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Figure S1. Emission spectra of the irradiation sources used in the photocatalytic tests: A) UV 

lamps (four 6W lamps, max=369 nm, average intensity of 47.23Wm−2); B) Visible light source 

(30W white LED, average intensity 53.89Wm−2 in the region 400–600 nm) for CO2 

photoreduction tests and C) 150 W medium-pressure Hg immersion lamp for water splitting. 
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Figure S2. Thermogravimetric analyses of CMPBDP@T-10 (A) and IEP-7@T-10 (B) hybrids 

under 80 ml min-1 air flow. 

 

The thermogravimetric analyses of both hybrids under air atmosphere show a weight loss of 

ca. 10 wt.% in the range 230 °C-600 °C, which correspond to the decomposition of the 

polymers. The initial weight loss at temperatures lower than 230 °C is associated to the 

removal of solvents. 
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Figure S3. N2 adsorption/desorption isotherms and BET surface areas of CPPs (A-B) and 

CPP@TiO2 hybrids (C-D). 
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Figure S4. ATR-FTIR spectra of the polymeric networks IEP-7 and CMPBDP.  

The FTIR spectra of the BOPHY-based CPP (i.e.IEP-7) shows a C≡C stretching band at ca. 2195 

cm−1 indicative of the condensation between the reactant units, as well as a band at ca. 1586 

cm−1 associated with the BOPHY moiety. On the other hand, the FTIR spectra of CMPBDP 

shows the characteristic bands of the BODIPY dye. Namely, C=N stretching (ca. 1629 cm-1), C=C 

stretching (ca. 1200 cm-1), ring skeleton vibrations (ca. 1384 cm−1), C≡C stretching (ca. 2194 

cm−1), and aromatic C−H stretching frequencies up to 3000 cm−1. 
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Figure S5. Solid 13C-NMR spectra of CMPBDP (A) and IEP-7 (B). Additional bands are assigned 

to solvents from the sample (i.e. Dichloromethane (DCM), methanol (MeOH), and n-hexane). 

 

The solid-state 13C NMR spectra of CMPBDP (Figure S5A) shows broad peaks between 100−150 

ppm due to aromatic carbons atoms, and signals at 5−15 ppm associated with carbon atoms of 

the methyl groups from the BODIPY moiety. For IEP-7 (Figure S5B), the signals of aromatic 

carbons are localized at the interval 105–155 ppm. Besides, two peaks appear at 82 and 92 

ppm as a result of the triple bond group, and a narrow peak at 11 ppm related to the aliphatic 

C from BOPHY moiety. 
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Figure S6. XPS of hybrid samples in the F 1s and N 1s regions before and after a photocatalytic 

H2 evolution experiment. 

The F 1s region can be fitted with a single Voigt function, with a maximum at 684.5 eV (Figure 

S6A). This value is significantly lower than the F 1s position found in the spectra of EtNH2BF3 

and Ph3PBF3 (686 eV)[2], which is consistent with a higher electron density in the B center of the 

BF2 unit in the BODIPY. The N 1s peak (Figure S6B) can also be fitted with a single Voigt 

function and its position, around 400.5 eV, is within the binding range of N 1s for organic 

materials.[2] However, the N 1s peak position is slightly higher than those reported for 

pryridinic (around 398.6 ev) and pyrrolic (around 400.0 eV) compounds.[3] The higher binding 

energy may be result from a strong interaction with the BF2 center, whose coordination 

results in a positive charge shared between the two N atoms in the dipyrromethene. Both N 1s 

and F 1s spectral features remained unaltered after running a photocatalytic test for 5h (Figure 

S6). An ESCA analysis (Electron Spectroscopy for Chemical Analysis) of the F/Ti ratio of the 

hybrid´s surface, before and after the photocatalytic test, showed that the composition 

remained constant within the experimental error (ca. F:Ti = 2:100). 
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Figure S7. STEM images of Pt/CMPBDP@T-10 hybrid. B and C depicts a magnification of the 

squared regions in image A; D shows the HAADF-STEM image from C; F shows the EDS 

spectrum from region E. 
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Figure S8. Cyclic voltammetry (CV) of CMPBDP measured in acetonitrile containing 0.1M 

