal values can be visualized 

for different values of 𝑃𝑐  and 𝑃𝑚 . 

 
Fig. 2. Pareto Optimal value with 𝑷𝒄=0.6 

 
Fig. 3. Pareto Optimal value with 𝑷𝒄=0.7 

 

 
           Fig. 4. Pareto Optimal value with 𝑷𝒄=0.8 

 

 
             Fig. 5. Pareto Optimal value with 𝑷𝒄=0.9 
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Table VIII: Pareto optimal solutions for 𝑷𝒄 = 0.6 

Table IX: Pareto optimal solutions for 𝑷𝒄 = 𝟎. 𝟕 

 

 

 

 

 

 

Simulation 𝑃𝑚  𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥21  𝑥22  𝑥23  𝑥24  𝑥25  𝑥31  𝑥32  𝑥33  𝑥34  𝑥35  𝑍1 𝑍2 

1st 0.001 0.2786 0.2786 0.60606 0.65494 0.52297 0.27077 0.6608 0.77126 0.81036 0.02835 0.79081 0.09384 0.04203 0.51222 0.11241 0.5576 0.77379 

2nd 0.001 0.33333 0.80938 0.77615 0.9306 0.22972 0.84262 0.6432 0.75562 0.75073 0.03519 0.95601 0.00684 0.82209 0.67058 0.69111 0.5560 0.79108 

3rd 0.001 0.26295 0.64321 0.04888 0.88563 0.06549 0.42815 0.9805 0.75562 0.65103 0.03617 0.93842 0.01271 0.42522 0.2131 0.47703 0.5461 0.79069 

4th 0.001 0.13978 0.49267 0.01662 0.60997 0.38416 0.51026 0.8397 0.84848 0.79961 0.02639 0.36266 0.24633 0.20528 0.79863 0.11241 0.57206 0.75902 

1st 0.005 0.54545 0.50049 0.39296 0.42913 0.64809 0.68328 0.4702 0.61486 0.32551 0.06158 0.93451 0.00195 0.98045 0.74096 1.0 0.56574 0.80218 

2nd 0.005 0.56207 0.84262 0.96872 0.78495 0.00098 0.6696 0.9062 0.12023 0.79472 0.01075 0.60899 0.05865 0.83089 0.84262 0.12023 0.56682 0.77608 

3rd 0.005 0.90225 0.71261 0.86021 0.52981 0.12903 0.23363 0.3314 0.27175 0.97947 0.12512 0.95797 0.00195 0.15933 0.63636 0.21799 0.55465 0.78834 

4th 0.005 0.83187 0.30303 0.5523 0.23949 0.47312 0.59433 0.7937 0.08798 0.71163 0.16325 0.99413 0.01759 0.5347 0.60313 0.59433 0.55906 0.79365 

1st 0.01 0.11144 0.52884 0.01564 0.2825 0.61779 0.82014 0.9580 0.81818 0.52297 0.15834 0.53763 0.00489 0.21896 0.75269 0.45943 0.5657 0.7694 

2nd 0.01 0.16325 0.02346 0.07625 0.69013 0.33333 0.92375 0.6501 0.21603 0.17498 0.35386 0.98338 0.00391 0.53079 0.61290 0.34311 0.56913 0.78661 

3rd 0.01 0.41349 0.48289 0.80352 0.98241 0.58455 0.69306 0.6882 0.02346 0.71847 0.30499 0.3304 0.01955 0.35484 0.13783 0.18671 0.55845 0.78336 

4th 0.01 0.71359 0.95503 0.75367 0.32063 0.8045 0.54839 0.84457 0.89834 0.62072 0.02151 0.33431 0.2043 0.07722 0.12317 0.31085 0.55157 0.77857 

1st 0.05 0.03324 0.05279 0.92082 0.18671 0.83675 0.02737 0.64712 0.16227 0.77713 0.20723 0.57576 0.02835 0.43891 0.13685 0.39394 0.55213 0.78596 

2nd 0.05 0.95406 0.19062 0.23851 0.33822 0.0782 0.54448 0.09873 0.79863 0.85337 0.00195 0.95503 0.01759 0.42913 0.82111 0.45748 0.56194 0.79122 

3rd 0.05 0.22385 0.43988 0.33529 0.68622 0.90811 0.82014 0.48876 0.10166 0.47312 0.07136 0.66862 0.00391 0.90518 0.04203 0.67253 0.55627 0.80833 

4th 0.05 0.84262 0.94135 0.52981 0.00195 0.25122 0.94526 0.53079 0.03519 0.98827 0.01662 0.6393 0.06843 0.73216 0.39198 0.02933 0.55355 0.78025 

1st 0.1 0.02151 0.20235 0.67742 0.14956 0.12317 0.79277 0.4741 0.44184 0.80254 0.00293 0.59531 0.24438 0.52004 0.5347 0.35875 0.55009 0.77544 

2nd 0.1 0.478 0.4868 0.95406 0.3001 0.70577 0.51026 0.99609 0.06354 0.31476 0.00587 0.75562 0.00489 0.04594 0.70283 0.06158 0.56739 0.77443 

