
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4352

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: Software complexity and program comprehension

are inversely related. Higher the code complexity, poorer the

comprehension. But we neither have good software complexity

measure, nor do we understand how the program comprehension

took place in human mind. This is because we know so little about

the working of the human brain; how it processes internal and

external information. In this paper we have identified 5 mental

factors which adds into the code complexity. In order to explain

these factors, we took 10 code snippet pairs in C language (2 each

for every factor). Code snippets in pair are identical - in terms of

number of variables, operators, control structure- but we believe

one of the snippets in pair is carrying the higher cognitive load

due to underlying mental factor identified. To the best of our

knowledge these factors identified here in this paper are not used

in calculating the code or software complexity. We believe these

identified mental factors can be validated by various brain

imaging and Eye tracking techniques like EEG and fMRI. They

can also be validated by conventional software experimental

methods. We believe these identified factors will increase our

understanding of Program comprehension as well as it will lead

better software complexity measure. This could be very useful in

computer science education. The very process of understanding

how the human mind decode the software can be possibly

understood. In long run this could help us in better understanding

of the functioning of human brain.

Keywords : Program comprehension; Software Complexity;

Cognitive metrics; Cognitive load; Code snippets; Human brain

working..

I. INTRODUCTION

Software by its very nature are inherently complex entities.

But gauging the complexity of software code has turned out

to be even more complex problem. Perhaps the most simple

and automatic measure used for software is LOC [1].

Halstead measure is also used in many academic circles to

ascertain the complexity of the software[2]. Perhaps the most

widely used measures in software industry is McCabe’s

cyclometric measure[3]. The fitness of all these measures and

most prominently McCabe’s measure is lot of debated in

academic and software industry circles. Many still regard it

as valid and popular measure of software complexity[4]. But

it would be safe thing to say that none these old measure

captures the complexity of the software fully.

 Perhaps the most fundamental reason that we still not

have a satisfactory software complexity measure because we

don’t know how human brain handles and process

complexity. At low level the problem of software complexity

has a duality in terms of Program comprehension. At lower

Revised Manuscript Received on February 25, 2020.
* Correspondence Author

Leena Jain *, Professor and Head in Department of Computer

Applications, Global Group of Institutes, Amritsar affiliated to PTU
Kapurthala, India. Email: leenajain79@gmail.com

Satibderjit Singh **, Department of Computer Applications, GGNIMT,

Ludhiana, affiliated to PTU Kapurthala, India Email: satty74@gmail.com

module or program level software complexity is just the code

complexity and higher it is more difficult is program

comprehension. Shao and wang proposed that different

software constructs require different mental effort and hence

proposed cognitive weights for various Basic control

structure (BCS)[5], [6]. Based upon these cognitive weights

many novel complexity measures were proposed by

researchers[5]–[11]. But the problem of correct measurement

of code complexity (and inversely problem of understanding

program comprehension) persisted.

 In this paper we argue that other than factors like number

of variables, input, output and cognitive weights of BCS, we

must also consider mental factors which adds into the code

complexity and eventually the overall software complexity.

We identify five of such mental factors. In order to explain

these identified mental factors, we constructed a snippet pairs

such that each pair is similar snippets – in terms of number of

variables, operators, input, output or basic control structure.

Our contention is that code snippets in every pair will be

measured with equal code complexity- both by most of

existing cognitive and non-cognitive complexity measure-

yet we believe that one snippet in each pair carry more

cognitive load and thus more difficult to comprehend than

other one -due to mental factor we have identified. We call

upon researching community to put these mental factors to

series of experiments to validate or dismiss them. The new

brain imaging techniques- fMRI, EEG, Eye tracking – can be

used in addition with conventional response time method to

validate these mental factors.

 The rest of paper is organized as follows: Section 2

discuss the idea of cognitive weights of BCS and resultant

metrices coming out of it, along with inherent limitations.

Section 3 looks at various new brain imaging techniques used

to understand the program comprehension. In section 4 we

explain each factor by taking two snippet pairs and

explaining it. Section 5 summarize the code snippet pair

examples.And in section 6 we conclude and give the future

scope of the work and the direction it may take.

