
International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020 

 

4006 
Retrieval Number: C6420029320/2020©BEIESP 

DOI: 10.35940/ijeat.C6420.029320 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Simulation of Sparse Model for Fmri Signal with 

Brain Activation During Hunger Regulation 

Process 
 

Divya, Saurabh Mukherjee 

 
Abstract: Functional Magnetic Resonance Imaging (fMRI), 

a non-invasive technique, is used for the recognition of different 

Cerebral Blood Flow (CBF) and Blood Oxygenated level 

dependent (BOLD) measures which result into the identification 

of various neural activities related to different physiological 

processes such as Hunger Regulation, Water Balancing etc.  

Different BOLD contrast levels (blood oxygenated and 

deoxygenated level) specify diversity in various state of human 

brain functioning subject to various tasks. The proposed model is 

a hybrid combination of Sparse method (Carroll et al., 2009) and 

Hypothalamic Hunger Regulation Model i.e. Sparse matrix for 

Hypothalamic BOLD Signal method (SMHB Method).  SMHB 

method is dynamic and linear in nature. It defines the sparse 

parameters which act on the mapping between the fMRI signal 

for hunger regulation process and sparse representation of the 

signal segmented from the input image by which every voxel of 

fMRI signal in temporal domain can be expressed as a sparse 

signal. A sparse model provides a well define results for task 

based localized activity. It can be applied on a single image as 

well as an fMRI dataset. The implementation of SMHB method 

divided into different sub-modules such as Input image analysis 

and visualization, Linear Voxel Module and Neuro Activation 

Module. Our study have completed first two module with 

different pre-processing techniques used for image analysis and 

linear representation of each voxels of fMRI signal in the form of 

sparse parameters.    
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I. INTRODUCTION 

he complex technique of fMRI has been studied through 

different models and numerical simulation.  The fMRI 

signal depends on neurovascular factors, brain activity for 

physiological and homeostatic functions, oxygen 

metabolism, neurovascular coupling and more [7].  The 

Homeostatic functions has been described with 

mathematical perspective under consideration of various 

spatial and statistical parameters like fractals, entropy, 

membership function, wavelets and correlation, variance 

and Skewness respectively [1][2]. An accurate analysis of 

BOLD contrast gives correct interpretation of the 

physiological functions. Different biophysical models 

calibrated and quantify the functional changes. The basic 

key features of such methods are mono-variant and multi-

variant, Linear and Non Linear, convolution, regression and 

covariance etc. BOLD fMRI simulators and software has 

been developed under the challenging environment created 

by these physiological based parameters. 
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 The fMRI technique reveals certain level of information 

regarding the motor, metabolic, cognitive, physiological and 

perceptual based neural activity of human brain. Such 

studies required a high resolution data set with variation in 

tasking [7] [8]. The increase in local CBF results in the 

increase in the metabolic level of oxygen and glucose. Due 

to the complexity in BOLD signal an optimized model is 

required for the vascular, physiological and metabolic 

interpretation of different brain regions [8]. Different 

categories for the Analytical Models and Simulation 

methods for the BOLD signals are introduced with passage 

of time. Biophysical Simulations methods for BOLD signals 

single voxel model, multi-voxel model and multi-resolution 

models [14]. Analytical category based BOLD models are 

Static and Dynamic Model (Figure 1). Dynamic Model 

further categorised as Linear and Non-Linear Sparse Model, 

Calibrated Model and Balloon Model. Our study is mainly 

concentrated on linearly represented Sparse Model.  

 
Figure 1: Categories of Models for BOLD signal 

representation and Analysis 

II.  LITERATURE REVIEW 

From last decade a number of models based on different 

parametric input and functionality has been applied to fMRI 

data to describe different activity and task based result. 

BOLD, DWI, MEMRI, HMR spectroscopy based methods 

provide neuro compartment based interpretation of fMRI 

signals with metabolic and neuro-endocrine task and 

functions of human body [15] [16]. Pulse Arterial Spin 

Labelling Magnetic Resonance Imaging (PASL MRI) can 

also be used to create discrepancy between the signals 

generated for food deprivation and satiety in healthy obese 

humans. 

 

 

MODELS FOR  

BOLD SIGNALS 

Static Model  Steady-state Model 

Dynamic Model 

Balloon Model 

Calibrated fMRI 
Models 

Sparse Signal  

representation 
Model  

(Linear  and Non-
Linear) 

T 



 

Simulation of Sparse Model for Fmri Signal with Brain Activation During Hunger Regulation Process 

 

4007 
Retrieval Number: C6420029320/2020©BEIESP 
DOI: 10.35940/ijeat.C6420.029320 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

 Satiety hormone i.e. Leptin triggered the neurons at arcuate 

nucleus at Hypothalamus for increase and decrease in food 

consumption and energy expenditure [3]. The functionality 

based connection between Hypothalamus and pituitary 

gland differentially influence the BMI (Body Mass Index) of 

human body positively. The multiple linear regression based 

method has been used for this implementation [5]. Analysis 

and Classification techniques can be apply on different 

metabolic functions like hunger regulation, energy balance, 

water balance etc. A classical method, Machine learning 

classifier (MLC), can be used to classify different brain 

activities. Multi-voxel pattern Analysis (MVPA) examines 

the mapping between activities and cognitive states of brain. 