3rd 0.1 0.38514 0.348 0.97361 0.48485 0.89052 0.75171 0.69795 0.59726 0.64614 0.13099 0.52884 0.02444 0.71261 0.23754 0.00489 0.56275 0.77425 

4th 0.1 0.09189 0.80645 0.77615 0.16715 0.14663 0.41251 0.11241 0.23265 0.53763 0.03324 0.08993 0.00684 0.56403 0.10362 0.01466 0.54977 0.77503 

Simulation 𝑃𝑚  𝑥11 𝑥12 𝑥13 𝑥15 𝑥21  𝑥22  𝑥23  𝑥24  𝑥25  𝑥31  𝑥32  𝑥33  𝑥34  𝑥35  𝑍1 𝑍2 

1st 0.001 0.4956 0.08113 0.85435 0.89736 0.42424 0.17595 0.79081 0.31378 0.12415 0.7175 0.02346 0.79179 0.05376 0.44184 0.56083 0.79967 

2nd 0.001 0.75758 0.07038 0.92375 0.80156 0.44477 0.68035 0.62561 0.07527 0.30401 0.11437 0.02151 0.33333 0.87879 0.01564 0.59561 0.76178 

3rd 0.001 0.8739 0.83773 0.69795 0.12903 0.39687 0.17107 0.14467 0.67351 0.10753 0.89443 0.04399 0.29912 0.00098 0.23558 0.5451 0.80809 

4th 0.001 0.54839 0.66276 0.32747 0.18084 0.27761 0.72923 0.12512 0.3216 0.14858 0.20723 0.0391 0.79961 0.25415 0.53275 0.56342 0.79144 

1st 0.005 0.55327 0.26197 0.62268 0.78006 0.42033 0.55132 0.14858 0.07429 0.18866 0.913 0.03226 0.12219 0.22092 0.652 0.55414 0.80777 

2nd 0.005 0.54839 0.25122 0.28446 0.65494 0.64516 0.99218 0.17498 0.23949 0 0.34213 0.02346 0.14858 0.6129 0.19648 0.5781 0.77301 

3rd 0.005 0.91789 0.34213 0.7957 0.34897 0.86901 0.28055 0.63441 0.81623 0.00391 0.3998 0.02835 0.32258 0.37732 0.03226 0.5589 0.77698 

4th 0.005 0.89345 0.66178 0.17595 0.58162 0.90616 0.26979 0.83285 0.7781 0.02737 0.77224 0.32845 0.54937 0.2131 0.18768 0.55481 0.78807 

1st 0.01 0.26393 0.60997 0.24927 0.23558 0.86119 0.4565 0.07625 0.32356 0.05376 0.5523 0.00489 0.37243 0.94721 0.11339 0.58041 0.77998 

2nd 0.01 0.16813 0.88661 0.68328 0.89541 0.87977 0.91984 0.15543 0.61779 0.38319 0.8436 0.02737 0.04008 0.24731 0.36168 0.54593 0.78084 

3rd 0.01 0.76637 0.36266 0.80352 0.17595 0.04008 0.69208 0.99023 0.81036 0.03421 0.56207 0.02933 0.03323 0.92082 0.6002 0.5638 0.77884 

4th 0.01 0.70381 0.57771 0.64809 0.15249 0.739 0.56403 0.90518 0.72336 0.01271 0.53666 0.00782 0.77517 0.38319 0.23069 0.55829 0.7797 

1st 0.05 0.2219 0.94037 0.77126 0.03226 0.85826 0.20723 0.71359 0.19844 0.00098 0.26295 0.10753 0.95601 0.81916 0.20821 0.57445 0.77665 

2nd 0.05 0.52981 0.59042 0.8348 0.00098 0.6999 0.34702 0.37537 0.56207 0.00195 0.28641 0.11144 0.39003 0.59433 0.72141 0.55253 0.78943 

3rd 0.05 0.83382 0.30499 0.14272 0.26295 0.3998 0.4565 0.97165 0.72532 0.13881 0.04008 0.00098 0.49365 0.68231 0.46921 0.57713 0.77613 

4th 0.05 0.10753 0.82209 0.59726 0.57771 0.23656 0.75073 0.93744 0.96188 0.01369 0.44086 0.00489 0.97752 0.04985 0.75758 0.54832 0.79169 

1st 0.1 0.26491 0.27468 0.49365 0.56305 0.78397 0.39003 0.61975 0.01662 0.0303 0.88759 0.03519 0.81525 0.5044 0.97263 0.5609 0.80671 

2nd 0.1 0.11535 0.18084 0.52102 0.17693 0.54057 0.20919 0.68622 0.4174 0.0088 0.14272 0.04594 0.13587 0.50342 0.41251 0.56308 0.77921 

3rd 0.1 0.26784 0.21896 0.82502 0.81036 0.93451 0.77322 0.99805 0.11633 0.07527 0.27859 0.00977 0.29912 0.38416 0.31378 0.56655 0.77309 

