
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4037
Retrieval Number: C6546029320/2020©BEIESP

DOI: 10.35940/ijeat.C6546.029320

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Abstract: Software testing is a major process in every

software development cycle so as to produce superior quality

products that can cater to the customer needs. In the beginning

of the IT industry testing was a simple process since competition

was not enough so as to produce good quality software. With the

development of technology and fierce competition over recent

years the needs to develop simultaneous methods of testing have

been proposed. Reviewing the given application remains one of

the major setbacks of concurrent code and the other being data

flow in given request stack. Testing becomes really difficult when

the function not returning the output to the caller function in

requisite time but later on returns it via call-back functions,

messages or other such processes. So this paper aims at viewing

the tools and techniques available for better testing, removing

bugs so as to make software good. Here the defects as well as

directions need to remove it are also focussed.

Keywords Used: Simultaneous, Concurrency, Testing,

Tools, race conditions, dynamic analysis, static analysis

I. INTRODUCTION

Multi Threaded coding for concurrent applications have

shown great progresses with advancement of

microprocessor technologies. So new testing methods have

been adopted as it requires existing software to test

accordingly. With growth in research testing is finally able

to meet its needs. Since concurrent applications lack new

test methods for software, the hardware industries are

speeding up the process in this direction by developing new

hardware tools that can achieve concurrency power

effectively.

There are a number of factors which are responsible for

difficulty in concurrent testing such as:

 Non determinism- Absence of deterministic method

makes it hard to detect bugs.

 Concurrency Defects-Structure of software, its

blueprint, and application defects makes it

concurrency failure.

 Synchronization: Integrating the components for

concurrent execution for timing and sorting for

execution.

 Communication: Execution of the application

concurrently breach spatial isolation of components.

Revised Manuscript Received on February 25, 2020.
Sasmita Padhy, department of Computer Science, VITAM,

Berhampur, Odisha. Email:-pinky.sasmita@gmail.com

Akash Kumar Sahu, department of Computer Science, NIST,
Berhampur, Odisha. Email:-akashkumarsahu987@gmail.com

Susanta Kumar Das, department of Computer Science,

Berhampur University , Berhampur, Odisha. Email:-

dr.s.k.das1965@gmail.com

II. CONCURRENCY DEFECTS

One of the major drawbacks of system testing is the lack of

knowledge of concurrency defects by software developers

who unknowingly assume that the OS will take care of this.

Some of such defects are:

a. Race conditions:

It happens mainly when in a multi threaded programming

more than one thread access the same data and minimum

one thread at that time is at write mode. [1] Race conditions

are hard to detect in a code as it appears uncertainly in a

different sections of the code at different times. But it can

be avoided by sequencing operations between threads using

synchronization.

b. Deadlock:

It was introduced to avoid race conditions. It is a condition

where a process is blocked since each thread is holding a

resource and waiting for another resource to be acquired by

the some other processes. Deadlock[2] is most probable in

processes where there is no circular wait conditions.

c. Starvation:

It is caused when in a multithreaded application the

runnable codes are blocked or delayed. Starvation[3] is

caused because of OS scheduling rules. To control

starvation, OS scheduler timely interferes to boost priority

of starving threads.

d. Livelocks:

Livelock[5] occurs when scheduled threads are not able to

move forward because of their continuous reactions to state

changes. One of the best examples of livelock is the giant

utilization of CPU with minimal work done. Livelock

becomes very hard to detect and repair.

e. Suspension:

It occurs when concurrent components are made standby

for long time to acquire shared resources.

f. Atomicity Violation:

Atomicity causes crash in the system as processes interrupt

with each other for execution.

g. Priority Inversion:

This causes failure of the process since lower priority

operations are executed earlier as compared to higher

priority.

III. CONCURRENT TESTING METHODOLOGIES

Concurrent software are tested to measure their

performance, quality as well as their correctness which is

resolved using methods

like dynamic analysis,

Concurrent Defects, Methodologies and

Recommendations
Sasmita Padhy, Akash Kumar Sahu, Susanta Kumar Das

Concurrent Defects, Methodologies and Recommendations

4038
Retrieval Number: C6546029320/2020©BEIESP

DOI: 10.35940/ijeat.C6546.029320

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

static analysis and model checking.