II. COGNITIVE WIEGHTS AND ITS LIMITATIONS

Most of the metrics touched in previous section rely on

visible property of Software code - like number of variables,

Lines of code (LOC), structure of the program, (McCabe’s

cyclometric complexity) etc. Thus, most of these measures

does not consider the working of human brain in

consideration. That in all probability explains why most of

the software complexity measures are unable to capture the

true complexity of software.

Underlying Mental Factors Contributing to

Software Complexity

Leena Jain, Satinderjit Singh

Underlying Mental Factors Contributing to Software Complexity

4353

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Wang and Shao did propose cognitive complexity measure of

the Software in which cognitive weights (CW) was assigned

to various control construct referred to as basic control

structure (BCS) - as shown in Table 1 below[5], [6]. The

important part of these measures is that perhaps for first time

we were recognizing that brain process different Software

construct differently, this giving equal weightage to all

portions of software- as in LOC- is not fair. Jain and Singh

raised the question of universality of these BCS weights and

related concerns[12]. To the best of our knowledge, not much

work has been done to validate the cognitive weights of BCS

proposed by Wang and others.

Gruhn and Laue had suggested that there should be three

more BCS other than 10 mentioned in Table 1[13]. The new

BCS proposed by them are lock, exception and internal exits.

Many researchers have multiple methods of how to calculate

complexity metrics from cognitive metrics from software

code. Whatever may be limitation of the Cognitive metrics, it

has attracted lot of attention and some tools are being

developed based upon Cognitive weight of BCS

philosophy[11], [14].

Table- I: Cognitive Weights of different BCS

Category BCS

Cognitive

weights

(Wang 2003)

Cognitive

weights

(Wang2006)

Sequence Sequence 1 1

Branch
If then else 2 3

Case 3 4

Iteration

For-loop 3 7

Repeat-loop 3 7

While-loop 3 8

Embedded

Component

Function

call 2 7

Recursion 3 11

Concurrency
Parallel 4 15

Interrupt 4 22

Nevertheless, there are issues with Cognitive metrics and

tools based upon that. First and foremost is the issue of

cognitive weights of BCS. Not enough experiments are

carried out to validate these weights. One reason of the same

could be that experiment design for such a validation is

critical as variations in code are endless[15]. Jain and Singh

touched upon some of the issues involved here[16]. Another

issue is that since we don’t know the working of human brain

of even individual, how can we generalize about cognitive

weights for entire human populations[12][16]. What about

variations within population? So, slowly focus is shifting to

understanding working of human brain – how does it process

internal and external information.

III. OTHER APPROACHES TO STUDY PROGRAM

COMPREHENSION

Over the years there is growing realization that understanding

of the working of human brain is crucial to measure the

complexity related to software code. Some researchers in a

way shown that there is difference of multiples times of 10 as

far as software comprehension is concerned varying from one

individual to another[17]. Some researchers have shown

looping structure is more difficult to understand than

branching structure[18]. Also Ajami and others in year 2017

suggested that loop counting downward is tougher to

interpret than otherwise[15]. The same paper also suggested

that certain logic conditions (not all) involving 'not' operator

is difficult to decipher than otherwise. So clearly there is

difference at individual to individual basis and within an

individual, different constructs (Sequence, loop, branching,

function etc.) are interpreted differently.

 In last half a decade researcher have started using various

scanning and imaging techniques while handling the software

code. In a remarkable work, Pietek and others scanned the

human brain of respondents while solving code snippets

using fMRI technique to identify active region of brain

during the software decoding procedure[19]. The same

method was also applied to compare the brain regions when

solving code snippets to that when performing code

debugging[19]. Another method to assess software

comprehension is through Eye Tracking method[20][21].

Apart to that many researchers has applied the EEG to

identify the brain regions when doing software

decoding[22][23]. Researchers has shown the difference

between active regions of brain of software experts and

novice in software engineering using EEG technique[24].

IV. MENTAL FACTORS IN CODE COMPLEXITY

In this section we will identify some of the micro factors –

other than routine factors of number of variables, number of

operations, Basic software constructs etc.- which seems to

enhance software complexity of the code. These are

 Constant Vs Variable

 Variables Used

 Variables Modified

 Original Vs Modified Use of variable.

 Variable Change Source

The factors play by putting an extra cognitive load on human

brain in deciphering the working of software code. We have

identified five mental load enhancing factors. It’s possible

that more such factors exist, but as of now we have found

these five basic ones. In the following section we explain

these factors by taking the example of pair of code snippets.

