© 2021 Wiley-VCH GmbH

Supporting Information

for *Adv. Funct. Mater.,* DOI: 10.1002/adfm.202105384

Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis

Laura Collado, Teresa Naranjo, Miguel Gomez-Mendoza, Carmen G. López-Calixto, Freddy E. Oropeza, Marta Liras,* Javier Marugán,* and Víctor A.de la Peña O'Shea**

SUPPORTING INFORMATION

Conjugated porous polymers based on BODIPY and BOPHY dyes in hybrid heterojunctions for artificial photosynthesis

Laura Collado^{a,b,}*, Teresa Naranjo^a, Miguel Gomez-Mendoza^a, Carmen G. López-Calixto^a, Freddy Oropeza^a, Marta Liras^{a,}*, Javier A. Marugán^{b,}*, Víctor A. de la Peña O'Shea^a*

^aPhotoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain.

^bDepartment of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.

Corresponding authors:

laura.collado@urjc.es (Laura Collado) marta.liras@imdea.org (Marta Liras) javier.marugan@urjc.es (Javier A. Marugán) victor.delapenya@imdea.org (Víctor A. de la Peña O'Shea)

SUPPORTING INFORMATION CONTENTS

Figure S1. Emission spectra of the irradiation sources used in the photocatalytic tests: **A**) UV lamps (four 6W lamps, λ_{max} =369 nm, average intensity of 47.23Wm⁻²); **B**) Visible light source (30W white LED, average intensity 53.89Wm⁻² in the region 400–600 nm) for $CO₂$ photoreduction tests and **C**) 150 W medium-pressure Hg immersion lamp for water splitting.

Figure S2. Thermogravimetric analyses of **CMPBDP@T-10** (**A**) and **IEP-7@T-10** (**B**) hybrids under 80 ml $min⁻¹$ air flow.

The thermogravimetric analyses of both hybrids under air atmosphere show a weight loss of *ca*. 10 wt.% in the range 230 °C-600 °C, which correspond to the decomposition of the polymers. The initial weight loss at temperatures lower than 230 °C is associated to the removal of solvents.

Figure S3. N₂ adsorption/desorption isotherms and BET surface areas of CPPs (A-B) and CPP@TiO² hybrids (**C**-**D**).

Figure S4. ATR-FTIR spectra of the polymeric networks **IEP-7** and **CMPBDP**.

The FTIR spectra of the BOPHY-based CPP (*i.e.***IEP-7**) shows a C≡C stretching band at *ca.* 2195 cm[−]¹ indicative of the condensation between the reactant units, as well as a band at *ca*. 1586 cm[−]¹ associated with the BOPHY moiety. On the other hand, the FTIR spectra of **CMPBDP** shows the characteristic bands of the BODIPY dye. Namely, C=N stretching (ca. 1629 cm⁻¹), C=C stretching (*ca*. 1200 cm⁻¹), ring skeleton vibrations (*ca*. 1384 cm⁻¹), C≡C stretching (*ca*. 2194 cm⁻¹), and aromatic C-H stretching frequencies up to 3000 cm⁻¹.

Figure S5. Solid ¹³C-NMR spectra of **CMPBDP** (**A**) and **IEP-7** (**B**). Additional bands are assigned to solvents from the sample (*i.e.* Dichloromethane (DCM), methanol (MeOH), and n-hexane).

The solid-state ¹³C NMR spectra of **CMPBDP** (Figure S5A) shows broad peaks between 100−150 ppm due to aromatic carbons atoms, and signals at 5−15 ppm associated with carbon atoms of the methyl groups from the BODIPY moiety. For **IEP-7** (Figure S5B), the signals of aromatic carbons are localized at the interval 105–155 ppm. Besides, two peaks appear at 82 and 92 ppm as a result of the triple bond group, and a narrow peak at 11 ppm related to the aliphatic C from BOPHY moiety.

Figure S6. XPS of hybrid samples in the F 1s and N 1s regions before and after a photocatalytic H₂ evolution experiment.