A. Race free-typed method

It is a technique which implements a type based system to

remove the race around conditions from program[2] as it

does not suffer any performance sanctions. The major

setback in this method is the expressiveness of applied type

system which limits the coder’s willingness to implement

techniques he is used to. The benefits are it protects the

shared resources using locks.

B. Static analysis method

It is generally implemented by seeing at the metadata in a

executed programme or annotated source code [4], [5]. It

generally analyzes the program without even compiling.

Some of the popular tools used are the Prefast and Prefix,

FxCop etc. It consists of formal inspection to avoid

unnecessary behaviour.

Flow sensitive used in this method to encounter data race

and deadlocks are figured in [6].

Advantages of static tool are:

 Complete coverage is gained.

 Easily able to detect bugs and fix it through precision.

 Coders gain confidence for formal analysis to build

software.

Disadvantages includes:

 A significant amount of annotations are required to

deal with concurrency bugs.

 A great amount of effort needs to be applied so as to

reduce false positives generated during testing.

C. Dynamic analysis method:

Detection of bugs are done using program footprints. It only

follows the visible path that has exact image of shared

resources and executes on runtime.

It is done in online as well as offline mode. Analyzing as

well as executing is done simultaneously in online mode

whereas in offline mode first it traces them and analyzes

later for bugs. It is more convenient technique as it

generates minimum false positives and needs very less time

for developers during coding. It is a low cost reliability

method since the errors are detected in the most frequent

executed path.

The disadvantages of dynamic analysis include:

 Errors are detected only along executed path and it

needs reliability on test values for maximum coverage.

 Since finding the race conditions is not certain in some

tools, detecting bugs sometimes is not possible.

 As the tools rely on some hardware that manipulates the

runtime, its performance can be poor.

There are basically two main algorithms focused in [8].

 Lockset Algorithm:

Tools using this algorithm have a potential race which

happened when two threads have access to shared memory

resource without interleaving of threads which provides

conditions for race potential. This technique does not

generate false negative. But it can generate superfluous

false positive . So it has poor precision.

 Happen-before Algorithm:

Here potential race occurs when two threads have a shared

memory location. Here accesses are randomly sorted as in

[9]. It produces less false positives as compared to lockset

algorithm but it is difficult to implement.

D. Model checking method:

Reference[5] suggests this technique for correcting limited

state of concurrent system. This method allows for formal

deductiveness by trying to replicate both race and deadlock

conditions. It gives maximum coverage with minimum

connected hardware and provides higher confidence in

structural design. But it has certain disadvantages which

includes difficulty in model extraction from code due to

excess verification of state space explosion where probable

state count is huge. So using the reduction technique the

state space explosion is controlled. Here there are certain

constraints like failure in detection of bugs. Model checking

ensures that application is error free whereas there can still

be error in the implementation. It needs efficient

architecture and planning which makes which makes it

suitable for small portions in a product.

E. Hybrid method:

[12]It is the combinations of more than one technique so as

to avail the benefits of each other. This combination can be

unidirectional as well bidirectional.

 Unidirectional:

Here in this technique information is transferred from one

method to another. Here dynamic analysis is guided by

static analysis to generate minimum false positive rates.

Bidirectional:

Here information is interchanged amongst each other as one

technique provides first information to next one that uses it

during mechanism and in return provides the first one with

feedback and results. Here static analysis guides dynamic

analysis regarding the efficiency of testing.

Also to control large software model checking and static

analysis are combined forming an iterative method[11]. In

his technique static method analyzes errorless statements to

be used by model checker for partial order analysis.

F. Structural White Box unit and Integration testing

Methods.

Here the main aim is to generate plenty of test cases to

maximize coverage by using structural information to

recognize synchronization followed by communicating

points.

G. Random testing

In this method test suites are automatically generated based

on system behaviour.