[(nBu)4)N]PF6 as electrolyte at a scan rate of 20 mV s-1 (A); Experimental band energy diagram 

obtained for CPPs and TiO2 (note that CV for IEP-7 and TiO2 can be found in previous 

publications[1]), including the water-splitting and CO2/CH4 redox couples at pH = 0 (B). 
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Figure S9. H2 and CO evolution over the CMPBDP@T10 hybrid under different reaction 

atmospheres (i.e. Ar; Ar + H2O; CO2+ H2O) after 15 h of UV illumination. 
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Figure S10. Cumulative hydrogen production versus reaction time of CPPs and TiO2 under UV 

illumination.  
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Figure S11. Recyclability of CMPBDP@T-10 for H2 production during UV-dark cycles. 
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Figure S12. ATR-FTIR spectra of CMPBDP@T-10 before and after 3 UV-dark cycles of 

photocatalytic H2 evolution tests.  
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Figure S13. Normalized fluorescence decay traces (exc = 372 nm, cut-off filter centered at 450 

nm) for TiO2 (A) and the hybrids CMPBDP@T-10 (B) and IEP-7@T-10 (C) measured in solid 

state. The fitting curves (red) have been included in all cases. 
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Figure S14. A) Transient absorption spectra (TAS, exc = 355 nm) for TiO2 measured in 

suspension solution under inert atmosphere. B) TAS for TiO2 (grey), the hybrids CMPBDP@T-

10 (green) and IEP-7@T-10 (blue), and the comparison with their bare materials CMPBDP and 

IEP-7 (magenta and cyan, respectively) under the same conditions. 
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Figure S15. Fits of the normalized transient decay traces (exc = 355 nm,obs = 460 nm) 

monitored up to 400 ns after laser pulse (left side) or until 6s (right side) for A) TiO2, B) 

CMPBDP@T-10 and C) IEP-7@T-10. 
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Figure S16. Decay traces (exc = 355 nm,obs = 460 nm) for deaerated TiO2 in the absence (red) 

or presence (black) of 10%  vol. MeOH aqueous suspensions. 
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Figure S17. A) TAS (λexc = 355 nm) for TiO2 in the absence (grey, open circles) or in the presence 

(black circles) of H2PtCl6 as electron scavenger. TAS for CMPBDP@T-10 (green) and IEP-7@T-10 

(blue) in the presence of H2PtCl6 have been included for comparative purposes; B) Decay traces 

(exc = 355 nm,obs = 460 nm) for deaerated TiO2 in absence (grey) or presence (black) of 

H2PtCl6. 
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Figure S18. Solid-state photoluminescence spectra of CMPBDP (exc = 445 nm, cut-off filter at 

450 nm). 
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Table S1. Surface composition of CMPBDP@T-10 based on X-ray photoelectron spectra before 

and after a photocatalytic H2 production test. 

 N : F : TiO2 surface atomic ratioa N : F : TiO2 nominal atomic 
ratiob 

CMPBDP@T-10 as prepared 1.2 : 2 : 100 

4.3 : 4.3 : 100 CMPBDP@T-10 after 
reaction 

1.4 : 2 : 100 

aBased on the N 1s, F 1s and Ti 2p  peaks areas and their respective sensitivity factors. 
bDerived from the nominal composition of the hybrid, 10%w/w of the polymer. 

The concentration of N and F on the surface is lower than expected for the nominal 
composition of the hybrid. This suggests the TiO2 particles are preferentially located at the 
surface of the hybrid.  
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Table S2. Cumulative CO2 photoreduction productions after 15 h of UV illumination for hybrid 

heterojunctions (i.e. CMPBDP@T-10, IEP-7@T-10), bare polymer (i.e. CMPBDP) and TiO2. 

Photonic efficiencies towards CH4 are also included for comparison. 

 Cumulative production (mol gcat
-1)  

Photonic 
efficiency, ƺ (%) 

to CH4 

 H2 CO CH4 C2H4O2 C2H4 C2H6  

CMPBDP@T-10 235.1 144.6 60.3 1.6 5.4 8.3 0.13 

CMPBDP 20.4 11.3 0.0 38.7 0.0 0.0 0.00 

IEP-7@T-10 241.7 129.3 43.6 2.2 3.2 6.5 0.09 

TiO2 63.8 124.9 15.4 2.1 0.8 0.8 0.04 
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Table S3. Some relevant examples of organic-inorganic hybrid materials based on TiO2 and polymers for CO2 photoreduction. 