Each pair has some control structure –Sequence, for, while,

function, do while, switch etc. Furthermore, code snippets in

each pair has same number of variables (2 in these cases),

same number of mathematical operations (again 2)-although

the type of mathematical operations may be different.

However, each pair of code snippets contain a subtle

difference which is one of the above-mentioned factors.

A. Constant Vs Variables

In Constant Vs Variable factor, we contend that in any

mathematical operations – be it algebra or software code- the

calculations should be slightly easier when dealing with

constant than as compared to variables. The simple

philosophy is that carrying a variable (and its value) is an

extra cognitive load on human mind than as compared to

constant mentioned in equation.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4354

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 In the snippet pair in C language given below in Table 2, we

have same control constructs (‘while’), same number of

variables (2 here), but the snippet 1 uses constant in

calculations whereas snippet 2, uses variable in its

calculation. So, it is reasonable to assume that snippet 2

should be trickier to human mind than snippet 1 to decode.

Table- II: Snippet pair 1 demonstrating ‘Constant Vs

Variable’ factor- ‘while’ BCS

Snippet 1 Snippet 2

int a=2, b =9;

while(a<10)

{

b=b-3;

a=a*3;

}

printf("\n%d" , b);

int a=3, b =7;

while(a>0)

{

b=b/a;

a=a-b;

}

printf("\n%d" , a);

Another example in sequence code snippet pair is given

below-in snippets 3 & 4. Here in Table 3, we have two

snippets. Both these snippets are example of sequence BCS

and uses two (2) variables each. The number of

non-assignment operator is also 2. Most of existing code

complexity metrices – cognitive and non-cognitive would

give the same value to both snippets. But if look carefully, we

see that in first variable modification of variable ‘b’ in

snippet 3 is done through declared value of ‘b’ and constant

specified in instruction. In contrast the variable ‘a’ modified

in snippet is done through using the declared value of two

variables. In constant Vs Variable comparison our contention

is that snippet 4 should be little bit more of cognitive load on

human brain than snippet 3.

Table- III: Snippet pair 2 demonstrating ‘Constant Vs

Variable’ factor - Sequence BCS

Snippet 3 Snippet 4

int a= 15, b =4;

b=b+2;

a= a/b;

printf("\n%d" , a);

int a=7, b =4;

a=a*b;

b= b-a;

printf("\n%d" , b);

B. Variables Used

Another factor which play a part in increasing the cognitive

complexity of software code is the number of variables used

in mathematical calculations. More the variable used more

the cognitive load on human brain. Also, human can carry

some finite number of variables in their mind to sort out the

calculations. Beyond some point the human capacity to

perform mathematical calculations deteriorates rapidly. In

the example of code snippet pairs in Table 4, snippet 5 uses

only one variable in mathematical calculations as compared

to snippet 6, which uses 2 variables in it. Both the snippets (5

& 6) uses while construct and are also same in many other

ways like number of operations performed, number of times

loop runs etc.

Table- IV: Snippet pair 3 demonstrating ‘Constant Vs

Variable’ factor- ‘while’ BCS

Similarly, in code snippet pair of 7 & 8 of Table 5, the control

structure is same function type for both the cases but the

snippet 7 involves only one variable in its calculation and

thus should be easier than snippet 8, which involves 2

variables.

Table- V: Snippet pair 4 demonstrating ‘Variables used’

factor- ‘function’ BCS

Snippet 7 Snippet 8

int funct (int a)

{

a= 19/a+2;

return (a)

}

int b;

b= funct(3);

printf("\n%d" , b);

int funct (int a,int b)

{

b= b+13/a;

return (b) ;

}

printf("\n%d", funct(4,5));

C. Variables Modified

Another factor is number of times (and numbers of variables)

variables modifies in human brain in order to work out the

output of software code. The idea is lesser the times the

modification is carried out, easier it is for human brain. For an

obvious reason the modification (even repeated) of same

variable should be preferred by human brain than multiple

modifications of different variables.

In the code snippet pair example (if-else constructs) given

below in Table 6, it must be noted that in snippet 9 variable

‘b’ is modified twice, whereas in snippet 10, two variables

(‘a’ & ‘b’) are modified once each. Thus snippet 10 should

have more mental adjustment involved than snippet 9.