H. Defect-Driven Testing

Here test suites are generated manually based on structure

and design of the system.

IV. CONCURRENCY TESTING TOOLS

There are a large number of concurrency testing tools for

detecting deadlocks, livelocks etc.

CHESS[13] tool combining model checking and dynamic

analysis used for detecting concurrency errors by analyzing

schedules.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4039
Retrieval Number: C6546029320/2020©BEIESP

DOI: 10.35940/ijeat.C6546.029320

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

 It can detect deadlocks, livelocks, data corruption issues. It

also provides coverage. It is also used as a dynamic tool

required running unit test on a specifically designed

scheduler. The technique used in CHESS is partial order

reduction and to control state space explosion iteration

context bounding is used. Upon repetition it chooses new

scheduling.

CHESS technique boundaries itself to amount of thread

switches in compilation process. This method is based on

the formula of switching sorted threads to find out the

concurrent bugs. CHESS also detects deadlocks and race

around but it solely relies on coders for verification and it

also reports livelocks.

INTEL THREAD CHECK[10] tool based on dynamic

analysis used to find deadlocks, stalls, false API etc. It uses

the Happen-Before technique on partial order. Here the

thread checker makes the memory reference by

implementing the source code or compiled binary code.

But the tool has certain disadvantages as it cannot operate

on interlocked operations on synchronization like custom

spin locks. It is best for applications using standard

synchronizations for concurrency testing.

RacerX[6] tool is used for analyzing race around and

deadlocks. In this technique the only condition is that the

user has to present a table requiring APIs so as to access

and release locks. The table needs to be very small of less

than 30 entries. It operates phase wise. First of all it loops

over the initial code file building CFG (control Flow Graph)

containing information of functions, shared memory,

pointer usage etc. As the CFG is completed, the next stage

of analysis of race checker as well as deadlock checking

comes in. Proper caching methods to reduce traversing is

used after which the Lockset algorithm applies for potential

race. So in this way it repeats locking cycle when locks are

used.

The last phase contains the post-processed errors so as to

prioritize the negative effects of error. The results of this

tool are amazing as it reduces false positives and removes

bugs.

CHORD [7] is a static analysis tool which is context

sensitive as well as flow insensitive which allows it to be

more flexible as compared to other tools. Here the

algorithm is a mess of concepts and it uses Java specific

primitive synchronization.

ZING This tool has its own custom language and is a model

checker used for design verification. It is fully able to model

concurrent state machines. It uses innovative reduction

technique for concurrent state space explosion and it

provides a clear way to verify designs and building high

quality applications. Here the model needs to be created by

translator or manually. But without translator ZING cannot

be used for large projects.

V. ANALYSIS RESULT

Concurren

cy tools

Methodologi

es
Techniques

Applicatio

n

CHESS

Combining

model

checking and

dynamic

analysis used

for detecting

concurrency

Partial order

reduction and

to control

state space

explosion

iteration

context

CHESS is

good for

developers

who can

take little

stress to

get better

errors by

analyzing

schedules.

bounding is

used. Upon

repetition it

chooses new

scheduling.

interleaved

testing..

INTEL

THREAD

CHECK

Dynamic

analysis used

to find

deadlocks,

stalls, false

API

Happen-

Before

technique on

partial order

It is the

best

testing

tool can be

used for

application

s which

are

developed

for a

particular

device.

RacerX

Static

Analysis tool

and Race free

typed method

used to find

deadlocks

Lockset

algorithm

applies for

potential race

From a

test

engineerin

g

perspectiv

e, the

output of

this tool is

excellent

and

realistic.

CHORD

Static

analysis tool

which is

context

sensitive as

well as flow

insensitive

which allows

it to be more

flexible as

compared to

other tools

Here the

algorithm is a

mess of

concepts and

it uses Java

specific

primitive

synchronizatio

n.