4th 0.1 0.05865 0.78006 0.87097 0.56305 0.76735 0.29521 0.41153 0.52981 0.00293 0.60704 0.02151 0.79961 0.56501 0.06549 0.56621 0.78128 
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Table X: Pareto optimal for 𝑷𝒄 = 𝟎. 𝟖 

 

 
 Table XI: Pareto optimal solutions for 𝑷𝒄 = 𝟎. 𝟗 

Simulation  𝑃𝑚  𝑥11 𝑥12 𝑥13 𝑥15 𝑥21  𝑥22  𝑥23  𝑥24  𝑥25  𝑥31  𝑥32  𝑥33  𝑥34  𝑥35  𝑍1 𝑍2 

1st  0.001  0.4956  0.08113 0.85435 0.89736 0.42424 0.17595 0.79081 0.31378 0.12415  0.7175  0.02346 0.79179 0.05376 0.44184 0.56083 0.79967 

2nd  0.001  0.75758 0.07038 0.92375 0.80156 0.44477 0.68035 0.62561 0.07527 0.30401 0.11437 0.02151 0.33333 0.87879 0.01564 0.59561 0.76178 

3rd 0.001 0.8739  0.83773 0.69795 0.12903 0.39687 0.17107 0.14467 0.67351 0.10753 0.89443 0.04399 0.29912 0.00098 0.23558  0.5451  0.80809 

4th  0.001 0.54839 0.66276 0.32747  0.18084 0.27761 0.72923 0.12512  0.3216  0.14858 0.20723  0.0391  0.79961 0.25415 0.53275 0.56342 0.79144 

1st  0.005  0.55327 0.26197 0.62268 0.78006 0.42033 0.55132 0.14858 0.07429 0.18866  0.913  0.03226 0.12219 0.22092  0.652  0.55414 0.80777 

2nd  0.005 0.54839 0.25122 0.28446 0.65494 0.64516 0.99218 0.17498 0.23949  0  0.34213 0.02346 0.14858  0.6129  0.19648  0.5781  0.77301 

3rd 0.005 0.91789 0.34213  0.7957  0.34897 0.86901 0.28055 0.63441 0.81623 0.00391  0.3998  0.02835 0.32258 0.37732 0.03226  0.5589  0.77698 

4th  0.005 0.89345 0.66178 0.17595 0.58162 0.90616 0.26979 0.83285  0.7781  0.02737 0.77224 0.32845 0.54937  0.2131  0.18768 0.55481 0.78807 

1st  0.01  0.26393 0.60997 0.24927 0.23558 0.86119  0.4565  0.07625 0.32356 0.05376  0.5523  0.00489 0.37243 0.94721 0.11339 0.58041 0.77998 

2nd  0.01 0.16813 0.88661 0.68328 0.89541 0.87977 0.91984 0.15543 0.61779 0.38319  0.8436  0.02737 0.04008 0.24731 0.36168 0.54593 0.78084 

3rd 0.01  0.76637 0.36266 0.80352 0.17595 0.04008 0.69208 0.99023 0.81036 0.03421 0.56207 0.02933 0.03323 0.92082  0.6002  0.5638  0.77884 

4th  0.01  0.70381 0.57771 0.64809 0.15249  0.739  0.56403 0.90518 0.72336 0.01271 0.53666 0.00782 0.77517 0.38319 0.23069 0.55829  0.7797 

1st  0.05  0.2219  0.94037 0.77126 0.03226 0.85826 0.20723 0.71359 0.19844 0.00098 0.26295 0.10753 0.95601 0.81916 0.20821 0.57445 0.77665 

2nd 0.05  0.52981 0.59042  0.8348  0.00098  0.6999  0.34702 0.37537 0.56207 0.00195 0.28641 0.11144 0.39003 0.59433 0.72141 0.55253 0.78943 

3rd  0.05  0.83382 0.30499 0.14272 0.26295  0.3998  0.4565  0.97165 0.72532 0.13881 0.04008 0.00098 0.49365 0.68231 0.46921 0.57713 0.77613 

4th  0.05  0.10753 0.82209 0.59726 0.57771 0.23656 0.75073 0.93744 0.96188 0.01369 0.44086 0.00489 0.97752 0.04985 0.75758 0.54832 0.79169 

1st  0.1  0.26491 0.27468 0.49365 0.56305 0.78397 0.39003 0.61975 0.01662  0.0303  0.88759 0.03519 0.81525  0.5044  0.97263  0.5609  0.80671 

2nd  0.1  0.11535 0.18084 0.52102 0.17693 0.54057 0.20919 0.68622  0.4174  0.0088  0.14272 0.04594 0.13587 0.50342 0.41251 0.56308 0.77921 

3rd 0.1  0.26784 0.21896 0.82502 0.81036 0.93451 0.77322 0.99805 0.11633 0.07527 0.27859 0.00977 0.29912 0.38416 0.31378 0.56655 0.77309 

4th  0.1  0.05865 0.78006 0.87097 0.56305 0.76735 0.29521 0.41153 0.52981 0.00293 0.60704 0.02151 0.79961 0.56501 0.06549 0.56621 0.78128 
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