Snippet 5 Snippet 6

int a=1, b =3;

while(a<4)

{

a=a*3;

a=a-1;

}

printf("\n%d" , a);

int a=3, b =7;

while(a>0)

{

b=b/a;

a=a-b;

}

printf("\n%d" , a);

Underlying Mental Factors Contributing to Software Complexity

4355

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Table- VI: Snippet pair 5 demonstrating ‘Variables

modified’ factor- ‘if-else’ BCS

Snippet 9 Snippet 10

int a=2,b=9;

if (a<b)

{

b=b/2

b=b-a;
}

else

{

a=b/2;

b=a+b;

}

printf("\n%d" , b);

int a=6,b=11,;

if (a>b)

{

a=b/2;

b=a+b;

}

else

{

b=b/3

a=a+b;

}

printf("\n%d" , a);

Similarly, in Table 7 having code snippet pair of 11 & 12,

involving do-while constructs, snippet 11 have 2 variables

modified twice each and snippet 12 have one variable

modified 4 times. Snippet 12 should be easier to work out

manually.

Table- VII: Snippet pair 6 demonstrating ‘Variables

used’ factor- ‘do-while’ BCS
Snippet 11 Snippet 12

int a=9, b=4,;

do

{

a=a+b;

b=a-b

} while(b<12);

printf("\n%d" , a);

int a=6, b=3;

do

{

b=a*b;

b=b-a;

} while(b<12);

printf("\n%d" , b);

D. Original Vs Modifies use of Variables

Another important factor in our views is that in the

calculation-while figuring out output or new variable values-

are we using original-declared at start- or modified value

during the mental execution of the code. The idea being that

declared values involves zero mental shifting and using

modified value involves not only mental shifting to new

value and remembering the new variable value. It must be

made clear that this factor is different from variable modified

factor. Because in variable modified factor we count only the

number of variables along with number of times they are

modified. But here we compare various code snippets in what

values-original or modified- are used in calculating output or

new variable or function values.

For example, in code snippet pair (13 & 14) of Table 8,

while construct shown below loop runs two times for both.

Snippet 13 have used 1 times original value of both variable

‘a’ and ‘b’, 2 times first modification of ‘b’ -M1(a)- 1 time

the second modification of ‘b’-M2(b)- and 1 time the first

modification of ‘a’-M1(a). All in all, 2 original values, 3

times the first modification and 1 time second modification of

the variables. Contrast this with Snippet 14, here we use

original variable ‘a’ 2 times and ‘b’ 1 time. Similarly, first

modification of ‘a’-M1(a)- is used twice and M1(b) is used

once. So, we can say that snippet 13 has a higher modified

variable usage value -4 out of 6 – as compared to snippet 14

which has lower usage value -3 out of 6. Also, variable

modification is deeper in snippet 14 – with 1 variable used is

from second modified value. Thus, on theory snippet 13

should be difficult to comprehend mentally than snippet 14.

Table- VIII: Snippet pair 7 demonstrating ‘Original Vs

modified’ factor- ‘while’ BCS

Snippet 13 Snippet 14

int a=3, b =8;

while(a<10)

{

b=b-2;

a=a+b;

}

printf("\n%d" , b);

int a=2, b =8;

while(a<10)

{

b=b-a;

a=a*3;

}

printf("\n%d" , b);

In Table 9, having snippet pair combination of Snippet 15 &

16, this is case of two variables modified one each vs one

variable modified twice. The usage of original vs modified in

calculation is same – 2 ratios to 1. We believe that snippets 16

should be easier to calculate than snippet 15.

Table-IX: Snippet pair 8 demonstrating ‘Original Vs

modified’ factor- ‘switch’ BCS
Snippet 15 Snippet 16

int a=9, b=3;

switch(b)

{

case 3:

a=a+4

b=a/b;
break;

default:

b=a/b +5 ;

}

printf("\n%d" , b);

int a=9, b=6;

switch(a)

{

case 6:

a= b+3;

b=a-12;

break;

default:

b=a/b ;

b=b -5;

}

printf("\n%d" , b);

E. Variable Change Source

Here is another factor. We call it Variable change source. The

essence of this factor is that when calculating the new

variable value, the source is important. It should be that

variable change done from same variable should be easy in

terms of mental load than in the case of variable change done

from another variable. Because in later case this would

involve more mental shifting than the former case. Perhaps it

is possible that the effect does not shows up in case of lesser

number of variables, but it should show itself in case of larger

number of variables. But all these conjectures need to be

verified by repeated experiments done at various levels.