Support Vector Machine classifier with machine learning 

scenario gives more than 80 % accuracy on fMRI signals 

with resting state to differentiate between two major 

metabolic states of Homeostasis process i.e. Hunger and 

Satiety state[6]. A convolution based model is constructed 

for the fMRI signals classification for multiple tasks 

depends on Regression based General Linear Model (GLM) 

and gives output with variation in BOLD signal with time 

based parameters [7]. Multivariate methods are more 

relevant and optimized to map the complexity of the fMRI 

imaging techniques. An elastic network method interpret 

fMRI activity network to various task and its parameters 

[9].A multivariate method using sparse representation can 

be used positively to analyse various states and groups of 

brain network for Autism disorder. The Multilink analysis 

method provides an optimal result with an above average 

accuracy level defining the cross dependency and 

connectivity between different features of Brain networks 

[4]. A different range of methods can also be used to filter 

noise from the fMRI signal. These noises can be either 

instrumental because of machine or physiological 

fluctuations or object movement based noise or many more. 

For the de-noising process, regression (Global signal 

regression method) and variance based method can be 

applied on the acquired fMRI signal [12]. For spatial fMRI 

dataset with richer texture and with noise Empirical mode 

decomposition model with green function resultant an 

optimized outcomes than previously used standard methods 

but increase the computational weight to the machine [13]. 

Wavelets transform is beneficial with both spatial domain 

and temporal domain fMRI signals. The decomposition and 

de-correlation properties of Wavelets transform provides 

parametric lead to General Linear Model‘s variables and the 

activity map of an fMRI signal. For Sparse Representation, a 

Threshold based iterative algorithm is proposed for an 

activity which is sparsely distributed in time [17]. 

III. MOTIVATION 

Apart from providing the mapping between the voxel of 

the fMRI signal and sparse array, gives multiple optimized 

outcomes which are as follows: 

 It gives mapping for the aperiodic activity of any 

neuron with respect to time individually.  

 The response of a single neuron from passive to 

generating spike for a selective stimulus activity 

generating by group of neurons. 

 For a particular point of time range, the stimulation 

of a small cluster of neurons to a single stimulus 

activity. 

 Sparse dictionary learning based model can be 

applied to complete fMRI dataset. 

 It determines and interprets the task based activity 

parameters from an fMRI activity pattern.   

 Pattern analysis and classification can be 

performed with multivariate model. 

IV. METHODOLOGY 

Our Simulation method, Sparse Model [9] [10] for 

Hypothalamic BOLD signal (SMHB) described by the 

following four steps (Figure 2) including the equations 

(procedures) and assumptions.  

Step 1: Input image is the synthesized image which 

required multiple methods image analysis to visualize the 

image features.    

Step 2: Each fMRI voxel’s element is sparse and the 

activation spikes integration for that neuron is linear in 

nature. The observations at i
th

 voxel stimuli generated by a 

single neuron i.e. variable ni can be calculated using Linear 

Voxel Module where the column vector of generated matrix 

(S) can be map to the fMRI signal for a single neuron.  

 

      
 
                 (1) 

 

Such that ni belongs to ℝ with M dimension and where i 

can be number of voxel such that i = 1, 2 ….C, S is matrix 

with dimension M × N, generated after fMRI scan for a 

single experimental task.  Vi is the optimized average signal 

potential with a number of P parametric functions.    is the 

noise at each voxel (i
th

 voxel). For (Equation 1) each 

stimulated spike for a single neuron is equivalent to the 

experimental pattern in the parametric dictionary.  

Step 3: Using convolution and Hemodynamic response 

function two parametric dictionary introduced for our 

resultant matrix X. For Neuron Activation Module (NAM) 

for any Sparse representation model a statistical model can 

be used. To prompt discrepancy and sparseness to our model 

Laplacian function [9]. Laplacian function gives the 

statistical mapping between the different stimuli and 

regression individually applied to each Vi , fMRI signal.   

 

               (2) 

  For i = 1, 2… C. 

 

Further calculation includes False Probability Detection 

Function (FPDF) and Stimulus Threshold Evaluation (STE). 

A threshold variable Tv for each stimulus is calculated from 

a Laplacian distribution function.  

Step 4: Result will be in the represented in the form of 

Sparse matrix. Our   
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Figure 2: Step by Step procedure for Simulation of 

Sparse Model for Hypothalamic BOLD signal (SMHB) 

V. RESULTS AND DISCUSSION 

The deployment of the SMHB model can be tool-wise 

divided into two major parts: ImageJ (1.52a, Java1.8.0_112 

(64bit)) and MATLAB R2018a. ImageJ is used to acquire 

the data (Image) specific to neural activity at Hypothalamus 

for food and non-food images [11]. For our result which 

include image acquisition and analysis of input data. With 

help of MATLAB R2018a, a series of user defined functions 

has been developed for each equation (Equation 1 and 2). 