IS Polymer Cocatalyst Reactor 
Preparation 

details 
Morphology 

Light 
source 

Charge transfer 
mechanism

a
 

Rate units) 
AQY

b
 or ƺ

c
 

(%), 
(nm)) 

Ref 
Year 

TiO2 (PC500) CMPBDP
d
 N/A 

Gas-
solid 

Physical mixture 
and grinding 

TiO2 
nanocrystals 
surrounding 

polymer 
network 

4 UV lamps 
(6W) (max = 

369nm) 

Type II 
Heterojunction 

CO: 15.1 mol g
-1

 h
-1

 

CH4: 6.9 mol g
-1

 h
-1

 

H2: 26.3 mol g
-1

 h
-1

 

4.1 (CH4) and 4.4 (H2) 
times higher than TiO2 

0.13
f
(369) 

This 
work 

2021 

TiO2 (PC500) IEP-7
e
 N/A 

Gas-
solid 

Physical mixture 
and grinding 

TiO2 
nanocrystals 
surrounding 

polymer 
network 

4 UV lamps 
(6W) (max = 

369nm) 

Type II 
Heterojunction 

CO: 12.2 mol g
-1

 h
-1

 

CH4: 5.0 mol g
-1

 h
-1

 

H2: 23.7 mol g
-1

 h
-1

 

3 (CH4) and 4 (H2) times 
higher than TiO2 

0.09
f
  

(369) 

This 
work 

2021 

TiO2 PVDF
g
 N/A 

Gas-
solid 

TiO2 nanocrystals 
synthesized over 
electrospinned 

polymer 

Composite 

4 UVA 
lamps (8W) 

(max 

=365nm)  

N/A 
CO: 15.1 μmol g

-1 
h

-1
 

CH4: 3.1 μmol g
-1

 h
-1

 
N/A 

[4]
 

2019 

TiO2-
functionalized 

graphene 
HCP

h
 N/A 

Gas-
solid 

Hypercrosslinked 
polymer 

synthesized over 
TiO2-graphene 

composite 

Composite 
Xe lamp 

(≥420nm) 
Sensitization 

CO: 21.6 mol g
-1

 h
-1

 

CH4: 27.6 μmol g
−1 

h
−1

 
N/A 

[5]
 

2019 

TiO2 PDA
i
 N/A 

Gas-
solid 

PDA (1 nm of 
coating) 

synthesized over 
TiO2 surface  

Polymer 
coating 

Xe lamp 

(>400nm) 
Sensitization CO: 3.0mol g

-1
 h

-1
 N/A 

[6]
 

2018 
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Table S3. Cont. Some relevant examples of organic-inorganic hybrid materials based on TiO2 and polymers for CO2 photoreduction. 

IS Polymer Cocatalyst Reactor 
Preparation 

details 
Morphology 

Light 
source 

Charge 
transfermechanism

a
 

Rate units) 
AQY

b
 or 

ƺ
c
 (%), 

(nm)) 

Ref 
(Year) 

TiO2 
B-doped 
g-C3N4

j
 

N/A 
Gas-

liquid 

TiO2 
synthesized by 

sol-gel over 
polymer 

Composite 
Xe lamp 

(≥420nm) 
Sensitization CH4: 131.3mol g

-1
 h

-1
 

1.68, 
(420) 

[7]
 

2016 

TiO2 (P25) PANI
k
 

0.2 wt.% 
Pt 

Gas-
solid  

In situoxidative 
polymerization 

of PANI 

Polymer 
coating 

Xe lamp 

 (320–780 
nm) 

N/A 

CH4: 50.0mol g
-1

 h
-1

 

H2: 320.0mol g
-1

 h
-1

 

3.3 (CH4) and 2.8 (H2) 
times higher than 

Pt/TiO2 

N/A 
[8]

 
2015 

N-TiO2
l
 g-C3N4

j
 N/A 

Gas-
solid 

Thermal 
treatment with 

urea and 
Ti(OH)4 (7:3) 

wt/wt 

Composite 
Xe lamp 

(UV-Vis) 

Type II 
Heterojunction 

CO: 11.9mol g
-1

 h
-1

 

4 times higher than 
P25 

N/A 
[9]

 
2014 

a
Here we include the charge transfer mechanism as named in the original scientific paper. Note that Type II and p–n junction refer to the same mechanism; 

b
AQY, 

Apparent Quantum Yield, AQY (%) = (Number of reacted electrons)/ (Number of incident photons) × 100%; 
c
ƺ, Photonic Efficiency calculated as the ratio between the 

rate of reaction and the incident photon flux; 
d
Conjugated microporous polymer based on a BODIPY dye; 

e
IMDEA Energy Polymer number 7 consisting on a conjugated 

porous polymer based on a BOPHY dye; 
f
Photonic efficiency towards CH4; 

g
Polyvinylidene fluoride; 

h
Hypercrosslinked polymer; 

i
Polydopamine; 

j
Graphitic carbon nitride; 

k
Polyaniline; 

l
N-doped TiO2 nanofibers.  
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Table S4. Some relevant examples of organic-inorganic hybrid materials based on TiO2for photocatalytic hydrogen production from water. 