The F 1s region can be fitted with a single Voigt function, with a maximum at 684.5 eV (Figure S6A). This value is significantly lower than the F 1s position found in the spectra of $EtNH₂BF₃$ and Ph₃PBF₃ (686 eV)^[2], which is consistent with a higher electron density in the B center of the BF₂ unit in the BODIPY. The N 1s peak (Figure S6B) can also be fitted with a single Voigt function and its position, around 400.5 eV, is within the binding range of N 1s for organic materials.^[2] However, the N 1s peak position is slightly higher than those reported for pryridinic (around 398.6 ev) and pyrrolic (around 400.0 eV) compounds.^[3] The higher binding energy may be result from a strong interaction with the BF2 center, whose coordination results in a positive charge shared between the two N atoms in the dipyrromethene. Both N 1s and F 1s spectral features remained unaltered after running a photocatalytic test for 5h (Figure S6). An ESCA analysis (*Electron Spectroscopy for Chemical Analysis*) of the F/Ti ratio of the hybrid´s surface, before and after the photocatalytic test, showed that the composition remained constant within the experimental error (*ca.* F:Ti = 2:100).

Figure S7. STEM images of Pt/CMPBDP@T-10 hybrid. **B** and **C** depicts a magnification of the squared regions in image **A**; **D** shows the HAADF-STEM image from C; **F** shows the EDS spectrum extending from the region of the region of the E.

Figure S8. Cyclic voltammetry (CV) of **CMPBDP** measured in acetonitrile containing 0.1M $[(nBu)_4]N]PF_6$ as electrolyte at a scan rate of 20 mV s⁻¹ (A); Experimental band energy diagram obtained for CPPs and TiO₂ (note that CV for IEP-7 and TiO₂ can be found in previous publications^[1]), including the water-splitting and CO_2/CH_4 redox couples at pH = 0 (**B**).

Figure S9. H₂ and CO evolution over the CMPBDP@T10 hybrid under different reaction atmospheres (i.e. Ar; Ar + H₂O; CO₂+ H₂O) after 15 h of UV illumination.

Figure S10. Cumulative hydrogen production *versus* reaction time of CPPs and TiO₂ under UV illumination.

Figure S11. Recyclability of CMPBDP@T-10 for H₂ production during UV-dark cycles.

Figure S12. ATR-FTIR spectra of **CMPBDP@T-10** before and after 3 UV-dark cycles of photocatalytic H_2 evolution tests.

Figure S13. Normalized fluorescence decay traces (λ_{exc} = 372 nm, cut-off filter centered at 450 nm) for TiO₂ (A) and the hybrids **CMPBDP@T-10** (B) and IEP-7@T-10 (C) measured in solid state. The fitting curves (red) have been included in all cases.

Figure S14. A) Transient absorption spectra (TAS, λ_{exc} = 355 nm) for TiO₂ measured in suspension solution under inert atmosphere. **B**) TAS for TiO₂ (grey), the hybrids **CMPBDP@T-10** (green) and **IEP-7@T-10** (blue), and the comparison with their bare materials **CMPBDP** and **IEP-7** (magenta and cyan, respectively) under the same conditions.

Figure S15. Fits of the normalized transient decay traces (λ_{exc} = 355 nm, λ_{obs} = 460 nm) monitored up to 400 ns after laser pulse (left side) or until 6 μ s (right side) for **A**) TiO₂, **B**) **CMPBDP@T-10** and **C**) **IEP-7@T-10**.

Figure S16. Decay traces (λ_{exc} = 355 nm, λ_{obs} = 460 nm) for deaerated TiO₂ in the absence (red) or presence (black) of 10% vol. MeOH aqueous suspensions.

Figure S17. A) TAS (λ_{exc} = 355 nm) for TiO₂ in the absence (grey, open circles) or in the presence (black circles) of H₂PtCl₆ as electron scavenger. TAS for **CMPBDP@T-10** (green) and IEP-7@T-10 (blue) in the presence of H₂PtCl₆ have been included for comparative purposes; **B**) Decay traces (λ_{exc} = 355 nm, λ_{obs} = 460 nm) for deaerated TiO₂ in absence (grey) or presence (black) of $H_2PtCl_6.$

Figure S18. Solid-state photoluminescence spectra of CMPBDP ($\lambda_{\rm exc}$ = 445 nm, cut-off filter at 450 nm).

Table S1. Surface composition of **CMPBDP@T-10** based on X-ray photoelectron spectra before and after a photocatalytic H_2 production test.

^aBased on the N 1s, F 1s and Ti 2p peaks areas and their respective sensitivity factors.

 b Derived from the nominal composition of the hybrid, 10%w/w of the polymer.

The concentration of N and F on the surface is lower than expected for the nominal composition of the hybrid. This suggests the $TiO₂$ particles are preferentially located at the surface of the hybrid.

Table S3. Some relevant examples of organic-inorganic hybrid materials based on TiO₂ and polymers for CO₂ photoreduction.