In the snippet pair (17 & 18) shown below in Table 10,

Loop in ‘for’ constructs run 2 times for both the snippets.

However, the snippet 17 changes the ‘j’ value using old

variable value and in snippet 18 variable ‘j’ changes its value

from different variable ‘i’. Thus, to us snippet 18 should be

more of load to calculate

than snippet 17.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4356

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Table- X: Snippet pair 9 demonstrating ‘Variable change

source’ factor- ‘for’ BCS
Snippet 17 Snippet 18

int i,j=3;

for{ i=10;i>2;i=i/3)

{

j=j+4;

}

printf("\n%d" , j);

int i,j=7;

for{ i=2;i<4;i=9-j)

{

j=i*4;

}

printf("\n%d" , i);

In similar vein, in Table 11 we can say that snippet 19 should

be less of cognitive load on human mind than snippet 20. One

of the reasons for that should be that variable change from

snippet 19 is from same variable and in case of snippet 20 is

from different variable.

Table-XI: Snippet pair 10 demonstrating ‘Original Vs

modified’ factor- ‘function’ BCS
Snippet 19 Snippet 20

int funct (int a)

{

a= 5-a;

return (a)

}

int b;

b= 4*funct(9);

printf("\n%d" , b);

int funct (int a,int b)

{

b= 16/a;

return (a-b);

}

printf("\n%d", funct(6,2));

V. RESULT DISCUSSION

In previous section we had identified some of the mental

factors which contributes in adding to the complexity of

software code.

Table-XII: Summary of Snippet pairs and mental factor

Snippet

Pair
BCS CV VU VM OM VC

1 While-loop    

2 Sequence  

3 While-loop    

4 Function call   

5 If else 

6

Do-while

loop 

7 While-loop 

8 Switch-case  

9 Function call  

10 While-loop    

In order to explain the subtleties of mental factors, we have

taken examples of Ten (10) snippet pairs. Table -XII

summarizes the 10 code snippets pairs defined in previous

section (Table I – XI). In Table XII mental factors are written

is short form such that:

CV = Constant Vs Variable

VU = Variables Used

VM = Variables Modified

OM = Original Vs Modified Use of variable.

VC = Variable Change Source

The codes in snippet pairs are carefully chosen. Most of

existing software complexity measure would give same

complexity to both snippets in each pair -because of same

external visible properties of the code. But our contention is

that these snippets differs in term of cognitive load thus,

making one of the snippets more difficult to comprehend than

the other. The salient features of our code snippets pair study

as summarized in Table XII are:

 Each pair is identical in many external ways – number of

variables used, number of operators used, Basic control

Structure (BCS) in the code etc.- and yet have these

mental factors distinguishing between the two snippets

in pair.

 More than one factor is at play while distinguishing the

codes in snippet pair. As shown in Table XII, only

snippet pair 5 & 6 have single distinguishing mental

factor. All other snippet pairs have multiple

distinguishing mental factors – varying from 2 to 4.

 Furthermore, it’s quite possible – even more likely- that

these five mental factors are not completely disjoint.

Possibility of one factor submerging in another larger

factor is quite there. From our data set in Table XII it

does seems that CV factor is subset of VC factor. But

more conclusive generalization is left to future

researchers.

 The variation in code complexity of snippet pair exists

due to peculiar nature in which human brain process

information.

 The underlying mental factors can exist in any of Basic

Control structure (BCS) as has been amply demonstrated

in Table XII.

To the best of our understanding these factors identified in

above section are not taken into consideration while

measuring the software complexity by any of the existing

software metrics. The idea of presenting code snippets in pair

is to highlight the fact that even if on the external view of

code, essential parameters are same, still the human brain is

likely to comprehend with different sense of ease. It’s

entirely possible that more than five of such mental factors

exists or that some of these mentioned mental factors overlap

considerably and there are lesser number of such mental

factors – same or different.

We believe that none of existing software complexity fully

capture the complexity as they don’t consider the underlying

mental factors. We thus suggest that new measures be

developed which includes these factors to better capture the

software code complexity.