IS CP Co-catalyst Sacrificial Agent Light source 
Charge transfer 

mechanism
a
 

Formation rate 

mmol g
-1

 h
-1

) 

AQY
b
 or ƺ

c
 

(%), (nm)) 
Ref 

TiO2 CMPBDP 1 wt.% Pt 10 vol.% MeOH aq. Hg lamp Type II 56.4 20.43
c
 

This 
work 

TiO2 IEP-7 1 wt.%Pt 10 vol.% MeOH aq. Hg lamp Type II 39.3 14.54 
[10]

 

TiO2 TxPPT 1 wt.% Pt 10 vol.% MeOH aq. Hg lamp Z-scheme 21.9 N/A 
[11]

 

TiO2 Polycatechol N/A 5 vol.% TEOA aq. Solar light LMCT
d
 10.9 N/A 

[12]
 

TiO2 B-BT-1,4-E 
0.03 wt.% residual 

Pd 
TEOA aq. Xe-lamp (λ ≥ 420 nm) Sensitization 7.3 1.91 (420) 

[13]
 

TiO2 B-BT-1,4-E 1 wt.% Au 10 vol.% TEOA Xe-lamp (λ ≥ 420 nm) Sensitization 26.6 7.8 (420) 
[14]

 

Black 
TiO2 

B-BT-1,4-E residual Pd 10 vol.% TEOA Xe-lamp (λ ≥ 420 nm) 
Type II 

heterojunction 
15.6 3.36 (420) 

[15]
 

TiO2 

BFB or 

BFBA 

0.4 wt.% residual 
Pd 

TEOA aq. Xe-lamp (λ ≥ 420 nm) Sensitization 
3.7 

7.3 

1.6 (420) 

2.46 (420) 

[16]
 

TiO2 CMPBBT 0.5 wt.% Pt TEOA Xe-lamp (λ ≥ 420 nm) Sensitization 5.9 N/A 
[17]

 

TiO2
e
 COP64 3 wt.% Pt 10 vol.% MeOH aq. 

Xe-lamp (without UV cut-off 
filter) 

p-n junction 15.0 N/A 
[18]

 

TiO2 TpTph 3.9 wt. % Pt Ascorbic acid  Xe-lamp (λ ≥ 420 nm) Sensitization  5.6  N/A 
[19]

 

N-TiO2
f
 g-C3N4 

Pt (amount no 
provided) 

20 vol.% MeOH aq. Simulated solar light p-n junction 8.9 N/A 
[20]
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Table S4. Cont. Some relevant examples of organic-inorganic hybrid materials based on TiO2 used in photocatalytic hydrogen production from water. 

IS CP Co-catalyst Sacrificial Agent Light source 
Charge transfer 

mechanism
a
 

Formation rate 

mmol g
-1

 h
-1

) 

AQY
b
 or ƺ

c
 (%), 

(nm)) 
Ref 

TiO2 B-doped g-C3N4 N/A 20 vol.% MeOH aq. Xe-lamp (λ ≥ 420 nm) Sensitization 0.2 3.08 (420) 
[7]

 

Black-TiO2 g-C3N4 N/A 20 vol.% MeOH aq. Simulated solar light Type II 0.6 N/A 
[21]

 

TiO2 TbBD-COF 3 wt.% Pt 10 vol.%TEOA aq Xe-lamp Type II 0.004 N/A 
[22]

 

a
Here we include the charge transfer mechanism as named in the original scientific paper. Note that Type II and p–n junction refer to the same mechanism; 

b
AQY, 

Apparent Quantum Yield, AQY (%) = (2× Number of evolved H2 molecules)/ (Number of incident photons) × 100%; 
c
ƺ, Photonic Efficiency calculated as the ratio between 

the rate of reaction and the incident photon flux; 
d
LMCT:Ligand to Metal Charge Transfer; 

e
TiO2 Nanosheet; 

f
N-doped TiO2 nanofibers. 
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