Table S3. Cont. Some relevant examples of organic-inorganic hybrid materials based on TiO₂ and polymers for CO₂ photoreduction.

^aHere we include the charge transfer mechanism as named in the original scientific paper. Note that Type II and p–n junction refer to the same mechanism; b AQY, Apparent Quantum Yield, AQY (%) = (Number of reacted electrons)/ (Number of incident photons) × 100%; c_5 , Photonic Efficiency calculated as the ratio between the rate of reaction and the incident photon flux; ^dConjugated microporous polymer based on a BODIPY dye; ^eIMDEA Energy Polymer number 7 consisting on a conjugated porous polymer based on a BOPHY dye; ^fPhotonic efficiency towards CH₄; ^gPolyvinylidene fluoride; ^hHypercrosslinked polymer; ⁱPolydopamine; ^jGraphitic carbon nitride; k Polyaniline; [']N-doped TiO₂ nanofibers.

IS	CP	Co-catalyst	Sacrificial Agent	Light source	Charge transfer mechanism [®]	Formation rate $(mmol g-1 h-1)$	AQY^b or ζ^c $(\%)$, $(\lambda \text{ (nm)})$	Ref
TiO ₂	CMPBDP	1 wt.% Pt	10 vol.% MeOH aq.	Hg lamp	Type II	56.4	20.43^c	This work
TiO ₂	IEP-7	1 wt.%Pt	10 vol.% MeOH aq.	Hg lamp	Type II	39.3	14.54	$[10]$
TiO ₂	TxPPT	1 wt.% Pt	10 vol.% MeOH aq.	Hg lamp	Z-scheme	21.9	N/A	$[11]$
TiO ₂	Polycatechol	N/A	5 vol.% TEOA aq.	Solar light	LMCT ^d	10.9	N/A	$[12]$
TiO ₂	$B-BT-1,4-E$	0.03 wt.% residual Pd	TEOA aq.	Xe-lamp ($\lambda \ge 420$ nm)	Sensitization	7.3	1.91(420)	$[13]$
TiO ₂	$B-BT-1,4-E$	1 wt.% Au	10 vol.% TEOA	Xe-lamp ($\lambda \ge 420$ nm)	Sensitization	26.6	7.8(420)	$[14]$
Black TiO ₂	B-BT-1,4-E	residual Pd	10 vol.% TEOA	Xe-lamp ($\lambda \ge 420$ nm)	Type II heterojunction	15.6	3.36 (420)	$[15]$
TiO ₂	BFB or	0.4 wt.% residual	TEOA ag.	Xe-lamp ($\lambda \geq 420$ nm)	Sensitization	3.7	1.6(420)	$[16]$
	BFBA	Pd				7.3	2.46(420)	
TiO ₂	CMPBBT	0.5 wt.% Pt	TEOA	Xe-lamp ($\lambda \ge 420$ nm)	Sensitization	5.9	N/A	$[17]$
TiO ₂ ^e	COP64	3 wt.% Pt	10 vol.% MeOH aq.	Xe-lamp (without UV cut-off filter)	p-n junction	15.0	N/A	$[18]$
TiO ₂	TpTph	3.9 wt. % Pt	Ascorbic acid	Xe-lamp ($\lambda \ge 420$ nm)	Sensitization	5.6	N/A	$[19]$
$N-TiO2f$	$g - C_3 N_4$	Pt (amount no provided)	20 vol.% MeOH aq.	Simulated solar light	p-n junction	8.9	N/A	$[20]$

Table S4. Some relevant examples of organic-inorganic hybrid materials based on TiO₂for photocatalytic hydrogen production from water.

IS	CP	Co-catalyst	Sacrificial Agent	Light source	Charge transfer mechanism [®]	Formation rate $(mmol g-1 h-1)$	AQY ^b or $\frac{1}{2}$ ^c (%), $(\lambda (nm))$	Ref
TiO ₂	B-doped g- C_3N_4	N/A	20 vol.% MeOH ag.	Xe-lamp ($\lambda \ge 420$ nm)	Sensitization	0.2	3.08(420)	$[7]$
Black-TiO ₂	$g - C_3 N_4$	N/A	20 vol.% MeOH ag.	Simulated solar light	Type II	0.6	N/A	$[21]$
TiO ₂	TbBD-COF	3 wt.% Pt	10 vol.%TEOA ag	Xe-lamp	Type II	0.004	N/A	$[22]$

Table S4. Cont. Some relevant examples of organic-inorganic hybrid materials based on TiO₂ used in photocatalytic hydrogen production from water.