VI. FUTURE SCOPE AND CONCLUSION

In-spite of slew of metrics proposed there is no well accepted

measure of software complexity. Program comprehension

also seems to be too tricky to be understood as of now[15],

[19], [25]–[28].

Underlying Mental Factors Contributing to Software Complexity

4357

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 One reason for that could be difficulty in identifying the

mental factors which plays up while performing a code

comprehension. In true sense software creation is mental

activity and its various related activities like code

comprehension is also deeply mental in nature. This in a way

explains how a good software complexity measure is elusive

to mankind despite all the persistent efforts. In this paper we

identify some of the mental factors which could make the

code comprehension more complex. We identified five such

factors and explained it by taking pair of code snippets which

are essentially same on many parameters – variable count,

operator count, Basic software construct- but differ on the

specific mental factor we intend to explain. Most of existing

software complexity measure either do not take into

consideration these mental factors at all or they only touch

one or two factors and that too indirectly. One work in 2010

do indirectly refers to variable entangling factors, but it is not

the same as the factors we are talking about[29].

Going further we suggest that existing program

comprehension study techniques – time and correctness

study, Eye tracking, EEG, fMRI of human brain- should be

applied on something like any of code snippets pair

mentioned in previous section. The idea is twofold. First to

prove the distinct existence of such factors and second to

include these factors in new proposed software complexity

metrices. We further suggest that these factors can be

corelated with standard psychological experiments pertaining

to working of human brain. We suggest that body of code

snippets of varying difficulty levels in various language are

designed for all these mental factors explained above. The

larger idea is that such body of work can be used by future

researchers to conduct various experiments and many

entangled questions -pertaining to code complexity- can be

answered. This will go long way in developing and validating

the truly acceptable software complexity measure. This could

be helpful in education of computer programming and may

help us spot very early those human talent which are likely to

excel in software development.

REFERENCES

1. A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of

Code, and Development Effort Prediction: A Software Science

Validation,” IEEE Trans. Softw. Eng., 1983.

2. M. H. Halstead, Elements of Software Science. North Holland, 1978.

3. T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol.
SE-2, no. 4, pp. 308–320, 1976.

4. C. Ebert and J. Cain, “Cyclomatic Complexity,” IEEE Softw., 2016.

5. J. Shao and Y. Wang, “A new measure of software complexity based
on cognitive weights,” Can. J. Elect. Comput. Eng., vol. 28, no. 2, pp.

1–6, 2003.

6. Y. Wang, “Cognitive Complexity of Software and its Measurement,”
in 5th IEEE International Conference on Cognitive Informatics, 2006,

pp. 226–235.

7. Y. Wang, “On the Cognitive Complexity of Software and its
Quantification and Formal Measurement,” Int. J. Softw. Sci. Comput.

Intell., vol. 1, no. 2, pp. 31–53, 2009.

8. A. K. Jakhar and K. Rajnish, “A new cognitive approach to measure
the complexity of software’s,” Int. J. Softw. Eng. its Appl., vol. 8, no.

7, pp. 185–198, 2014.

9. O. Esther, O. Stephen, O. Elijah, A. Rafiu, T. Dimple, and Y. Olajide,

“Development of an Improved Cognitive Complexity Metrics for

Object- Oriented Codes,” Br. J. Math. Comput. Sci., vol. 18, no. 2, pp.

1–11, Jan. 2016.
10. S. Misra, A. Adewumi, L. Fernandez-Sanz, and R. Damasevicius, “A

Suite of Object Oriented Cognitive Complexity Metrics,” IEEE

Access, vol. 6, no. January, pp. 8782–8796, 2018.
11. S. K. Dey, S. S. M. Tariq, M. S. Islam, and G. M. M. Bashir,

“Cognitive complexity:A model for distributing equivalent

programming problems,” in ECCE 2017 - International Conference on

Electrical, Computer and Communication Engineering, 2017.

12. L. Jain and S. Singh, “A journey from cognitive metrics to cognitive
computers,” IJARET, vol. 4, no. 4, pp. 60–66, 2013.

13. V. Gruhn and R. Laue, “On Experiments for Measuring Cognitive

Weights for Software Control Structures,” in 6th IEEE International
Conference on Cognitive Informatics, 2007, no. September 2007, pp.

116–119.