The result from our study can be described by the following 

points:  

 Input Image: For pre-processing, an image (32 

bits) with resolution 175 X 288 X 288 (length, 

width, slice) is used for input (Figure 3 and Figure 

4). 

 Pre-processing method:  It includes contrast 

enhancement and sharpening (Figure 7) and quality 

analysis for fMRI signal includes histogram 

(Figure 5 and Figure 9) and Fourier transforms 

method (Figure 11(a) and 11(b)).  

 Transform function: Fire colormap (Figure 3(c)) 

with variables colours and alphas, Thermal 

colormap and surface plot are applied to enhance 

the visibility of the images.  

 Localization (Figure 4): For the location of 

Hypothalamus in the input image the Co-ordinated 

value for the voxel x=87, y=148, z=94 and voxel 

value=79 and rotation co-ordinates are x= 86 y =-

82 z=4. 

 Local Thresholding (bitwise figure 8): The 

methods provided by ImageJ to show active 

different neuro-compartments of brain at threshold 

range which are Maxentropy method, Otsu method 

and Percentile method (figure 6). 

 

Table I: Threshold values for Local Thresholding   

Threshold 

Level 

Max 

Entropy  

Otsu 

method  

Percentile 

Method 

Minimum  106 98 101 

Maximum 125 110 110 

  

Table II: Histogram Parameters (Figure 9) 

Count Mean StdDev 

480053 31.622 52.859 

Min Max  Mode 

0 255 0 (301849) 

 

 The histogram (Figure 5 and 9) of the input image 

to represent intensity level (weighted and un-

weighted) with the histogram parameters like no of 

pixels, mean and standard deviation shows in Table 

I and II. 

 Contrast, saturation and edges enhanced image is 

used for further processing where we used the Fast 

Fourier Transform (figure 11 (a) and 11 (b)) and 

surface plot (figure 10(a) and (b)) to visualize the 

voxels’ value for the co-ordinated value (x, y, z). 

The Fourier transform of the original image and the 

edge enhanced image can be easily differentiated 

visually and parameterized level.  

Two modules have been implemented 

successfully and results have been displayed with 

the help of Figure 3 to 11.    

 
Figure 3: (a, b, c) Location of Hypothalamus in an input Image 

STEP 4 : Results (Mapping between fMRI to Sparse) 

STEP 3 : Neuron Activation Module 

Laplacian Function Regression method 

STEP 2 : Linear Voxel Module 

User defined MATLAB 
function 

Input signal from fMRI 
Image  

STEP 1: Signal preprocessing and Quality Analysis 

Image acquisition from fMRI Image Data set (ImageJ) 
(fMRI Signal)   
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Figure 4 : ImageJ environment used to locate the Hypothalamus in a data set (Sequence of Images (32 bit) with 288 

slices) of resolution 175 X 288. 

 
Figure 5 : Histogram of the original Image (Figure 4) with un-weighted Intensity and mean and standard Deviation 

 
Figure 6 (a, b, c): Resultant Images with MaxEntropy, Otsu method and Percentile method for local Thresholding. 

 
Figure 7: Input Image (a), Image with Enhanced contrast and sharpening technique (b) and Image with edge 

identification (c). 
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Figure 8 fMRI Image after local threshold method (bitwise) of an 8bit grayscale image. 

 

 
Figure 9:  Histogram for image 9(a) 

 
Figure 10 : (a) Surface plot for image 9(a), (b) Surface plot for image 9(b).
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Figure 11(a): Fourier transforms of image at 9(a), (b): 

Fourier transform of image at 9(c). 

VI. CONCLUSION  

Since we are using the secondary dataset we are analysing 

it using multiple pre-processing methods such as histogram, 

Fourier transforms and surface plot (Figure from 3 to 11) to 

get better synthesized image. The minimum and maximum 

threshold values for Local Thresholding methods (Figure 6) 

are approximate to similar range. Thus we can conclude that 

this step has been completed with an optimized and 

synthesized image with Hypothalamus localization. The 

simulation process reached to half way with the completion 

of initial two modules. Thus SMHB method has been 

partially applied and result has been evaluated for a 3D 

image initially and further limited data set of ten images 

which are divided in two different sub-categories 5 images 

with anatomical information and 5 images with BOLD 

signals with Hunger Regulation functionality.  

 FUTURE SCOPE 

We will also applied the regression based strategy for 

optimized estimation of the signal mapping with zero false 

probability (FPDF) (Equation 2) for the mapping between 

sparse matrix and fMRI voxels. Wavelet transform can also 

be used to synthesize an fMRI image. Afterwards, 

successive steps will be completed and final result will be 

generated. A regression based statistical analysis (Gaussian 

model or Laplacian Model) of the sparse parameters can be 

performed for the fMRI data set. A supervised machine 

learning tool like Support vector machine (SVM) for Linear 

and Non Linear aspect can be for the classification method 

for various task and stimuli activities. A multi-voxel, multi 

spectral, multivariate hybrid model with supervised or 

reinforcement training can also be implemented in near 

future to find the discrepancy between fMRI signals for 

different physiological functions.     
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