^aHere we include the charge transfer mechanism as named in the original scientific paper. Note that Type II and p–n junction refer to the same mechanism; ^bAQY, Apparent Quantum Yield, AQY (%) = (2× Number of evolved H₂ molecules)/ (Number of incident photons) × 100%; ^c3, Photonic Efficiency calculated as the ratio between the rate of reaction and the incident photon flux; ^dLMCT:Ligand to Metal Charge Transfer; ^eTiO₂ Nanosheet; ^fN-doped TiO₂ nanofibers.

REFERENCES

- [[1] C. G. López-Calixto, S. Cabrera, R. Pérez-Ruiz, M. Barawi, J. Alemán, V. A. de la Peña O'Shea, M. Liras, *Appl. Catal. B Environ.* **2019**, *258*, 117933.
- [2] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, *Handbook of X-Ray Photoelectron Spectroscopy* (Ed.: Muilenberg, G. E.), Perkin-Elm., **1979**.
- [3] D. Y. Osadchii, A. I. Olivos-Suarez, A. V. Bavykina, J. Gascon, *Langmuir* **2017**, *33*, 14278.
- [4] P. Dong, Z. Huang, X. Nie, X. Cheng, Z. Jin, X. Zhang, *Mater. Res. Bull.* **2019**, *111*, 102.
- [5] S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan, *Nat. Commun.* **2019**, *10*, 676.
- [6] T. Wang, M. Xia, X. Kong, *Catalyst* **2018**, 215.
- [7] F. Raziq, Y. Qu, X. Zhang, M. Humayun, J. Wu, A. Zada, H. Yu, X. Sun, L. Jing, *J. Phys. Chem. C* **2016**, *120*, 98.
- [8] G. Liu, S. Xie, Q. Zhang, Z. Tian, Y. Wang, *Chem. Commun.* **2015**, *51*, 13654.
- [9] S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, *Appl. Catal. B Environ.* **2014**, *158*–*159*, 20.
- [10] C. G. López-Calixto, M. Barawi, M. Gomez-Mendoza, F. E. Oropeza, F. Fresno, M. Liras, V. A. de la Peña O'Shea, *ACS Catal.* **2020**, *10*, 9804.
- [11] A. Valverde-González, C. G. López Calixto, M. Barawi, M. Gomez-Mendoza, V. A. De La Peña O'Shea, M. Liras, B. Gómez-Lor, M. Iglesias, *ACS Appl. Energy Mater.* **2020**, *3*, 4411.
- [12] P. Karthik, R. Vinoth, P. Selvam, E. Balaraman, M. Navaneethan, Y. Hayakawa, B. Neppolian, *J. Mater. Chem. A* **2017**, *5*, 384.
- [13] Y. Xiang, X. Wang, X. Zhang, H. Hou, K. Dai, Q. Huang, H. Chen, *J Mater Chem A* **2018**, *6*, 153.
- [14] J. Xiao, Y. Luo, Z. Yang, Y. Xiang, X. Zhang, H. Chen, *Catal. Sci. Technol.* **2018**, *8*, 2477.
- [15] X. Zhang, J. Xiao, C. Peng, Y. Xiang, H. Chen, *Appl. Surf. Sci.* **2019**, *465*, 288.
- [16] B. Chen, X. Wang, W. Dong, X. Zhang, L. Rao, H. Chen, D. Huang, Y. Xiang, *Chem. - A Eur. J.* **2019**, *25*, 3362.
- [17] H. Hou, X. Zhang, D. Huang, X. Ding, S. Wang, X. Yang, S. Li, Y. Xiang, H. Chen, *Appl. Catal. B, Environ.* **2017**, *203*, 563.
- [18] Q. Yang, P. Peng, Z. Xiang, *Chem. Eng. Sci.* **2017**, *162*, 33.
- [19] G. Mukherjee, J. Thote, H. B. Aiyappa, S. Kandambeth, S. Banerjee, K. Vanka, R. Banerjee, *Chem. Commun.* **2017**, *53*, 4461.
- [20] C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, *Nano Res.* **2015**, *8*, 1199.
- [21] L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, *Sci. Rep.* **2017**, *7*, 1.

[22] L. Liu, J. Zhang, X. Tan, B. Zhang, J. Shi, X. Cheng, D. Tan, B. Han, L. Zheng, F. Zhang, *Nano Res.* **2020**, *13*, 983.