Perhaps

this can be

the most-

promoted

testing

tools

available

for device-

specific

application

s

ZING

It uses own

custom

language and

a model

checker used

for design

verification

It uses

innovative

reduction

technique for

concurrent

state space

explosion and

it provides a

clear way to

verify designs

and building

high quality

applications

Zing tool

can only

check the

correctnes

s but to

test for

concurrent

bugs it

need a

translator

for large

application

s

VI. RELATED WORKS

In [14], [15] non deterministic testing been developed for

execution of code with same value to find errors by

repeated execution. But here lack of control may lead to

SYN-sequence.

Concurrent Defects, Methodologies and Recommendations

4040
Retrieval Number: C6546029320/2020©BEIESP

DOI: 10.35940/ijeat.C6546.029320

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Other works [16], [17] include deterministic testing to

exercise selected SYN-sequences from the graph of code.

Here the problem lies in state explosions it selects totally

ordered SYN-sequences of various definite partial orders.

Another technique contains both deterministic as well as

non deterministic known as Reachability [18] which is

designed for shared multi threaded programs. Later in [20]

improvements have been made for asynchronous message

passing. Recently semaphore based program [21] and

monitor based programs[22] are developed for reachability

testing[23].

One more is proposed in [24] so as to avoid race variant

from being generated so as to have duplicate SR sequence.

New tools like PathFinder [25], VeriSoft [26], ExitBlock

[27], uses partial order reduction. But reachability testing

uses half order directly. Also SYN-sequence is highly

flexible as it is based on language level definition of

concurrency rather than structure. Reachability testing

requires no modifications but the above mentioned tools

require access to thread scheduler.

VII. RECOMMENDATIONS

Commonly used recommendation is:

 Study: Deeply studying new concurrency defects and

testing techniques.

 Plan: Planning for maximum coverage metrics is

needed.

 Check: Need of checking interleaving of different

operations of components

 Review: Structure and design must be reviewed for

errors

 Cover: Various test cases need to be developed for

interleaving.

 Be attentive: Need to pay attention for critical

situations.

 Peer Review: Need of it in design and structure of

application.

VIII. CONCLUSION

In this paper we concentrated on various strategies and

methods for evaluating simultaneous and multi-threaded

programmes. Static tools are simple and scalable and can

run in broad real code but generate false alarms. Dynamic

analysis methodology gives accurate outcomes but still it

suffers from low faith since it only analyzes paths that were

executed. Because of the pros and cons of different testing

methods, modern research has been attempted to

incorporate more than one method to maximize mutual

advantage.

REFERENCES

1. T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by

context inference,” SIGPLAN Not., vol. 39, no. 6, pp. 1–13, Jun.

2004.
2. M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective static deadlock

detection,” 2009, pp. 386–396.

3. V. P. Rahul and G. Boby, “Tools And Techniques to Identify
Concurrency Issues.” [Online]. Available:http://msdn.

microsoft.com/enus/ magazine/ cc546569.aspx. [Accessed: 25-Feb-

2012].
4. A. Raza, “A Review of Race Detection Mechanisms,” in Computer

Science – Theory and Applications, vol. 3967, D. Grigoriev, J.

Harrison, and E. A. Hirsch, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 534–543.

5. N. E. Beckman, “A Survey of Methods for Preventing Race

Conditions,” 2006.
6. D. Engler and K. Ashcraft, “RacerX: effective, static detection of

race conditions and deadlocks,” 2003, p.237.

7. P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Practical
static race detection for C,” ACM Trans. Program. Lang. Syst., vol.

33, no. 1, pp. 3:1–3:55, Jan. 2011.

8. R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,”
2003, p. 167.

9. L. Lamport, “Ti clocks, and the ordering of events in a distributed

system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
10. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: a dynamic data race detector for multithreaded programs,”

ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.
11. G. Brat and W. Visser, “Combining Static Analysis and Model

Checking for Software Analysis,” PROC. ASE 2001, pp. 262–271,

2001.
12. J. Chen and S. MacDonald, “Towards a better collaboration of static

and dynamic analyses for testing concurrent programs,” in

Proceedings of the 6th workshop on Parallel and distributed systems:
testing, analysis, and debugging, New York, NY, USA, 2008, pp.

8:1–8:9.