14. D. R. Wijendra and K. P. Hewagamage, “Automated tool for the
calculation of cognitive complexity of a software,” in Proceeding -

2016 2nd International Conference on Science in Information

Technology, ICSITech 2016: Information Science for Green Society
and Environment, 2017.

15. S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, Predicates,

Idioms - What Really Affects Code Complexity?,” in 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC),

2017, vol. 24, no. 1, pp. 66–76.

16. L. Jain and S. Singh, “DESIGNING THE CODE SNIPPETS TO
MEASURE THE COGNITIVE WEIGHTS OF BCS,” 2019.

17. M. Klerer, “Experimental study of a two-dimensional language vs

Fortran for first-course programmers,” Int. J. Man. Mach. Stud., vol.

20, pp. 445–467, 1984.

18. B. T. Mynatt, “The effect of semantic complexity on the

comprehension of program modules,” Int. J. Man-Machine Stud., vol.
21, pp. 91–103, 1984.

19. B. Floyd, T. Santander, and W. Weimer, “Decoding the Representation

of Code in the Brain: An fMRI Study of Code Review and Expertise,”
in Proceedings - 2017 IEEE/ACM 39th International Conference on

Software Engineering, ICSE 2017, 2017.
20. A. Jbara and D. G. Feitelson, “How programmers read regular code: a

controlled experiment using eye tracking,” Empir. Softw. Eng., 2017.

21. T. Busjahn et al., “Eye Movements in Code Reading: Relaxing the
Linear Order,” in IEEE International Conference on Program

Comprehension, 2015.

22. I. Crk, T. Kluthe, and A. Stefik, “Understanding programming
expertise: An empirical study of phasic brain wave changes,” ACM

Trans. Comput. Interact., 2016.

23. M. V. Kosti, K. Georgiadis, D. A. Adamos, N. Laskaris, D. Spinellis,

and L. Angelis, “Towards an affordable brain computer interface for

the assessment of programmers’ mental workload,” Int. J. Hum.

Comput. Stud., 2018.
24. S. Lee et al., “Comparing Programming Language Comprehension

between Novice and Expert Programmers Using EEG Analysis,” in

Proceedings - 2016 IEEE 16th International Conference on
Bioinformatics and Bioengineering, BIBE 2016, 2016.

25. T. Blascheck and B. Sharif, “Visually analyzing eye movements on

natural language texts and source code snippets,” in Eye Tracking
Research and Applications Symposium (ETRA), 2019.

26. J. Siegmund et al., “Understanding understanding source code with

functional magnetic resonance imaging,” Proc. 36th Int. Conf. Softw.
Eng. - ICSE 2014, pp. 378–389, 2014.

27. J. Siegmund et al., “Measuring neural efficiency of program

comprehension,” Proc. 2017 11th Jt. Meet. Found. Softw. Eng. -
ESEC/FSE 2017, pp. 140–150, 2017.

28. N. Peitek et al., “A Look into Programmers’ Heads,” IEEE Trans.

Softw. Eng., vol. 5589, no. c, pp. 1–20, 2018.
29. D. Beyer and A. Fararooy, “A simple and effective measure for

complex low-level dependencies,” in IEEE International Conference

on Program Comprehension, 2010.

AUTHORS PROFILE

Dr. Leena Jain, Professor and Head in Department

of Computer Applications, Global Group of
Institutes, Amritsar is a leading young researcher in

the area of operation research and Artificial

Intelligence. She is having 14 years of teaching
experience. Dr. Leena did her Ph.D from Punjabi

University Patiala in 2011 and have dual master

degree MCA and M.Sc. Mathematics. She has
published more than 55 papers in various international and national Journals.

She is also a reviewer in many international journals. Under her guidance 3

Ph.Ds. Scholar award their Ph.D. degree and presently two are pursuing. She
has given many invited talks at various national and international

conferences and chaired many scientific sessions.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4358

Retrieval Number: C6505029320/2020©BEIESP
DOI: 10.35940/ijeat.C6505.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

thor-2
Photo

Mr Satinderjit Singh is working as a Associate
professor in Department of computer Applications

GGNIMT, Ludhiana. He is research scholar in PTU,

Kapurthala, Punjab, India. He is pursuing his Ph. D in
Computer Science and Engineering. He has a 18 years

of teaching experience.