13. M. Musuvathi and S. Qadeer, CHESS:Systematic Stress Testing of

Concurrent Software. 2006.

14. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithread

Java program test generation. IBM Systems Journal, Vol. 41(1), pp.
111-125, 2002.

15. S. D. Stoller. Testing concurrent Java programs using randomized
scheduling. In Proceedings of the Second Workshop on Runtime

Verification (RV), Vol. 70(4) of Electronic Notes in Theoretical

Computer Science. Elsevier, 2002.
16. K. C. Tai. Testing of concurrent software. Proc. of the 13th Annual

International Computer Software and Applications Conference, pp.

62-64, 1989
17. R. N. Taylor, D. L. Levine, and Cheryl D. Kelly, “Structural testing

of concurrent programs”, IEEE Transaction on Software Engineering,

18(3):206-214, 1992.
18. G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability testing: An

approach to testing concurrent software. International Journal of

Software Engineering and Knowledge Eng. 5(4):493-510, 1995.
19. K. C. Tai. Reachability testing of asynchronous messagepassing

programs. Proc. of the 2nd International Workshop on Software

Engineering for Parallel and Distributed Systems, pp. 50-61, 1997.
20. Y. Lei and K. C. Tai, Efficient reachability testing of asynchronous

message-passing programs, Proc. 8th IEEE Int’l Conf. on

Engineering for Complex Computer Systems, pp. 35-44, 2002.
21. Y. Lei and R. Carver, Reachability testing of semaphore based

programs, Proc. of COMPSAC, 2004.

22. Y. Lei and R. Carver, Reachability testing of monitor-based
programs, Proc. of Software Engineering and Applications, 2004.

23. R. Carver and Y. Lei, A general model for reachability testing of

concurrent programs, to appear in Proc. of Intl. Conf. on Formal
Engineering Methods, 2004.

24. Y. Lei and R. Carver, “A New Algorithm for Reachability Testing of

Concurrent Programs,” Proceedings of the 16th IEEE International
Symposium on software engineering ,2005

25. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder –

Second Generation of a Java Model Checker. In Proc. of Post-CAV
Workshop on Advances in Verification, 2000.

26. P. Godefroid. Model Checking for Programming Languages using

VeriSoft. Proceedings of the 24th ACM Symposium on Principles of
Programming Languages, pages 174-186, Paris, January 1997

27. D. L. Bruening. Systematic testing of multithreaded Java programs.

Master’s thesis, MIT, 1999.

AUTHORS PROFILE

Dr. Sasmita Padhy belongs to Berhampur and

borned on 10th June 1979. She received the B.E.
degree in Computer Science from Utkal University,

Odisha in 2001 and received M.Tech. in Computer

Science from Biju Patnaik University of Technology
(BPUT), Odisha in 2007. She also completed Ph.D.

from Berhampur University, Berhampur, Odisha in

2012. Her area of interest is MIMO wireless communication and networks,
wireless ad-hoc networks.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

4041
Retrieval Number: C6546029320/2020©BEIESP

DOI: 10.35940/ijeat.C6546.029320

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

hoto

to

Akash Kumar Sahu, student of B.tech (2016-2020)

in Computer science in NIST, berhampur. Her area
of interest is MIMO wireless communication and

networks, wireless ad-hoc networks, software

engineering, software testing , system security.

Dr. Susanta Kumar Das joined the Dept. of
Computer Science in 1993. He has teaching

experience of 23 years in the department. He has

attended no. of national & international conferences.
To his credit, he has served as H.O.D for 2 years in

the department. At present he is the coordinator of

M.Tech (S.F) course & as coordinator of spoken
tutorial project conducted by IIT Bombay & funded by MHRD, Govt of

India. Fourteen no. of scholars are awarded Ph.D under his guidance. One

D.Sc degree is awarded in Computer Science under his guidance. He has
been felicitated award of honour by Dept. of Mathematics, Maharshi

Dayanand University Rohtak, Haryana in the international conference on

History & Development of Mathematical Science & Symposium on
Nonlinear Analysis. His research are in Software Engineering & Network

Security.

